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Abstract12

Matching demand (riders) to supply (drivers) efficiently is a fundamental problem for ride-hailing13

platforms who need to match the riders (almost) as soon as the request arrives with only partial14

knowledge about future ride requests. A myopic approach that computes an optimal matching for15

current requests ignoring future uncertainty can be highly sub-optimal. In this paper, we consider a16

two-stage robust optimization framework for this matching problem where future demand uncertainty17

is modeled using a set of demand scenarios (specified explicitly or implicitly). The goal is to match18

the current request to drivers (in the first stage) so that the cost of first stage matching and the19

worst-case cost over all scenarios for the second stage matching is minimized. We show that this20

two-stage robust matching is NP-hard under both explicit and implicit models of uncertainty. We21

present constant approximation algorithms for both models of uncertainty under different settings22

and show they improve significantly over standard greedy approaches.23
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1 Introduction30

Matching demand (riders) with supply (drivers) is a fundamental problem for ride-hailing31

platforms such as Uber, Lyft and DiDi. These platforms need to continually make efficient32

matching decisions with only partial knowledge of future ride requests. A common approach33

in practice is batched matching: instead of matching each request sequentially as it arrives,34

aggregate the requests for a short amount of time (typically one to two minutes) and match35

the aggregated requests to available drivers in one batch [42, 33, 44]. However, computing36

this batch matching myopically without considering future requests can lead to a highly37

sub-optimal outcome for some subsequent drivers and riders.38

Motivated by this shortcoming, and by the possibility of using historical data to hedge39

against future uncertainty, we study a two-stage framework for matching problems where40

the future demand uncertainty is modeled as a set of scenarios that are specified explicitly or41

implicitly. The goal is to compute a matching between the available drivers and the first42
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12:2 Matching Drivers to Riders: A Two-stage Robust Approach

batch of riders such that the total worst-case cost of first stage and second stage matching43

is minimized. More specifically, we consider an adversarial model of uncertainty where the44

adversary observes the first stage matching of our algorithms and presents a worst-case45

scenario from the list of specified scenarios in the second stage. We focus on the case where46

the first stage cost is the average weight of the first stage matching, and the second stage47

cost is the highest edge weight in the second stage matching. This is motivated by the goal of48

computing a low-cost first stage matching while also minimizing the worst case waiting time49

for any rider in any second stage. All the results of this paper hold when the first stage cost50

is the highest edge weight of the first stage matching. We also study several other metrics in51

the full version. We consider two common models to describe the uncertainty in the second52

stage: an explicit list of all possible scenarios and an implicit description of the scenarios53

using a cardinality constraint. Two-stage robust optimization is a popular model for hedging54

against uncertainty [8, 19]. Several combinatorial optimization problems have been studied55

in this model, including Set Cover, Capacity Planning [7, 11] and Facility Location [22].56

While online matching is a classical problem in graph theory, two-stage matching problems57

with uncertainty, have not been studied extensively. We present related work in Section 1.2.58

1.1 Our Contributions59

Problem definition. We consider the following Two-stage Robust Matching Problem. We60

are given a set of drivers D, a set of first stage riders R1, a universe of potential second stage61

riders R2 and a set of second stage scenarios S ⊆ P(R2)1. We are given a metric distance d62

on V = R1 ∪ R2 ∪ D. The goal is to find a subset of drivers D1 ⊆ D (|D1| = |R1|) to match63

all the first stage riders R1 such that the sum of cost of first stage matching and worst-case64

cost of second stage matching (between D \ D1 and the riders in the second stage scenario)65

is minimized. More specifically,66

min
D1⊂D

{
cost1(D1, R1) + max

S∈S
cost2(D \ D1, S)

