
Visual Transfer for Reinforcement Learning
via Wasserstein Domain Confusion

Josh Roy and George Konidaris
Brown University

joshnroy@gmail.com, gdk@cs.brown.edu

Abstract

We introduce Wasserstein Adversarial Proximal Policy Op-
timization (WAPPO), a novel algorithm for visual transfer in
Reinforcement Learning that explicitly learns to align the dis-
tributions of extracted features between a source and target
task. WAPPO approximates and minimizes the Wasserstein-1
distance between the distributions of features from source and
target domains via a novel Wasserstein Confusion objective.
WAPPO outperforms the prior state-of-the-art in visual trans-
fer and successfully transfers policies across Visual Cartpole
and both the easy and hard settings of of 16 OpenAI Procgen
environments.

Introduction
Deep Reinforcement Learning (RL) has enabled agents to
autonomously solve difficult, long horizon problems such
as Atari games from pixel inputs (Sutton and Barto 2018;
Mnih et al. 2015). However, in high risk domains such as
robotics and autonomous vehicles, RL agents lack the abil-
ity to learn from their mistakes without destroying equip-
ment or harming humans. Instead, it would be preferable to
train in simulated domains and transfer to the real world.
However, Deep model-free Reinforcement Learning agents
trained on one environment often fail on environments that
require solving the same underlying problem but different
visual input (Cobbe et al. 2019b,a). When transferring from
a simulated source domain to a real-world target domain,
this is known as the reality gap (Sadeghi et al. 2018; To-
bin et al. 2017; Sadeghi and Levine 2016). This challenge is
known as visual generalization in RL and is studied by trans-
ferring between simulated domains (Cobbe et al. 2019b,a;
Zhang et al. 2018; Justesen et al. 2018; Juliani et al. 2019).

The main reason for such difficulty in generalization is the
tendency of deep networks to overfit to a single task (Zhang
et al. 2018; Justesen et al. 2018; Cobbe et al. 2019b; Dubey
et al. 2018). For example, an agent that learns to balance the
cartpole depicted on the left of Figure 1 will fail to gener-
alize to the cartpole on the right due to visual differences
alone. In deep supervised learning, this can be addressed by
smoothing the learned function using methods such as data
augmentation (Simard et al. 2003), dropout (Srivastava et al.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2014), and regularization (Ng 2004). However, these meth-
ods are insufficient for generalization in Deep RL (Cobbe
et al. 2019b). Unlike supervised learning, where all data-
points are drawn from the same distribution, transferring be-
tween differing RL tasks is akin to that of supervised domain
adaptation where datapoints from source and target tasks are
drawn from different distributions (Tzeng et al. 2017; Ganin
et al. 2016; Tzeng et al. 2015).

Previous work such as Domain Randomization or Meta-
Learning takes a brute force approach to this problem, train-
ing on many source domains before fine tuning on the target
domain for 0 or k episodes, referred to as zero-shot or k-shot
transfer, respectively. These methods require a large number
of source domains before they can transfer or adapt to the
target domain. Domain Randomization learns a representa-
tion sufficient to solve all source domains, implicitly align-
ing the distributions of features extracted from each domain.
It then assumes the features extracted from the target do-
main will fall into a similar distribution (Tobin et al. 2017;
Andrychowicz et al. 2020; Akkaya et al. 2019). Some re-
cent work has attempted to more explicitly align the feature
distributions across domains but assumes access to pairwise
correlations of states across domains (Slaoui et al. 2019;
Gupta et al. 2017a; Tzeng et al. 2020). Other work relies
upon style-transfer networks to “translate” target domain
states to source domain states before processing (Zhang
et al. 2019). This adds additional computational complex-
ity during both training and inference and relies upon the
quality of the translation network. Further work attempts to
learn the causal structure underlying such a family of vi-
sual Markov Decision Processes (MDPs), leading to a causal
representation independent of domain and successful trans-
fer (Zhang et al. 2020). Both translation and causal methods
require modeling of variables unrelated to the task given,
leading to additional complexity (Zhang et al. 2019, 2020).

We introduce a novel algorithm that explicitly learns to
align distributions of extracted features between a source
and target task without adding additional computation dur-
ing inference or assuming access to pairwise correlations
of observations. By simultaneously training an RL agent to
solve a source task and minimize the distance between dis-
tributions of extracted features from the source and target
domains, our algorithm enables seamless transfer to the tar-
get domain. Specifically, we train an adversary network to

approximate the Wasserstein-1 distance (Arjovsky, Chintala,
and Bottou 2017) between the distributions of features from
source and target tasks, and an RL agent to minimize this
distance via a novel Wasserstein Confusion objective while
solving the source task. The Wasserstein-1 distance between
distributions can be intuitively described as the effort re-
quired to align two probability distributions by transporting
their mass (Rubner, Tomasi, and Guibas 2000). As shown
in Arjovsky, Chintala, and Bottou (2017), minimizing this
distance allows adversarial alignment methods to succeed
where other distance metrics, such as Jensen-Shannon di-
vergence, fail. Our algorithm outperforms the prior state-of-
the-art in visual transfer and successfully transfers policies
across Visual Cartpole, a visual variant of the standard cart-
pole task where colors are changed across domains (Brock-
man et al. 2016), and both the easy and hard settings of 16
OpenAI Procgen environments (Cobbe et al. 2019a).

Background and Related Work
RL is concerned with sequential decision making (Sutton
and Barto 2018): an agent exists within a world (environ-
ment) and must take an action a based on some information
about the world (state) s. This causes the environment to
provide the agent with the next state s′ and a reward r. The
agent’s goal is to learn a policy π mapping states to actions
that maximizes the expected sum of rewards E[

∑
t γ

trt],
where γ ∈ [0, 1) is a discount factor that weights the im-
portance of short and long term rewards. Return is defined
as the sum of cumulative rewards. The interactions between
the agent and the environment are modeled as a Markov
Decision Process (MDP) defined as a 5-tuple(S,A, T,R, γ)
where S is the set of states, A is the set of actions, T is a
function from state and action to next state, R is a function
from state and action to reward, and γ is the discount factor.

