2020 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

SimTrace: Capturing Over Time Program Phase Behavior

Steven Flolid Emily Shriver

Zachary Susskind

Benjamin Thorell Lizy K. John

University of Texas at Austin, Intel Labs
{stevenflolid, blthorell, zsusskind, ljohn}@utexas.edu, emliy.shriver@intel.com

Abstract—As computers and the workloads they run have
grown in size and complexity, it has become difficult to test the
performance and power of future products under design. These
products are often designed on simulators that are orders of
magnitude slower than the final product. For this reason,
industry and academia have developed methodologies to
reduce run times. However, in order to study runtime adaptive
techniques for performance and power/energy management, it
is important to capture the over time phase behavior of
workloads. One technique, SimPoint, has been demonstrated
to capture average behavior accurately, but it is not known how
well a sequence of SimPoints can capture over time program
phase behavior. To explore this, we replay the sequence of
SimPoints and evaluate the sequence’s accuracy. Using SPEC
CPU 2017 benchmarks as a case study, we discover good
accuracy for the replayed sequence: with less than 5%
performance error (Instructions Per Cycle) for four time-series
metrics.

Keywords—Simulation Point Replay; SimPoint; Representative
Region

I. INTRODUCTION

The behavior of an application during execution is
known to vary over time. This over time phase behavior is
of interest to both hardware and OS designers in making
trade-offs during design and in making scheduling decisions.
How rapidly or slowly the phases are transitioning, the
magnitudes, and bursts of behavior are all examples of over
time phase behavior. Architectures can use time sensitive
information to improve performance and energy efficiency
through techniques such as Dynamic Voltage Frequency
Scaling (DVFS) which can achieve better energy efficiency
in longer program phases [1] [2]. Thermal design also
benefits from knowing the long program phases, as
variations in thermals require longer time constants [3].

Despite the importance of over time behavior, existing
techniques [4] [5] [6] [7] only focus on average workload
characteristics. However, many different over time
behaviors can result in the same average behavior. The
simplest comparison is between a program with a constant
rate of cache misses while a second program shifts from half
the miss rate to double the miss rate during execution. Both
programs have identical averages but will affect a computer
in different ways. This is especially true for memory where
increases in traffic can have exponential effects on
performance. Thus, capturing average behavior is
insufficient to reproduce similar over time behavior.

In order to capture the over time phase behavior of the
entire application, we propose using approaches developed
in SimPoint [4] [5] [8] to identify the important phases of
behavior and then replay these phases in order. We call this
replay a SimTrace. To examine the feasibility of SimTrace,
we conduct experiments on CPU2017 benchmarks. We use

DOI 10.1109/ISPASS48437.2020.00041

226

the best-known similarity metrics for time series [9] [10] to
compare the accuracy of the phase behaviors in the SimTrace
with those in the original application. We compare the
similarity on performance metrics of interest to computer
and software architects such as IPC (instructions per cycle),
cache misses, and branch mispredictions.

II. BACKGROUND

SimPoint is a powerful technique used to create
representative regions to approximate a program’s behavior
[11]. The technique aims to identify a small set of regions of
interest that represent the performance of the original
workload. The representative simulation points are chosen
based on architecture independent characteristics of the
original program, specifically a basic block vector (BBV).

[II. METHODOLOGY

This section covers in more detail how we apply the
SimPoint technique, which works well for average behavior,
to an over time context. To do this, we extend SimPoint by
replaying over time either the performance metrics of each
cluster or by replaying the clusters’ representative regions in
their entirety. We call this modified technique SimTrace to
reference both the SimPoint technique and the fact that we
are using a Trace of the clusters. SimTrace seems to be the
first technique to apply SimPoint in such a way.