}
.67

The first-stage decision is denoted D1 and its cost is cost1(D1, R1). Similarly, the second68

stage cost for scenario S is denoted cost2(D \ D1, S), and max{cost2(D \ D1, S) | S ∈ S}69

is the worst-case cost over all possible scenarios. Let |R1| = m, |R2| = n. We denote the70

objective function for a feasible solution D1 by71

f(D1) = cost1(D1, R1) + max
S∈S

cost2(D \ D1, S).72

We assume that there are sufficiently many drivers to satisfy both first and second stage73

demand. Given an optimal first-stage solution D∗
1 , we denote74

OPT1 = cost1(D∗
1 , R1), OPT2 = max{cost2(D \ D∗

1 , S) | S ∈ S},75

OPT = OPT1 + OPT2.76
77

We consider the setting where the first stage cost is the average weight of the matching78

between D1 and R1, and the second stage cost is the bottleneck matching cost between79

D \ D1 and S. The bottleneck matching is the matching that minimizes the longest edge80

in a maximum cardinality matching between D \ D1 and S. We refer to this variant as81

the Two-Stage Robust Matching Bottleneck Problem (TSRMB). Formally, let M1 be the82

1 P(R2) is the power set of R2, the set of all subsets of R2.
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Figure 1 Bipartite graph of drivers and riders in our two-stage matching problem.

minimum weight perfect matching between R1 and D1, and given a scenario S, let MS
2 be83

the bottleneck matching between the scenario S and the available drivers D \ D1, then the84

cost functions for the TSRMB are:85

cost1(D1, R1) = 1
m

∑
(i,j)∈M1

d(i, j), and cost2(D \ D1, S) = max
(i,j)∈MS

2

d(i, j).86

87

The difference between the first and second stage metrics is motivated by the fact that88

the platform has access to the current requests and can exactly compute the cost of the89

matching. On the other hand, to ensure the robustness of the solution, we require all90

second stage assignments to have low waiting times by accounting for the maximum wait91

time in every scenario. We choose the first stage cost to be the average matching weight92

instead of the total weight for homogeneity reasons, so that first and second stage costs have93

comparable magnitudes. The bottleneck objective, i.e., finding a subgraph of a certain kind94

that minimizes the maximum edge cost in the subgraph, has been considered extensively in95

the literature [21, 16, 17]. While the main body of this paper will focus on studying TSRMB,96

we note that all our results hold when the first (resp. second) stage cost is equal to the97

highest edge weight in the first (resp. second) stage matching. In the full version, we study98

other variants of cost metrics, including a stochastic variant of TSRMB, and the case where99

both first and second stage costs are simply the total matching weights.100

Hardness. We show that TSRMB is NP-hard even for two scenarios and NP-hard to101

approximate within a factor better than 2 for three scenarios. We also show that even when102

the scenarios are singletons, the problem is NP-hard to approximate within a factor better103

than 2. Given these hardness results, we focus on approximation algorithms for the TSRMB104

problem. A natural candidate is the greedy approach that minimizes only the first stage cost105

without considering the uncertainty in the second stage. However, we show that this myopic106

approach can be bad as Ω(m) · OPT (See Figure 2.)107

Approximations algorithms. We consider both explicit and implicit models of uncertainty.108

For the case of explicit model with two scenarios, we give a constant factor approximation109

algorithm for TSRMB (Theorem 4). We further generalize the ideas of this algorithm to a110

constant approximation for any fixed number of scenarios (Theorem 6). Our approximation111

APPROX/RANDOM 2021



12:4 Matching Drivers to Riders: A Two-stage Robust Approach

Uncertainty Approx Hardness
Explicit (2 scenarios) 5 NP-Hard
Explicit (p scenarios) O(p1.59) 2

Implicit (surplus ℓ = 0 ) 3 -
Implicit (ℓ < k and k ≤

√
n/2) 17 2

Table 1 Summary of our results, where surplus ℓ = |D| − |R1| − k.