Model-free Deep RL uses neural networks to predict both
the value (expected future reward) of a state and the opti-
mal action to take. Proximal Policy Optimization (PPO) is
a state-of-the-art model-free policy gradient algorithm for
Deep RL (Schulman et al. 2017). It parameterizes a policy
πθ(a|s) and a value function Vθ(s) that share the majority of
their weights, splitting after the “feature extraction” section
of the network. The value network is trained to minimize
the mean square error Lvalue =

1
n

∑n
i=1(V (s)−R)2, where

R is the return. The policy network is trained to minimize
Lpolicy = −Êt[min(rt(θ)Ât, clip(rt(θ), 1 − ε, 1 + ε)Ât],

where Ê is the empirical expected value at timestep t, Ât
is the empirical advantage at timestep t, r(θ) = πθ(at|st)

πθold (at|st)
is the ratio of taking action at given state st between the cur-
rent and previous policies, and ε is a small hyperparameter.
The two function approximators are trained jointly, and their
combined loss is LPPO = Lpolicy + Lvalue.

Transfer in Reinforcement Learning
Transfer in RL has been a topic of interest far before the re-
cent advent of Deep Neural Networks and Deep RL. Work
on transfer is separated into questions of dynamics, rep-
resentation, and goals with environments differing in their

states, actions, transition function, or reward function, re-
spectively (Taylor and Stone 2009; Lazaric 2012). A policy
that transfers perfectly trains on a source MDP and achieves
target reward equivalent to an agent trained on a target MDP.

The most popular approach in k-shot transfer for RL is
Meta RL. These methods optimize a Deep RL agent’s pa-
rameters such that it can rapidly learn any specific task se-
lected from a set of tasks. Specifically, the agent first trains
on n source tasks and then trains on the n + 1th task for
k episodes before measuring performance on the n + 1th
task (Finn, Abbeel, and Levine 2017; Nichol and Schulman
2018). There are also a number of other approaches (Carr,
Chli, and Vogiatzis 2018; Gupta et al. 2017b; Wulfmeier,
Posner, and Abbeel 2017) that transfer between domains by
utilizing the ability to train in the target domain. Though
they can transfer from one source to one target domain,
training or fine tuning in the target domain is a very strong
assumption. For example, training on a real robot arm will
likely result in unstable behavior and possibly damage, but
collecting image observations will be safe and predictable.

Domain Randomization is the most popular approach to
zero-shot transfer in RL. In Domain Randomization, an
agent trains on a set of n source tasks, implicitly learning
a representation and policy sufficient to zero-shot transfer to
the n+1th task (Tobin et al. 2017; Andrychowicz et al. 2020;
Akkaya et al. 2019). For successful transfer, all n + 1 tasks
must be drawn from the same distribution. Furthermore, n
is required to be sufficiently large that the agent is unable to
memorize domain-specific policies.

Some work directly addresses dynamics transfer where
the transition function changes, but states, actions, and re-
wards are identical. Some work (Killian et al. 2017; Doshi-
Velez and Konidaris 2016; Yao et al. 2018) parameterizes
the transition function of an MDP and learning a conditional
policy that can transfer between such tasks. Other work gen-
erates a curriculum to learn generalizable policies that can
adapt to MDPs with differing dynamics (Mysore, Platt, and
Saenko 2019). Some approaches (Wulfmeier, Posner, and
Abbeel 2017; Joshi and Chowdhary 2019) uses distribu-
tional alignment. This work solves a different problem than
WAPPO which focuses on appearance-based transfer.

Visual Transfer in Reinforcement Learning
Visual transfer takes place within a family M of re-
lated Block MDPs M ∈ M each defined by a 6-tuple
(S,A,X , p, q, R) where S is an unobserved state space, A
is an action space, X is an observation space, p(s′|s, a) is
a transition distribution over the next state s′ based on the
previous state s and action a, q(x|s) is an emission func-
tion that represents the probability of an observation x based
on a hidden state s, and R(s, a) is a reward function that
maps from a state and action to a reward (Du et al. 2019;
Zhang et al. 2020). The emission function q and the obser-
vation space X are the only quantities that change across
Block MDPs within a family. Block MDPs are a subset of
POMDPs which have emission functions rather than obser-
vations functions (Du et al. 2019; Monahan 1982). Both
functions map from hidden states to observations but emis-
sion functions generate observations that are definitionally

Markov and uniquely identify their corresponding underly-
ing states (Du et al. 2019). We make the decision to use
Block MDPs and focus on visual transfer just as dynam-
ics transfer approaches focus on solving transfer between
MDPs with differing transition functions but identical states,
actions, and rewards. Furthermore, the Block MDP formu-
lation extends to real-world problems such as simulation
to reality transfer for robotic reinforcement learning. Mod-
ern robotic simulators have accurate physical modeling of
robot arms, turtlebots, and other robots, but not photore-
alistic graphics. To transfer from simulation to reality, an
agent must transfer between MDPs with identical underly-
ing states (ex: gripper and object location), actions (ex: mo-
tor position setpoints), transitions, and rewards but different
observations. This exactly fits the Block MDP definition.

To transfer across different visual domains, Robust Do-
main Randomization (RDR) (Slaoui et al. 2019) aims to
learn a domain-agnostic representation by training an agent
to solve n source domains while minimizing the Euclidian
distance between internal representations across domains. It
then attempts to zero-shot transfer the n+ 1th domain. This
method shows success in tasks where the background color
is the only varied property, but the visual randomization of
complex tasks such as OpenAI Procgen (Cobbe et al. 2019a)
is far higher. When the training data contains pairs of sam-
ples with the same semantic content in each domain, mini-
mizing the Euclidian distance will align the distributions of
representations for each domain. Without paired data, this
will incorrectly align samples with different hidden states,
leading to unreliable representations.

Other approaches assume either the labeling or exis-
tance of pairs of images from source and target domains
and minimize paired distance, aligning the feature distri-
butions across domains (Gupta et al. 2017a; Tzeng et al.
2020). The probability of collecting pairs of source and tar-
get domain samples where underlying states are identical de-
creases rapidly with state space complexity. Obtaining such
data is often impractical or infeasible in practice. Though
this work attempts to solve visual transfer for RL, it makes
restrictive assumptions that limit its scope.

