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Abstract—As computers and the workloads they run have 
grown in size and complexity, it has become difficult to test the 
performance and power of future products under design. These 
products are often designed on simulators that are orders of 
magnitude slower than the final product. For this reason, 
industry and academia have developed methodologies to 
reduce run times. However, in order to study runtime adaptive 
techniques for performance and power/energy management, it 
is important to capture the over time phase behavior of 
workloads.  One technique, SimPoint, has been demonstrated 
to capture average behavior accurately, but it is not known how 
well a sequence of SimPoints can capture over time program 
phase behavior. To explore this, we replay the sequence of 
SimPoints and evaluate the sequence’s accuracy. Using SPEC 
CPU 2017 benchmarks as a case study, we discover good 
accuracy for the replayed sequence: with less than 5% 
performance error (Instructions Per Cycle) for four time-series 
metrics.  
Keywords—Simulation Point Replay; SimPoint; Representative 
Region 

I.   INTRODUCTION 
The behavior of an application during execution is 

known to vary over time. This over time phase behavior is 
of interest to both hardware and OS designers in making 
trade-offs during design and in making scheduling decisions.  
How rapidly or slowly the phases are transitioning, the 
magnitudes, and bursts of behavior are all examples of over 
time phase behavior. Architectures can use time sensitive 
information to improve performance and energy efficiency 
through techniques such as Dynamic Voltage Frequency 
Scaling (DVFS) which can achieve better energy efficiency 
in longer program phases [1] [2].  Thermal design also 
benefits from knowing the long program phases, as 
variations in thermals require longer time constants [3].   

Despite the importance of over time behavior, existing 
techniques [4] [5] [6] [7] only focus on average workload 
characteristics. However, many different over time 
behaviors can result in the same average behavior.    The 
simplest comparison is between a program with a constant 
rate of cache misses while a second program shifts from half 
the miss rate to double the miss rate during execution. Both 
programs have identical averages but will affect a computer 
in different ways. This is especially true for memory where 
increases in traffic can have exponential effects on 
performance. Thus, capturing average behavior is 
insufficient to reproduce similar over time behavior. 

 In order to capture the over time phase behavior of the 
entire application, we propose using approaches developed 
in SimPoint [4] [5] [8] to identify the important phases of 
behavior and then replay these phases in order.  We call this 
replay a SimTrace. To examine the feasibility of SimTrace, 
we conduct experiments on CPU2017 benchmarks.  We use 

the best-known similarity metrics for time series [9] [10] to 
compare the accuracy of the phase behaviors in the SimTrace 
with those in the original application.  We compare the 
similarity on performance metrics of interest to computer 
and software architects such as IPC (instructions per cycle), 
cache misses, and branch mispredictions. 

II.   BACKGROUND 
SimPoint is a powerful technique used to create 

representative regions to approximate a program’s behavior 
[11]. The technique aims to identify a small set of regions of 
interest that represent the performance of the original 
workload. The representative simulation points are chosen 
based on architecture independent characteristics of the 
original program, specifically a basic block vector (BBV). 

III.   METHODOLOGY 
This section covers in more detail how we apply the 

SimPoint technique, which works well for average behavior, 
to an over time context. To do this, we extend SimPoint by 
replaying over time either the performance metrics of each 
cluster or by replaying the clusters’ representative regions in 
their entirety. We call this modified technique SimTrace to 
reference both the SimPoint technique and the fact that we 
are using a Trace of the clusters. SimTrace seems to be the 
first technique to apply SimPoint in such a way.  

SimTrace extends on the SimPoint Technique in the 
following way. SimPoint maps every region to a specific 
cluster. This creates what is essentially a cluster trace for the 
entire program. SimPoint, however, does nothing with this 
trace and only counts the total number of regions mapped to 

             Cluster Trace 

 
Fig. 1.  SimTrace Generation Process 
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each cluster. This makes sense as SimPoint intends to  
capture only the average behavior of a workload without 
considering the program’s over time behavior.    

Instead, SimTrace uses this cluster trace to capture the 
program’s over time behavior. The essential step is using a 
tuple of a cluster ID and an associated metric as outlined in 
Figure 1. This metric can be the cluster’s IPC, cache misses, 
branch behavior, etc.  We create a SimTrace by replacing 
every cluster ID with the associated performance metric. 
This results in a time series of performance values that can 
be used to approximate a program’s over time behavior. An 
example final output for SimTrace can be seen in Figure 2.  