does not depend on the number of first stage riders or the size of scenarios but depends on112

the number of scenarios. The main idea is to reduce the problem with multiple scenarios113

to an instance with a single representative scenario while losing only a small factor. We114

then solve the single scenario instance (in polynomial time) to get an approximation for our115

original problem. The challenge in constructing the representative scenario is to find the116

right trade-off between capturing the demand of all second stage riders and keeping the cost117

of this scenario close to the optimal cost of the original instance.118

For the implicit model of uncertainty, we consider the setting where we are given a119

universe of second stage riders R2 and an integer k, and any subset of size less than k can120

be a scenario. Therefore, S = {S ⊂ R2 s.t. |S| ≤ k}. The scenarios can be exponentially121

many in k, which makes even the evaluation of the cost of a feasible solution challenging122

and not necessarily achievable in polynomial time. Our analysis depends on the imbalance123

between supply and demand. In fact, when the number of drivers is very large compared to124

riders, the problem is less interesting in practice. However, it becomes interesting when the125

supply and demand are comparable. In this case, drivers might need to be shared between126

different scenarios. This leads us to define the notion of surplus ℓ = |D| − |R1| − k, which is127

the maximum number of drivers that we can afford not to use in a solution. As a warm-up,128

we first show that if the surplus is equal to zero (all the drivers are used), using any scenario as129

a representative scenario gives a 3-approximation. The problem becomes significantly more130

challenging even with a small surplus. We show that under a reasonable assumption on131

the size of scenarios, there is a constant approximation in the regime when the surplus ℓ is132

smaller than the demand k (Theorem 9). Our algorithm is based on finding a clustering of133

drivers and riders that yields a simplified instance of TSRMB which can be solved within134

a constant factor. We show that we can cluster the riders into a ball (riders close to each135

others) and a set of outliers (riders far from each others) and apply ideas from the explicit136

scenario analysis. Finally, since the number of scenarios can be exponential, we construct a137

set of a polynomial number of proxy scenarios on which we evaluate any feasible solution within138

a constant approximation. Table 1 summarizes our results. Due to space constraints, we defer139

some of the proofs to the appendix.140

1.2 Related Work141

Online bipartite matching. Finding a maximum cardinality bipartite matching has received a142

considerable amount of attention over the years. Online matching was first studied by Karp143

et al. [27] in the adversarial model. Since then, many online variants have been studied [37].144

This includes AdWords [4, 5, 38], vertex-weighted [1, 6], edge-weighted [20, 31], stochastic145

matching [12, 35, 39, 13], random vertex arrival [18, 26, 34, 23], and batch arrivals [32, 14, 44].146

In the online bipartite metric matching variant, servers and clients correspond to points147

from a metric space, and the objective is to find the minimum weight maximum cardinality148

matching. Khullet et al. [29] and Kalyanasundaram and Pruhs [24] provided deterministic149

algorithms in the adversarial model. In the random arrival model, Meyerson, et al. [40] and150
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Bansal et al. [2] provided poly-logarithmic competitive algorithms. Recently, Raghvendra151

[41] presented a O(log n)-competitive algorithm.152

Two-stage stochastic combinatorial optimization. Within two-stage stochastic optimization,153

matching has been studied under various models. Kong and Schaefer [30] and Escoffier et al.154

[9] studied the stochastic two-stage maximum matching problem. Katriel et al. [28] studied155

the two-stage stochastic minimum weight maximum matching. Feng and Niazadeh [14] study156

K-stage variants of vertex weighted bipartite b-matching and AdWords problems, where157

online vertices arrive in K batches. More recently, Feng et al. [15] initiate the study and158

present online competitive algorithms for vertex-weighted two-stage stochastic matching as159

well as two-stage joint matching and pricing.160

Two-stage robust combinatorial optimization. Within two-stage robust optimization, match-161

ings have not been studied extensively. Matuschke et al. proposed a two-stage robust model162

for minimum weight matching with recourse [36]. Our model for TSRMB is different in163

three main aspects: i) We use a general class of uncertainty sets to describe the second stage164

scenarios while in [36] the only information given is the number of second stage vertices. ii)165