Other work uses causal inference to learn Model-
Irrelevance State Abstractions (MISA) (Zhang et al. 2020)
and transfer between Block MDPs. MISA can transfer
between RL tasks with low-dimensional states and vi-
sual imitation learning tasks with changing background
color (Zhang et al. 2020) but not visual RL tasks. Since
MISA learns to reconstruct observations, it must model fac-
tors irrelevant to the task. Additionally, MISA minimizes
mean squared error between observations and reconstruc-
tions, which ignores small objects due to their low effect on
the error signal (Oh et al. 2015). In visual RL, small objects
such as the player character are essential to solving the task.

Work in supervised domain adaptation (Hoffman et al.
2018) and style transfer (Zhu et al. 2017; Jing et al. 2019;
Gatys, Ecker, and Bethge 2015) translates images to dif-
ferent “styles” such as those of famous painters by train-
ing Generative Adversarial Networks (GANs) to map from
an input image to a semantically equivalent but stylistically
different output image. VR Goggles for Robots (Zhang et al.

2019) aims to transfer RL policies across visually differing
domains by using a style transfer network to translate target
domain images into the source domain. This enables an RL
agent trained in the source domain to act in the target domain
but adds additional computational and algorithmic complex-
ity during inference time and relies heavily upon the success
of the style-transfer network (Zhang et al. 2019) as the pol-
icy does not train on translated images. As the style trans-
fer network minimizes the mean absolute error and mean
squared error between real and generated images, it priori-
tizes modeling factors that utilize a higher number of pixels.
In complex visual RL tasks, important factors, such as the
player character, occupy a small number of pixels and re-
cieve low priority (Oh et al. 2015). While style-transfer adds
computational complexity and relies upon image reconstruc-
tion, other work in GANs and supervised domain transfer
aligns distributions without these drawbacks.

Adversarial Distribution Alignment

Prior work in GANs (Goodfellow et al. 2014) shows that
adversarial methods can align arbitrary distributions of data.
Given samples drawn from a “real” distribution Pr a GAN
learns a mapping from noise sampled from a Gaussian distri-
bution Pz to samples from a “fake” distribution Pf . It jointly
trains an adversary network to classify samples as real or
fake and a generator network to “fool” the adversary, mini-
mizing the Jensen-Shannon divergence (JS divergence) be-
tween the distributions (Goodfellow et al. 2014).

Some domain adaptation methods in supervised learning
uses a GAN-like adversary to align a classifier’s internal rep-
resentations across domains and solve the supervised clas-
sification analogue of visual transfer in RL (Tzeng et al.
2017; Ganin et al. 2016; Tzeng et al. 2015). They each in-
troduce and minimize different distribution alignment objec-
tives based on minimizing the classification accuracy of the
adversary network (Tzeng et al. 2015, 2017).

GAN-like adversarial algorithms align distributions but
are unstable and prone to failures such as mode collapse (Ar-
jovsky, Chintala, and Bottou 2017). Furthermore, minimiz-
ing the JS divergence between two distributions has been
shown to fail in certain cases, such as aligning two uni-
form distributions on vertical lines (Arjovsky, Chintala, and
Bottou 2017). Wasserstein GANs (Arjovsky, Chintala, and
Bottou 2017) solve both of these problems by changing the
adversarial classifier into an adversarial critic f that esti-
mates the Wasserstein-1 distance W (Pr, Pf) between real
and fake distributions Pr and Pf . Minimizing Wasserstein-1
distance is more stable and empirically shown to avoid mode
collapse (Arjovsky, Chintala, and Bottou 2017). Though
directly estimating the Wasserstein-1 distance is infeasi-
ble, the Kantorovich-Rubinstein duality (Villani 2008) pro-
vides a reparameterization that is directly computable. The
gradient of the generator G with weights θ is defined as
∇θW (Pr, Pf) = −Ez∼Pz [∇θf(G(z))].

Wasserstein Adversarial Proximal Policy
Optimization

Our novel algorithm Wasserstein Adversarial Proximal Pol-
icy Optimization (WAPPO) transfers from any source task
Ms to any target task Mt where both Mt,Ms are Block
MDPs drawn from a family M. For any two such tasks,
the observation spaces Xs,Xt and emission functions qs, qt
are different, but the hidden state space S, action space A,
transition function p, and reward function R are identical.
The Visual Cartpole environments shown in Figure 1 illus-
trate difference in emission function; the source domain has
a green cart and pole as on a pink background and blue track
while the target domain has a brown cart with a green pole
on a green background and yellow track. However, both en-
vironments are defined by the same hidden states (position
of the cart and pole), actions (push the cart left or right), re-
wards (+1 for keeping the pole upright at each timestep),
and transitions (simulation of physics). Furthermore, the op-
timal policy that balances the pole is solely a function of the
hidden states representing the position of the cart and pole
and not of the colors of the objects.

Figure 1: Example Visual Cartpole Source Domain (Left)
and Target Domain (Right). The two domains contain the
same hidden states, actions, rewards, and transitions but dif-
fer in their emission functions and observations.

In model-free Deep RL, the agent does not learn to ap-
proximate the transition and reward functions of its MDP.
Instead, it learns a policy that maximizes its reward and rep-
resentation function hθ parameterized by the first few layers
of the RL network that maps from observations x ∈ X to
internal representations r ∈ R. In the Block MDPs defined
above, an optimal policy depends solely on the hidden state
space S. Thus, an optimal representation function h∗ will
map observations x ∈ X to internal representations r ∈ R
that contain no more information than their corresponding
hidden states.

Similarly, there exist optimal representation functions
h∗s, h

∗
t for source and target tasks Ms,Mt ∈ M. Since

the hidden state spaces of Ms,Mt are identical, the opti-
mal policies and representation spaces Rs,Rt are identical.
Thus, there exists a representation function h∗(s,t) that maps
from both Xs and Xm to a representation space R = Rs =
Rt that is sufficient to solve both source and target tasks.

The goal of Wasserstein Adversarial PPO is to learn a
representation function hθ,(s,t) that approximates the opti-
mal representation function h∗(s,t). It is given the ability to
train within Ms and access a buffer of observations sam-
pled from Mt. Note that the observations from Mt are not
paired with observations from Ms and are not sequential.
Further, WAPPO does not have access to rewards from Mt.
Given that Block MDPs Ms,Mt both belong to the family

M, they share hidden states, transition function, and reward
function but differ in observations. Therefore, an agent with
a domain-agnostic representation will be able to learn a pol-
icy in Ms and transition seamlessly to Mt. We define the
representation function hθ as the first few layers of the RL
network with parameters θ. To learn a domain-agnostic rep-
resentation, Wasserstein Adversarial PPO jointly learns to
solve Ms while using an adversarial approach to align the
distributions of representations from Ms and Mt.