IV.   EXPERIMENTAL RESULTS 

A.  Experimental Setup 
We experimented with SimTrace to analyze its over time 

accuracy as compared to the original workloads using best 
known similarity metrics from [9] and [10]. We gathered 
performance counters for IPC, L1 cache MPKI (misses per 
thousand instructions), L2 cache MPKI, Branch 
Misprediction MPKI, and TLB MPKI. We created a 
SimTrace for each workload based on these measurements 
and compared them with the original program’s performance 
counter values. We used the Performance Counter API 
(PAPI) to gather the data and the PinPoint [8] tool to 
generate the clustering for our experiments.   

The experiments were conducted on a Dell PowerEdge 
R320 server equipped Xeon E5-2430 v2 processor 
(codenamed Ivy Bridge), and 64 GB DDR3 memory.  For 
our experiments, we used the single-threaded speed versions 
of the SPEC CPU 2017 integer benchmark suite. Each single 
threaded program was run on a single core of this system 
with minimal overhead from the operating system due to 
core isolation. With this set up, SimTrace captures the over 
time phase behavior while using 32 or fewer clusters. 

B.  SimTrace Similarity Results 
This section presents and discusses the results of 

applying four similarity techniques for the CPU2017 
workloads. We present the results for IPC while omitting 
branch and memory related metrics due to space constraints.  

The results for IPC similarity are illustrated in Table 1.  
The similarity metrics of mean percent error (MPE), mean 
absolute percent error (MAPE), normalized root mean 

square error (NRMS), and dynamic time warp (DTW) error  
all have error <5% averaged across workloads.  This low 
error indicates that a small number of simulation points, 
sequenced in order, can capture the over time large scale 
phase behavior if IPC is the metric of interest.  Observe that 
the MPE is extremely low for SimTrace compared to the 
other metrics. This is expected as MPE allows both positive 
and negative errors which have a canceling effect when 
summed together, producing consistently lower errors.  

Compare this to MAPE and NRMS which do not have 
such cancellation, the errors increase to 5% across the 
workloads. Finally, DTW lies between the other three 
metrics as it is able to warp SimTrace to better match the 
trends of the original signal. Notably, the errors are small 
despite the wide variety of large scale phase behaviors 
present in the CPU2017 workloads.  

V.   CONCLUSION 
Capturing over time variability and phase behavior of 

programs is important to create program models for 
performance estimation. This is particularly true when 
designing phase-dependent scheduling schemes for 
performance, power/energy, or thermal optimizations. The 
architecture community uses simulation regions as identified 
by tools such as SimPoint to reduce simulation time during 
pre-silicon explorations.  In this paper, we present a phase-
varying replay methodology (SimTrace) by sequencing 
multiple simulation points together. We use four similarity 
techniques for time-series (MAPE, MPE, NRMS, DTW) to 
evaluate the over time similarity between the original 
workloads and their approximation for multiple performance 
metrics. We observe that SimTrace produces an over time 
average error of less than 5% for a variety of performance 
metrics including IPC, L1/L2 cache misses, branch 
mispredictions, and TLB misses. The explored metrics 
indicate a high similarity. Hence, SimTrace can be used as a 
feasible technique for representing a program’s large scale 
over time phase behavior. 

 

TABLE 1. IPC Similarity Values (SimTrace vs Original) 

Workload  
(avg. IPC orig.) MAPE MPE NRMS DTW 
Leela (1.23) 1.18% -0.15% 0.99% 0.80% 

exch.2 (2.04) 1.60% -0.06% 4.43% 0.99% 

Gcc (1.61) 5.38% -0.05% 5.52% 4.52% 

Xz (1.56) 6.23% -0.94% 4.88% 2.98% 

Mcf (0.76) 10.43% 0.44% 5.29% 3.73% 

Deepsjeng (1.71) 4.44% 1.81% 6.16% 2.01% 

Omnetpp (0.78) 6.76% -1.61% 6.20% 2.71% 

Perlbench (1.29) 5.94% -2.85% 4.73% 2.13% 

x264 (2.32) 1.51% 0.66% 3.67% 1.59% 

Average 4.83% -0.30% 4.65% 2.38% 

 
Figure 2:  IPC of the SimTrace of MCF 
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