We do not allow any recourse and our first stage matching is irrevocable. iii) Our second166

stage cost is the bottleneck weight instead of the total weight.167

2 Preliminaries168

2.1 NP-hardness.169

We show that TSRMB is NP-hard under both the implicit and explicit models. In the explicit170

model, it is NP-hard even for two scenarios and NP-hard to approximate within a factor171

better than 2 even for three scenarios.172

In the explicit model with a polynomial number of scenarios, it is clear that the problem173

is in NP. However, in the implicit model, the problem can be described with a polynomial174

size input, but it is not clear that we can compute the total cost in polynomial time since175

there could be exponentially many scenarios. We show that it is NP-hard to approximate176

TSRMB in the implicit model within a factor better than 2 even when k = 1. The proof is177

presented in Appendix A.178

▶ Theorem 1. In the explicit model of uncertainty, TSRMB is NP-hard even with two179

scenarios. Furthermore, when the number of scenarios is ≥ 3, there is no (2−ϵ)-approximation180

algorithm for any fixed ϵ > 0, unless P = NP. In the implicit model of uncertainty, even181

when k = 1, there is no (2 − ϵ)-approximation algorithm for TSRMB for any fixed ϵ > 0,182

unless P = NP .183

2.2 Greedy Approach.184

A natural greedy approach is to choose the optimal matching for the first stage riders R1185

without considering the second stage uncertainty. It can lead to a solution with a total186

cost that scales linearly with m (cardinality of R1) while OPT is a constant, even with one187

scenario. Consider the line example in Figure 2. We have m first stage riders and m + 1188

drivers alternating on a line with distances 1 and 1 − ϵ. There is one second stage rider at189

the right endpoint of the line. The greedy matching minimizes the first stage cost and incurs190

a total cost of (2 − ϵ)(m + 1), while the optimal cost is equal to 2. Therefore any attempt to191

have a good approximation needs to consider the second stage riders.192

▶ Lemma 2. The cost of the Greedy algorithm can be Ω(m) · OPT .193

APPROX/RANDOM 2021



12:6 Matching Drivers to Riders: A Two-stage Robust Approach

Figure 2 Riders in first stage are depicted as black dots and drivers as black triangles. The
second stage rider is depicted as a blue cross.

2.3 Single Scenario.194

The deterministic version of the TSRMB problem, i.e., when there is only a single scenario195

in the second stage, can be solved exactly in polynomial time. This is a simple preliminary196

result which we need for the general case. Denote S a single second stage scenario. The197

instance (R1, S, D) of TSRMB is then simply given by198

min
D1⊂D

{
cost1(D1, R1) + cost2(D \ D1, S)

}
.199

Since the second stage problem is a bottleneck problem [21], the value of the optimal second200

stage cost w is one of the edge weights between D and S. We iterate over all possible values201

of w (at most |S| · |D| values), delete all edges between R2 and D with weights strictly higher202

than w and set the weight of the remaining edges between S and D to zero. This reduces203

the problem to finding a minimum weight maximum cardinality matching. We can also use204

binary search to iterate over the edge weights. We present the details of this algorithm below205

and refer to it as TSRMB-1-Scenario in the rest of this paper.206

We define the bottleneck graph of w to be BOTTLENECKG(w) = (R1 ∪S ∪D, E1 ∪E2)207

where E2 = {(i, j) ∈ D×S, d(i, j) ≤ w} and E1 = {(i, j) ∈ D×R1}. Furthermore, we assume208

that there are q edges {e1, . . . , eq} between S and D with weights w1 ≤ w2 ≤ . . . ≤ wq.209

Algorithm 1 TSRMB-1-Scenario(R1, S, D)

Input: First stage riders R1, scenario S and drivers D.
Output: First stage decision D1.

1: for i ∈ {1, . . . , q} do
2: Gi := BOTTLENECKG(wi).
3: Set all weights between D and S in Gi to be 0.
4: Mi := minimum weight maximum cardinality matching on Gi.
5: if R1 ∪ S is not completely matched in Mi then
6: output certificate of failure.
7: else
8: Di

1 := first stage drivers in Mi.
9: end if

10: end for
11: return D1 = arg min

Di
1:1≤i≤q

{
cost1(Di

1, R1) + cost2(D \ Di
1, S)

}
.