Specifically, Wasserstein Adversarial PPO trains on a
dataset D defined as {(xs, xt, as, rs)1, ...(xs, xt, as, rs)m}
where m is the length of the dataset, xs ∈ Xs is an observa-
tion from the source MDP, xt ∈ Xt is an observation from
the target MDP, as is an action from the source MDP, and rs
is a reward from the source MDP. Note that xs, as, rs corre-
spond to the same timestep from the source MDP: the agent
takes action as from state xs, receives reward rt, and tran-
sitions to the next state. xt does not correspond to the same
timestep as the other variables. Instead, it is drawn randomly
from a buffer of observations from the target MDP. WAPPO
uses the output of an intermediate layer, denoted by hθ(x) as
a latent representation r of the observation x. To enforce that
this latent representation x is agnostic to domain, WAPPO
approximates h∗ by minimizing the Wasserstein-1 distance
between the distributions of hθ(xs) and hθ(xt).

Similar to supervised adversarial domain adaptation algo-
rithms (Tzeng et al. 2017; Ganin et al. 2016; Tzeng et al.
2015), WAPPO consists of two networks: the RL network
and the adversary network shown in the Appendix. The RL
network learns a latent representation which is used to com-
pute the best next action and the value of each observation.
This latent representation should be identical across source
and target domain. The adversary network takes the latent
representation as input and is trained to distinguish between
source and target tasks. The policy network both maximizes
performance on the source task and minimizes the adver-
sary’s ability to identify the domain. Specifically, the RL
network minimizes

LWAPPO = LPPO + λLConf,

where LPPO is the PPO loss, LConf is the loss term that
maximally confuses the critic and aligns the distributions of
source and target observations, and λ is a constant weight.

The Wasserstein GAN (Arjovsky, Chintala, and Bottou
2017) approximates the Wasserstein distance between real
and fake distributions using a neural network. Additionally,
it defines a derivative for this distance that is used in opti-
mizing the loss term for the generator, demonstrating higher
stability than the standard GAN loss.

While the Wasserstein GAN loss term seems to align ex-
actly with LConf, it has one key difference. It assumes that
one distribution is fixed, which is not true of domain adapta-
tion. The goal of domain adaptation is to align two distribu-
tions both parameterized by θ. Specifically, we wish to align
the distribution of extracted features from the source domain
Phθs with the extracted features of the target domain Phθt .
Note that it is not possible to directly sample from Phθs , Phθt .
Instead, we sample from these distributions by first sampling
from the distribution of observations, Ps, Pt and then map-

ping to the representation by applying hθ. Thus, the Wasser-
stein distance is defined as

W (Ps, Pt) = Ex∼Ps [f(hθ(x))]− Ex∼Pt [f(hθ(x))], (1)

where f is the adversarial critic and the gradient is defined
as:

∇θW (Ps, Pft) = ∇θ[Ex∼Ps [f(hθ(x))]− Ex∼Pt [f(hθ(x))]]
= ∇θEx∼Ps [f(hθ(x))]−∇θEx∼Pt [f(hθ(x))]

∇θW (Ps, Pt) = Ex∼Ps [∇θf(hθ(x))]−Ex∼Pt [∇θf(hθ(x))].
(2)

Moving the gradient inside the expectation is shown to be
correct in the proof of Theorem 3 of Arjovsky, Chintala, and
Bottou (2017).

Experimental Results
We validate our novel Wasserstein Confusion loss term and
WAPPO algorithm on 17 environments: Visual Cartpole and
both the easy and hard versions of 16 OpenAI Procgen en-
vironments. To evaluate the ability of the Wasserstein Con-
fusion loss term to align distributions of features across en-
vironment and enable successful transfer, we examine how
an RL agent trained using WAPPO on a source domain per-
forms on a target domain. For each environment evaluated,
the agent trains using WAPPO with full access to the source
domain and a buffer of 5000 observations from the target
domain. The agent does not have access to rewards from
the target domain. We compare WAPPO’s transfer perfor-
mance with that of three baselines: PPO, PPO with the fea-
ture matching loss as described by Robust Domain Ran-
domization, the prior state of the art for feature alignment
in RL (Slaoui et al. 2019), and PPO with VR Googles, the
prior state of the art for domain adaptation in RL (Zhang
et al. 2019).

Robust Domain Randomization originally trains on n
source domains while matching their features before at-
tempting to transfer zero-shot to the target domain. It’s main
contribution is a feature alignment loss term. By minimizing
this term and aligning the distributions of features extracted
from the n source domains, it hopes that the distribution of
features from the target domain will also be aligned. We di-
rectly evaluate RDR’s ability to match distributions of fea-
tures by training an RL agent on one source domain and
evaluating on one target domain while minimizing it’s fea-
ture alignment loss using observations from each domain.
Like zero-shot setting, the agent’s performance on the tar-
get domain is proportional to the alignment of features from
source and target domains. This enables a direct compari-
son between the feature alignment loss used in RDR and our
feature alignment loss, Wasserstein Confusion.

VR Goggles trains an RL agent on the source domain
and a style-transfer network between target and source do-
main (Zhang et al. 2019). During evaluation on the target
domain, it translates images to the style of the source do-
main before applying the RL agent’s trained policy. As VR
Goggles utilizes a pre-trained source agent rather than a new
RL algorithm, we report the target performance on Figures
2a, 3, and 4 as a horizontal line. We use the baseline PPO
agent as the pre-trained source agent.

We utilize the PPO implementation and hyperparameters
provided with (Cobbe et al. 2019a). We use these same hy-
perparameters for the other methods tested and do not per-
form any hyperparameter searches. Switching ReLU activa-
tions to Leaky ReLU activations to ease adversarial train-
ing is the only change made to the code. For further de-
tails, please see the appendix and the code 1 distributed with
Cobbe et al. (2019a). Our adversarial critic is 9 dense layers
of width 512 separated by Leaky ReLU functions.