SimTrace extends on the SimPoint Technique in the
following way. SimPoint maps every region to a specific
cluster. This creates what is essentially a cluster trace for the
entire program. SimPoint, however, does nothing with this
trace and only counts the total number of regions mapped to

Cluster Trace

Cluster Perf. 1 — [P
1D Metric [EEH
0 160 &9
1 a3 =

wiin

[LIFS

20000 30000 40000
Instruction Count (100M)

SimTrace Approximation

C=q

[135000 30000
10 Million Instructions

Fig. 1. SimTrace Generation Process

45000

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 17,2021 at 16:43:37 UTC from |IEEE Xplore. Restrictions apply.

3:01 ... orig. IPC

- Simtrace IPC o eve
2.5
2.0 '

12000
100 Million Instructions

4000 8000 16000

Figure 2: IPC of the SimTrace of MCF

each cluster. This makes sense as SimPoint intends to
capture only the average behavior of a workload without
considering the program’s over time behavior.

Instead, SimTrace uses this cluster trace to capture the
program’s over time behavior. The essential step is using a
tuple of a cluster ID and an associated metric as outlined in
Figure 1. This metric can be the cluster’s IPC, cache misses,
branch behavior, etc. We create a SimTrace by replacing
every cluster ID with the associated performance metric.
This results in a time series of performance values that can
be used to approximate a program’s over time behavior. An
example final output for SimTrace can be seen in Figure 2.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We experimented with SimTrace to analyze its over time
accuracy as compared to the original workloads using best
known similarity metrics from [9] and [10]. We gathered
performance counters for IPC, L1 cache MPKI (misses per
thousand instructions), L2 cache MPKI, Branch
Misprediction MPKI, and TLB MPKI. We created a
SimTrace for each workload based on these measurements
and compared them with the original program’s performance
counter values. We used the Performance Counter API
(PAPI) to gather the data and the PinPoint [8] tool to
generate the clustering for our experiments.

The experiments were conducted on a Dell PowerEdge
R320 server equipped Xeon E5-2430 v2 processor
(codenamed Ivy Bridge), and 64 GB DDR3 memory. For
our experiments, we used the single-threaded speed versions
of'the SPEC CPU 2017 integer benchmark suite. Each single
threaded program was run on a single core of this system
with minimal overhead from the operating system due to
core isolation. With this set up, SimTrace captures the over
time phase behavior while using 32 or fewer clusters.

B. SimTrace Similarity Results

This section presents and discusses the results of
applying four similarity techniques for the CPU2017
workloads. We present the results for IPC while omitting
branch and memory related metrics due to space constraints.

The results for IPC similarity are illustrated in Table 1.
The similarity metrics of mean percent error (MPE), mean
absolute percent error (MAPE), normalized root mean

227

TABLE 1. IPC Similarity Values (SimTrace vs Original)

Workload

(avg. IPC orig.)| MAPE MPE| NRMS| DTW
Leela (1.23) 1.18%| -0.15% 0.99%| 0.80%
exch.2 (2.04) 1.60%| -0.06% 4.43%| 0.99%
Gee (1.61) 5.38%| -0.05% 5.52%| 4.52%
Xz (1.56) 6.23%| -0.94% 4.88%| 2.98%
Mcf (0.76) 10.43% 0.44% 5.29%| 3.73%
Deepsjeng (1.71) 4.44% 1.81% 6.16%| 2.01%
Omnetpp (0.78) 6.76%| -1.61% 6.20%| 2.71%
Perlbench (1.29) 5.94%| -2.85% 4.73%| 2.13%
x264 (2.32) 1.51% 0.66% 3.67%| 1.59%
Average 4.83% -0.30% 4.65% 2.38%

square error (NRMS), and dynamic time warp (DTW) error
all have error <5% averaged across workloads. This low
error indicates that a small number of simulation points,
sequenced in order, can capture the over time large scale
phase behavior if IPC is the metric of interest. Observe that
the MPE is extremely low for SimTrace compared to the
other metrics. This is expected as MPE allows both positive
and negative errors which have a canceling effect when
summed together, producing consistently lower errors.