Note that the arg min in the last step of Algorithm 1 is only taken over values of i for210

which there was no certificate of failure.211

▶ Lemma 3. TSRMB-1-Scenario gives an optimal solution for the single scenario case.212

Proof of Lemma 3. Let OPT1 and OPT2 be the first and second stage cost of an optimal213

solution, and i ∈ {1, . . . , q} such that wi = OPT2. In this case, Gi contains all the edges of214

this optimal solution. By setting all the edges in E2 to 0, we are able to compute a minimum215
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weight maximum cardinality matching between R1 ∪ S and D that matches both R1 and S216

and minimizes the weight of the edges matching R1. The first stage cost of this matching is217

less than OPT1, the second stage cost is clearly less than OPT2 because we only allowed218

edges with weight less than OPT2 in Gi. ◀219

We also observe that we can use binary search in Algorithm 1 to iterate over the edge220

weights. For an iteration i, a failure to find a minimum weight maximum cardinality matching221

on Gi that matches both R1 and S implies that we need to try an edge weight higher than222

wi. On the other hand, if Mi matches R1 and S such that Di
1 gives a smaller total cost, then223

the optimal bottleneck value is lower than wi.224

3 Explicit Scenarios225

3.1 Two scenarios226

Our main contribution in this section is a constant approximation algorithm for TSRMB227

with two scenarios. Our analysis shows that we can reduce the problem to an instance with228

a single representative scenario by losing a small factor. We then use TSRMB-1-Scenario to229

solve the single representative scenario case.230

Consider two scenarios S = {S1, S2}. First, we can assume without loss of generality231

that we know the exact value of OPT2 which corresponds to one of the edges connecting232

second stage riders R2 to drivers D (we can iterate over all the weights of second stage edges).233

We construct a representative scenario that serves as a proxy for S1 and S2 as follows. In234

the second stage, if a pair of riders i ∈ S1 and j ∈ S2 is served by the same driver in the235

optimal solution, then they should be close to each other. Therefore, we can consider a single236

representative rider for each such pair. While it is not easy to guess all such pairs, we can237

approximately compute the representative riders by solving a maximum matching on S1 ∪ S2238

with edges less than 2OPT2. More formally, let GI be the induced bipartite subgraph of239

G on S1 ∪ S2 containing only edges between S1 and S2 with weight less than or equal to240

2OPT2. We compute a maximum cardinality matching M between S1 and S2 in GI , and241

construct a representative scenario containing S1 as well as the unmatched riders of S2. We242

solve the single scenario problem on this representative scenario and return its optimal first243

stage solution. We show in Theorem 4 that this solution leads to a 5-approximation.244

Algorithm 2 Two explicit scenarios.

Input: First stage riders R1, two scenarios S1 and S2, drivers D and value of OPT2.
Output: First stage decision D1.

1: Let GI be the induced subgraph of G on S1 ∪ S2 with only the edges between S1 and S2
of weights less than 2OPT2 .

2: Set M := maximum cardinality matching between S1 and S2 in GI .
3: Set SMatch

2 := {r ∈ S2 | ∃ s ∈ S1 s.t (s, r) ∈ M} and SUnmatch
2 = S2 \ SMatch

2 .
4: return D1 := TSRMB-1-Scenario(R1, S1 ∪ SUnmatch

2 , D).