Each experiment’s performance is reported across multi-
ple trials with identical random seeds across algorithms. Vi-
sual Cartpole and Procgen Easy are evaluated across 5 trials
and Procgen Hard is evaluated across 3 trials. There is one
source domain and one target domain per trial.

Visual Cartpole
We first demonstrate transfer on a simple environment,
Visual Cartpole, a variant on the standard Cartpole
task (Brockman et al. 2016) where observations are images
of the Cartpole instead of position and velocity. Color of the
cart, pole, background, and track are varied across domains,
converting Cartpole into a family of Block MDPs where
different emission functions correspond to different colors.
Figure 1 shows sample source and target environments.

As shown in Figure 2a, Wasserstein Adversarial PPO far
outperforms both PPO and PPO using RDR’s feature match-
ing loss. As shown in Figure 2b, the target features extracted
by both PPO and RDR lie within a very small subset of
their corresponding source features. This dense clustering
implies that the target features are not expressive compared
to the source features, leading to low transfer performance.
When using Wasserstein Adversarial PPO, the target fea-
tures are clustered at similar density with the source fea-
tures, demonstrating their distributional alignment and lead-
ing to higher reward. The density plots in Figure 2b are gen-
erated by reducing the features space to 2 dimensions via
Principle Component Analysis (PCA) (Wold, Esbensen, and
Geladi 1987) and estimating a density via Gaussian kernel
density estimation (Scott 2015). While VR Goggles outper-
forms WAPPO and the other algorithms in Visual Cartpole,
it does not in complex visual environments such as Proc-
gen (Cobbe et al. 2019a). VR Goggles is able to perform
well in Visual Cartpole as the background color is the only
visual distraction and the cartpole system occupies a major-
ity of the visual observation. We do not visualize distribu-
tions of features for VR Goggles as it operates on the obser-
vation space rather than the image space.

OpenAI Procgen
The remaining 16 environments are from OpenAI’s Proc-
gen Benchmark (Cobbe et al. 2019a). This benchmark orig-
inally provides agents n source domains to train on and
tests their generalization to a different target domain. The
domains differ according to their emission functions, dy-
namics, and states. As this work focuses on visual domain
adaptation in Reinforcement Learning, we modify the envi-
ronments such that each environment is a family of Block

1https://github.com/openai/procgen

(a) Training Graph.

(b) Feature Distributions.

Figure 2: Visual Cartpole Training Graph (a) and Feature
Distributions (b): Solid and dashed lines indicate source and
target reward, respectively. Green indicates WAPPO, pink
indicates PPO, blue indicates RDR, and orange indicates
VR Goggles. Shading shows standard deviation across 5 tri-
als. Gray and purple indicate source and target features, re-
spectively. WAPPO has both higher target reward and better
alignment of source and target features than other methods.

MDPs. All domains in a particular environment have identi-
cal state spaces, transition functions, and reward functions
but unique emission functions. This decouples the differ-
ent types of transfer and solely focuses on evaluating visual
transfer. To modify the Procgen environments, we set a fixed
emission function for each domain that maps from underly-
ing state to observation. This function decides which sprites,
colors, and visual factors to use for each domain. It is not re-
sponsible for underlying state factors such as maze shape,
platform location, or enemy positions. Unlike the Procgen
environments, resseting the environment does not provide
the agent with a new domain. Instead it resets the domain,
keeps the emission function, and changes underlying states.
In an environment such as maze, an agent trained on a sin-
gle domain will see different maze shapes, starting locations,
and goal locations, but a single configuration of visual fac-
tors including colorscheme and character sprites. This mod-
ification both fits the Block MDP formulation and allows us
to evaluate visual transfer ability without interference from
dynamics, reward, or underlying state transfer.

The training curves and results are not expected to match
that of the Procgen benchmark, as they are two separate
tasks. In the Procgen benchmark, agents are trained on 200
levels where dynamics, visual factors, state factors, and re-
wards differ and are tested on held-out levels. In this task,
agents are trained on one source domain with access to a
fixed number of observations from one target domain, where

only visual factors differ, as formalized by Block MDPs.
As in Visual Cartpole, we train the agent in one source do-

main with access to observations from the target domain and
test the agent’s performance on the target domain. The envi-
ronments vary in difficulty of both the source task and gen-
eralizing to a new domain. Chaser, Heist, Maze, and Miner
focus on navigating in 2-dimensional mazes of varying size.
This is a difficult task for model-free deep RL agents as they
cannot plan a path betwen maze locations and causes diffi-
culty for all of the agents evaluated (Tamar et al. 2016).

There are two different instantiations of each environ-
ment: an easy version and a hard version. The easy version
of each game has less variation across all factors, such as
colors, layouts, and goal locations (Cobbe et al. 2019a). In
certain games, the easy version provides hints that simplify
the task, such as an arrow pointing towards the goal.

We report both the reward on each task and the nor-
malized return across all tasks. Normalized return is cal-
culated by averaging the normalized return on each task
Rnorm = (R−Rmin)/(Rmax−Rmin), whereR is the vector of
rewards and Rmin, Rmax are the minimum and maximum re-
turns for each environment. This quantity measures the over-
all source and target performance for each algorithm.

As shown in Figure 3, WAPPO’s target performance ex-
ceeds that of the other algorithms in 14 of the 16 easy en-
vironments. In Coinrun and Chaser, the target performance
of all algorithms approximately matches their training per-
formance, demonstrating the environments’ lack of transfer
difficulty. In Chaser, WAPPO’s performance exceeds that of
RDR and matches that of PPO. In Coinrun, WAPPO matches
the performance of RDR and exceeds PPO.

These results are mirrored in the hard versions of the Proc-
gen environments, as shown in Figure 4. WAPPO’s target
performance exceeds that of the other algorithms in 12 of
the 16 hard environments. On Plunder, Chaser, and Leaper,
WAPPO matches the performance of PPO and outperforms
other algorithms. Chaser has minimal visual variation, al-
lowing all algorithms match their source and target perfor-
mance. On Maze, WAPPO performs worse than PPO but
better than other visual transfer algorithms. Maze tests an
agent’s ability to solve mazes and has few visual differ-
ences across domains. Maze solving is difficult for model-
free Deep RL agents due to their lack of ability to plan a
path between locations (Tamar et al. 2016). As shown in
Figures 3 and 4, WAPPO’s normalized return on easy and
hard Procgen environments far exceeds that of prior algo-
rithms, demonstrating its superior ability to generalize to
a target domain. Aligning source and target distributions
allows WAPPO to ignore distracting visual details in the
source domain and achieve higher source domain reward.