Compare this to MAPE and NRMS which do not have
such cancellation, the errors increase to 5% across the
workloads. Finally, DTW lies between the other three
metrics as it is able to warp SimTrace to better match the
trends of the original signal. Notably, the errors are small
despite the wide variety of large scale phase behaviors
present in the CPU2017 workloads.

V. CONCLUSION

Capturing over time variability and phase behavior of
programs is important to create program models for
performance estimation. This is particularly true when
designing phase-dependent scheduling schemes for
performance, power/energy, or thermal optimizations. The
architecture community uses simulation regions as identified
by tools such as SimPoint to reduce simulation time during
pre-silicon explorations. In this paper, we present a phase-
varying replay methodology (SimTrace) by sequencing
multiple simulation points together. We use four similarity
techniques for time-series (MAPE, MPE, NRMS, DTW) to
evaluate the over time similarity between the original
workloads and their approximation for multiple performance
metrics. We observe that SimTrace produces an over time
average error of less than 5% for a variety of performance
metrics including IPC, L1/L2 cache misses, branch
mispredictions, and TLB misses. The explored metrics
indicate a high similarity. Hence, SimTrace can be used as a
feasible technique for representing a program’s large scale
over time phase behavior.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 17,2021 at 16:43:37 UTC from |IEEE Xplore. Restrictions apply.

ACKNOWLEDGEMENT

This research was supported in part by National Science

Foundation under grant numbers

1725743, 1745813,

1763848, and an Intel Research Award. Authors would also
like to acknowledge computational resources from Texas
Advanced Computing Center (TACC). Any opinions,
findings, conclusions or recommendations are those of the
authors and not of the National Science Foundation or other
sponsors.

(1

(2]

B3]

(4]

REFERENCES

W. L. Bircher, M. Valluri, J. Law, and L. K. John, “Runtime
identification of microprocessor energy saving opportunities,” in
ISLPED °05. Proceedings of the 2005 International Symposium on
Low Power Electronics and Design, 2005., pp. 275-280, Aug 2005.

W. L. Bircher and L. K. John, “Analysis of dynamic power
management on multi-core processors,” in Proceedings of the 22Nd
Annual International Conference on Supercomputing, ICS *08, (New
York, NY, USA), pp. 327-338, ACM, 2008.

A. K. Coskun, T. S. Rosing, and K. C. Gross. "Utilizing predictors for
efficient thermal management in multiprocessor SoCs." in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 28, no. 10 (2009) (DAC2009): 1503-1516.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically characterizing large scale program behavior,” in
Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS X, (New York, NY, USA), pp. 45-57, ACM, 2002.

228

(5]

(6]
(7]

(8]

[9]

[10]

[11]

T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behavior and simulation points in
applications,” in PACT, pp. 3—14, 2001.

M. V. Biesbrouck, B. Calder, and L. Eeckhout, “Efficient sampling
startup for SimPoint,” IEEE Micro, vol. 26, pp. 32-42, July 2006.

R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Smarts:
Accelerating microarchitecture simulation via rigorous statistical
sampling,” in Proceedings of the 30th Annual International
Symposium on Computer Architecture, ISCA 03, (New York, NY,
USA), pp. 8497, ACM, 2003.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A.
Karunanidhi, “Pinpointing representative portions of large intel R
itanium R programs with dynamic instrumentation,” in 37th
International Symposium on Microarchitecture (MICRO-37°04), pp.
81-92, Dec 2004.

Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and
Eamonn Keogh. "Querying and mining of time series data:
experimental comparison of representations and distance measures."
Proceedings of the VLDB Endowment 1, no. 2 (2008): 1542-1552.

X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E.
Keogh. "Experimental comparison of representation methods and
distance measures for time series data." Data Mining and Knowledge
Discovery26, no. 2 (2013): 275-309.

E. Perelman, G. Hamerly, and B. Calder, “Picking statistically valid
and early simulation points,” in 2003 12th International Conference
on Parallel Architectures and Compilation Techniques, pp. 244-255,
Sept 2003.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 17,2021 at 16:43:37 UTC from |IEEE Xplore. Restrictions apply.