Conclusion
We address the difficulty in transferring a learned policy
across differing visual environments by explicitly learning
a representation sufficient to solve both source and tar-
get domains. Previous approaches have added additional
inference-time complexity (Zhang et al. 2019), relied upon
pairwise observations (Gupta et al. 2017a; Tzeng et al.

Figure 3: Procgen (Easy) Training Graph. Solid lines and
dashed lines indicate source and target reward, respectively.
Green indicates WAPPO, blue indicates PPO, pink indicates
RDR, and orange indicates VR Goggles. WAPPO matches
or outperforms the other algorithms across all environments.

2020), or ignored fine details by relying upon image re-
construction losses (Zhang et al. 2019, 2020). We have in-
troduced a new method, WAPPO, that does not. Instead, it
uses a novel Wasserstein Confusion objective term to force
the RL agent to learn a mapping from visually distinct do-
mains to domain-agnostic representations, enabling state-
of-the-art domain adaptation performance in Reinforcement
Learning. We validate WAPPO on 17 visual transfer envi-
ronments where our agent both achieves higher reward in
the target MDP and better matches distributions of represen-
tations across domains.

Acknowledgements
This work was supported by the National Science Founda-
tion under grant number IIS-1717569 and DARPA under
grant number W911NF1820268.

Figure 4: Procgen (Hard) Training Graph. Solid lines and
dashed lines indicate source and target reward, respectively.
Green indicates WAPPO, blue indicates PPO, pink indicates
RDR, and orange indicates VR Goggles. WAPPO matches
or outperforms the other algorithms across all environments
except Maze which primarily tests path planning ability
rather than visual transfer.

References
Akkaya, I.; Andrychowicz, M.; Chociej, M.; Litwin, M.;
McGrew, B.; Petron, A.; Paino, A.; Plappert, M.; Powell, G.;
Ribas, R.; et al. 2019. Solving Rubik’s Cube with a Robot
Hand. arXiv preprint arXiv:1910.07113 .

Andrychowicz, O. M.; Baker, B.; Chociej, M.; Jozefowicz,
R.; McGrew, B.; Pachocki, J.; Petron, A.; Plappert, M.; Pow-
ell, G.; Ray, A.; et al. 2020. Learning Dexterous In-Hand
Manipulation. International Journal of Robotics Research
39(1): 3–20.

Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
Generative Adversarial Networks. In Proceedings of the In-
ternational Conference on Machine Learning, 214–223.

Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. arXiv preprint arXiv:1606.01540 .

Carr, T.; Chli, M.; and Vogiatzis, G. 2018. Domain adapta-
tion for reinforcement learning on the atari. arXiv preprint
arXiv:1812.07452 .

Cobbe, K.; Hesse, C.; Hilton, J.; and Schulman, J. 2019a.
Leveraging Procedural Generation to Benchmark Reinforce-
ment Learning. arXiv preprint arXiv:1912.01588 .

Cobbe, K.; Klimov, O.; Hesse, C.; Kim, T.; and Schulman, J.
2019b. Quantifying Generalization in Reinforcement Learn-
ing. In Proceedings of the International Conference on Ma-
chine Learning, 1282–1289.

Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.; Plappert,
M.; Radford, A.; Schulman, J.; Sidor, S.; Wu, Y.; and
Zhokhov, P. 2017. OpenAI Baselines. https://github.com/
openai/baselines.

Doshi-Velez, F.; and Konidaris, G. 2016. Hidden Parameter
Markov Decision Processes: A Semiparametric Regression
Approach for Discovering Latent Task Parametrizations. In
Proceedings of the International Joint Conference on Artifi-
cial Intelligence, volume 2016, 1432.

Du, S.; Krishnamurthy, A.; Jiang, N.; Agarwal, A.; Dudik,
M.; and Langford, J. 2019. Provably Efficient RL with Rich
Observations via Latent State Decoding. In Proceedings of
the International Conference on Machine Learning, 1665–
1674.

Dubey, R.; Agrawal, P.; Pathak, D.; Griffiths, T.; and Efros,
A. 2018. Investigating Human Priors for Playing Video
Games. In Proceedings of the International Conference on
Machine Learning, 1349–1357.

Espeholt, L.; Soyer, H.; Munos, R.; Simonyan, K.; Mnih, V.;
Ward, T.; Doron, Y.; Firoiu, V.; Harley, T.; Dunning, I.; et al.
2018. IMPALA: Scalable Distributed Deep-RL with Impor-
tance Weighted Actor-Learner Architectures. In Proceed-
ings of the International Conference on Machine Learning,
1407–1416.

Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks. In
Proceedings of the International Conference on Machine
Learning, 1126–1135. JMLR. org.

Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle,
H.; Laviolette, F.; Marchand, M.; and Lempitsky, V. 2016.
Domain-Adversarial Training of Neural Networks. Journal
of Machine Learning Research 17(1): 2096–2030.

Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2015. A
Neural Algorithm of Artistic Style. arXiv preprint
arXiv:1508.06576 .

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative Adversarial Nets. In Advances in Neural
Information Processing Systems, 2672–2680.

Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and
Courville, A. C. 2017. Improved Training of Wasserstein
GANs. In Advances in neural information processing sys-
tems, 5767–5777.

Gupta, A.; Devin, C.; Liu, Y.; Abbeel, P.; and Levine,
S. 2017a. Learning Invariant Feature Spaces to Trans-
fer Skills with Reinforcement Learning. arXiv preprint
arXiv:1703.02949 .

Gupta, A.; Devin, C.; Liu, Y.; Abbeel, P.; and Levine,
S. 2017b. Learning invariant feature spaces to trans-
fer skills with reinforcement learning. arXiv preprint
arXiv:1703.02949 .

Hoffman, J.; Tzeng, E.; Park, T.; Zhu, J.-Y.; Isola, P.;
Saenko, K.; Efros, A.; and Darrell, T. 2018. CyCADA:
Cycle-Consistent Adversarial Domain Adaptation. In Pro-
ceedings of the International Conference on Machine Learn-
ing, 1989–1998.

Jing, Y.; Yang, Y.; Feng, Z.; Ye, J.; Yu, Y.; and Song, M.
2019. Neural Style Transfer: A Review. IEEE Transactions
on Visualization and Computer Graphics .

Joshi, G.; and Chowdhary, G. 2019. Adapt-to-Learn: Policy
Transfer in Reinforcement Learning .

Juliani, A.; Khalifa, A.; Berges, V.-P.; Harper, J.; Teng, E.;
Henry, H.; Crespi, A.; Togelius, J.; and Lange, D. 2019. Ob-
stacle Tower: A Generalization Challenge in Vision, Con-
trol, and Planning. In Proceedings of the International Joint
Conference on Artificial Intelligence, 2684–2691. AAAI
Press.

Justesen, N.; Torrado, R. R.; Bontrager, P.; Khalifa, A.; To-
gelius, J.; and Risi, S. 2018. Illuminating Generalization
in Deep Reinforcement Learning through Procedural Level
Generation. arXiv preprint arXiv:1806.10729 .

Killian, T. W.; Daulton, S.; Konidaris, G.; and Doshi-Velez,
F. 2017. Robust and Efficient Transfer Learning with Hid-
den Parameter Markov Decision Processes. In Advances in
Neural Information Processing Systems, 6250–6261.

Kingma, D. P.; and Ba, J. 2014. Adam: A Method for
Stochastic Optimization. arXiv preprint arXiv:1412.6980 .

Lazaric, A. 2012. Transfer in Reinforcement Learning: a
Framework and a Survey. In Reinforcement Learning, 143–
173. Springer.

Maas, A. L.; Hannun, A. Y.; and Ng, A. Y. 2013. Rectifier
Nonlinearities Improve Neural Network Acoustic Models.

In Proceedings of the International Conference on Machine
Learning, volume 30, 3.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; et al. 2015. Human-Level Control
through Deep Reinforcement Learning. Nature 518(7540):
529–533.

Monahan, G. E. 1982. State of the Art—A Survey of Par-
tially Observable Markov Decision Processes: Theory, Mod-
els, and Algorithms. Management Science 28(1): 1–16.

Mysore, S.; Platt, R.; and Saenko, K. 2019. Reward-guided
Curriculum for Robust Reinforcement Learning .

Ng, A. Y. 2004. Feature Selection, L 1 vs. L 2 Regular-
ization, and Rotational Invariance. In Proceedings of the
International Conference on Machine Learning, 78.

Nichol, A.; and Schulman, J. 2018. Reptile: a Scalable Met-
alearning Algorithm. arXiv preprint arXiv:1803.02999 2:
2.

Oh, J.; Guo, X.; Lee, H.; Lewis, R. L.; and Singh, S. 2015.
action-Conditional Video Prediction using Deep Networks
in Atari Games. In Advances in Neural Information Pro-
cessing Systems, 2863–2871.

Rubner, Y.; Tomasi, C.; and Guibas, L. J. 2000. The Earth
Mover’s Distance as a Metric for Image Retrieval. Interna-
tional Journal of Computer Vision 40(2): 99–121.

Sadeghi, F.; and Levine, S. 2016. Cad2rl: Real Single-
Image Flight without a Single Real Image. arXiv preprint
arXiv:1611.04201 .

Sadeghi, F.; Toshev, A.; Jang, E.; and Levine, S. 2018.
Sim2Real Viewpoint Invariant Visual Servoing by Recur-
rent Control. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 4691–4699.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv preprint arXiv:1707.06347 .

Scott, D. W. 2015. Multivariate Density Estimation: Theory,
Practice, and Visualization. John Wiley & Sons.

Simard, P. Y.; Steinkraus, D.; Platt, J. C.; et al. 2003. Best
practices for convolutional neural networks applied to visual
document analysis. In Proceedings of the International Con-
ference on Document Analysis and Recognition, volume 3.

Slaoui, R. B.; Clements, W. R.; Foerster, J. N.; and Toth,
S. 2019. Robust Domain Randomization for Reinforcement
Learning. arXiv preprint arXiv:1910.10537 .

Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a Simple Way to Pre-
vent Neural Networks from Overfitting. Journal of Machine
Learning Research 15(1): 1929–1958.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. MIT press.

Tamar, A.; Wu, Y.; Thomas, G.; Levine, S.; and Abbeel, P.
2016. Value Iteration Networks. In Advances in Neural In-
formation Processing Systems, 2154–2162.

Taylor, M. E.; and Stone, P. 2009. Transfer learning for rein-
forcement learning domains: A survey. Journal of Machine
Learning Research 10(Jul): 1633–1685.
Tieleman, T.; and Hinton, G. 2012. Lecture 6.5-RMSProp:
Divide the Gradient by a Running Average of its Recent
Magnitude. COURSERA: Neural Networks for Machine
Learning 4(2): 26–31.
Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; and
Abbeel, P. 2017. Domain Randomization for Transferring
Deep Neural Networks from Simulation to the Real World.
In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, 23–30. IEEE.
Tzeng, E.; Devin, C.; Hoffman, J.; Finn, C.; Abbeel, P.;
Levine, S.; Saenko, K.; and Darrell, T. 2020. Adapting
Deep Visuomotor Representations with Weak Pairwise Con-
straints. In Algorithmic Foundations of Robotics XII, 688–
703. Springer.
Tzeng, E.; Hoffman, J.; Darrell, T.; and Saenko, K. 2015.
Simultaneous Deep Transfer Across Domains and Tasks. In
Proceedings of the IEEE International Conference on Com-
puter Vision, 4068–4076.
Tzeng, E.; Hoffman, J.; Saenko, K.; and Darrell, T. 2017.
Adversarial Discriminative Domain Adaptation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 7167–7176.
Villani, C. 2008. Optimal Transport: Old and New, volume
338. Springer Science & Business Media.
Wold, S.; Esbensen, K.; and Geladi, P. 1987. Principal Com-
ponent Analysis. Chemometrics and Intelligent Laboratory
Systems 2(1-3): 37–52.
Wulfmeier, M.; Posner, I.; and Abbeel, P. 2017. Mu-
tual alignment transfer learning. arXiv preprint
arXiv:1707.07907 .
Yao, J.; Killian, T.; Konidaris, G.; and Doshi-Velez, F. 2018.
Direct Policy Transfer via Hidden Parameter Markov Deci-
sion Processes. In Proceedings of the Lifelong Learning: A
Reinforcement Learning Approach Workshop.
Zhang, A.; Lyle, C.; Sodhani, S.; Filos, A.; Kwiatkowska,
M.; Pineau, J.; Gal, Y.; and Precup, D. 2020. Invari-
ant Causal Prediction for Block MDPs. arXiv preprint
arXiv:2003.06016 .
Zhang, C.; Vinyals, O.; Munos, R.; and Bengio, S. 2018.
A Study on Overfitting in Deep Reinforcement Learning.
arXiv preprint arXiv:1804.06893 .
Zhang, J.; Tai, L.; Yun, P.; Xiong, Y.; Liu, M.; Boedecker,
J.; and Burgard, W. 2019. VR-Goggles for Robots: Real-to-
Sim Domain Adaptation for Visual Control. IEEE Robotics
and Automation Letters 4(2): 1148–1155.
Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017. Un-
paired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2223–2232.

Appendix
Algorithm
The goal of the RL network is to simultaneously minimize
the PPO loss LRL and the confusion loss LConf. To com-
pute these losses, it samples observations, actions, and re-
wards from the source environment and observations from
the target environment. f is a function that approximates
the Wasserstein distance between the source observation and
target observation distributions. Thus, it should be trained
to convergence for every update of the RL network. As in
Wasserstein GAN, it is optimized for ncritic steps for each
update of the RL network. This process is outlined in Algo-
rithm 1. Note that we use the weight clipping method defined
in Arjovsky, Chintala, and Bottou (2017) rather than the gra-
dient penalty method defined in Gulrajani et al. (2017) to
directly test the effect of the novel Wasserstein Confusion
loss term. Combining Wasserstein Confusion and gradient
penalty is a promising direction for future work.

Algorithm 1: Wasserstein Adversarial PPO
for t = 0, ..., ntimesteps do

for j = 0, ..., ncritic do
Sample {ss,i}mi=1 ∼ Ps a batch from the
source domain

Sample {st,i}mi=1 ∼ Pt a batch from the
target domain buffer
ðw ← ∇w[1m

∑m
i=1 fw(hθ(ss,i))−

1
m

∑
i=1 fw(hθ(st,i))]

w ← w + α× RMSProp(w, ðw)
end
Sample {ss,i, as,i, rs,i}mi=1 ∼ Ps a batch from the
source domain

Sample {st,i}mi=1 ∼ Pt a batch from the target
domain buffer
ðθ ← ∇θ[− 1

m

∑m
i=1 fw(hθ(ss,i)) +

1
m

∑
i=1 fw(hθ(st,i)) +

LRL(ss,1, as,1, rs,1, ..., ss,m, as,m, rs,m)]
θ ← θ − α× RMSProp(θ, ðθ)

end

Implementation Details
There are four algorithms that we implement: PPO, Robust
Domain Randomization, VR Goggles, and WAPPO. All four
are built off of PPO (Schulman et al. 2017). We use the
high quality, open source implementation of PPO provided
by OpenAI Baselines (Dhariwal et al. 2017). Furthermore,
we use the neural architecture and learning rate provided by
(Cobbe et al. 2019a) as a baseline. This architecture consists
of the CNN component from the IMPALA network (Espe-
holt et al. 2018), which is shared between the policy and
value prediction components of PPO. The value and pol-
icy networks then branch and each have one fully connected
layer which outputs the policy or value, respectively. As in
(Cobbe et al. 2019a), we use a learning rate of 5×10−4. We
evaluated with both the Adam Optimizer (Kingma and Ba

Figure 5: Network architecture. Layers are represented as
rounded rectangles. Blue indicates use in training the RL
policy, orange indicates use in training the critic, and green
indicates use in training both. Note that the network archi-
tecture mirrors that of domain confusion and randomization
but is modified to work with Reinforcement Learning rather
than Supervised Learning (Tzeng et al. 2015, 2017; Ganin
et al. 2016). The combination of the green and blue net-
works is identical in architecture to the IMPALA network
used to benchmark the Procgen Environments and mirrors
that used in Robust Domain Randomization (Cobbe et al.
2019a; Slaoui et al. 2019). Only the green and blue networks
were used when measuring the performance of PPO and Ro-
bust Domain Randomization.

2014) and the RMSProp Optimizer (Tieleman and Hinton
2012) but find negligible difference. The network architec-
ture is outlined in figure 6. The adversarial critic is made of
9 stacked fully connected layers of width 512 separated by
Leaky ReLU activations.

For PPO, Robust Domain Randomization, and VR Gog-
gles, the network does not have an adversary. As such, we
used the green and blue sections depicted in Figure 5 to
train the PPO agent used in both these algorithms. The VR
Goggles training process is the same as that used in Zhang
et al. (2019). Specifically, we collect a dataset of 2000 source
domain images and 2000 target domain images and train
the VR Goggles translation network with a learning rate of
2× 10−4 for 50 epochs. As in Zhang et al. (2019), we found
no performance gain when using a larger dataset or train-
ing for more epochs. As Zhang et al. (2019) does not pro-
vide an implementation, we re-implement this method by
adding their novel shift loss to the open source CycleGAN
implementation (Zhu et al. 2017). For Robust Domain Ran-
domization, we implement the regularization loss and use a
regularization weight of 10 and as described in Slaoui et al.
(2019).

For WAPPO, we use the entire network depicted in Figure
5. The green and blue sections are optimized according to
the PPO loss LPPO and the green and orange sections are op-
timized according to the Wasserstein Confusion loss LConf.
Similarly to (Arjovsky, Chintala, and Bottou 2017), we take
5 gradient steps of the adversary network per step of the RL
network. The adversarial critic network is made of 8 dense
layers of width 512, separated by Leaky ReLU (Maas, Han-
nun, and Ng 2013) activation function.

Figure 6: Detailed RL Network architecture. Residual
Blocks are detailed on the right and have the same num-
ber of channels as their input. The value-specific fully con-
nected layer is on the right and the policy-specific fully con-
nected layer is on the left. Network architecture is taken
from Cobbe et al. (2019a) but uses Leaky ReLU activations.