▶ Theorem 4. Algorithm 2 yields a solution with total cost less than OPT1 + 5OPT2 for245

TSRMB with 2 scenarios.246

The proof of Theorem 4 relies on the following structural lemma where we show that the247

set D1 returned by Algorithm 2 yields a total cost at most (OPT1 + 3OPT2) when evaluated248

only on the single representative scenario S1 ∪ SUnmatch
2 .249

APPROX/RANDOM 2021
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▶ Lemma 5. Let D1 be the set of first stage drivers returned by Algorithm 2. Then250

cost1(D1, R1) + cost2(D \ D1, S1 ∪ SUnmatch
2 ) ≤ OPT1 + 3OPT2.251

Proof. It is sufficient to show the existence of a matching Ma between R1 ∪ S1 ∪ SUnmatch
2252

and D with a total cost less than OPT1 +3OPT2. This would imply that the optimal solution253

D1 of TSRMB-1-Scenario(R1, S1 ∪ SUnmatch
2 , D) has a total cost less than OPT1 + 3OPT2254

and concludes the proof. We show the existence of Ma by construction.255

Step 1. We first match R1 with their mates in the optimal solution of TSRMB. Hence,256

the first stage cost of our constructed matching Ma is OPT1.257

Step 2. Now, we focus on SUnmatch
2 . Let SUnmatch

2 = S12∪S22 be a partition of SUnmatch
2258

where S12 contains riders with a distance less than 2OPT2 from S1 and S22 contains riders259

with a distance strictly bigger than 2OPT2 from S1, where the distance from a set is the260

minimum distance to any element of the set. A rider in S22 cannot share any driver with a261

rider from S1 in the optimal solution of TSRMB, because otherwise, the distance between262

these riders will be less than 2OPT2 by using the triangle inequality. Therefore we can match263

S22 to their mates in the optimal solution and add them to Ma, without using the optimal264

drivers of S1. We pay less than OPT2 for matching S22.265

Step 3. We still need to simultaneously match riders in S1 and S12 to finish the266

construction of Ma. Notice that some riders in S12 might share their optimal drivers with267

riders in S1. We can assume without loss of generality that all riders in S12 share their optimal268

drivers with S1 (otherwise we can match them to their optimal drivers without affecting269

S1). Denote S12 = {r1, . . . , rq} and S1 = {s1, . . . , sk}. For each i ∈ [q] let’s say si ∈ S1 is270

the rider that shares its optimal driver with ri. We show that q ≤ |M |. In fact, every rider in271

S12 shares its optimal driver with a different rider in S1, and is therefore within a distance272

2OPT2 from S1 by the triangle inequality. But since S12 is not covered by the maximum273

cardinality matching M , this implies by the maximality of M that there are q other riders274

from SMatch
2 that are covered by M . Hence q ≤ |M |. Finally, let {t1, . . . , tq} ⊂ SMatch

2 be275

the mates of {s1, . . . , sq} in M , i.e., (si, ti) ∈ M for all i ∈ [q]. Recall that d(si, ti) ≤ 2OPT2276

for all i ∈ [q]. In what follows, we describe how to match S12 and S1:277

(i) For i ∈ [q], we match ri to its optimal driver and si to the optimal driver of ti. This is278

possible because the optimal driver of ti cannot be the same as the optimal driver of ri since279

both ri and ti are part of the same scenario S2. Therefore, we pay a cost OPT2 for the riders280

ri and a cost 3OPT2 (follows from the triangle inequality) for the riders si where i ∈ [q].281

(ii) We still need to match {sq+1, . . . , sk}. Consider a rider sj with j ∈ {q + 1, . . . , k}.282

If the optimal driver of sj is not shared with any ti ∈ {t1, . . . , tq}, then this optimal driver283

is still available and can be matched to sj with a cost less than OPT2. If the optimal284

driver of sj is shared with some ti ∈ {t1, . . . tq}, then sj is also covered by M . Otherwise285

M can be augmented by deleting (si, ti) and adding (ri, si) and (sj , ti). Therefore sj is286

covered by M and has a mate t̃j ∈ SMatch
2 \ {t1, . . . , tq}. Furthermore, the driver assigned287

to t̃j is still available. We can then match sj to the optimal driver of t̃j . Similarly if the288

optimal driver of some sj′ ∈ {sq+1, . . . , sk} \ {sj} is shared with t̃j , then sj′ is covered by M .289

Otherwise (ri, si, ti, sj , t̃j , sj′) is an augmenting path in M . Therefore sj′ has a mate in M290

and we can match sj′ to the optimal driver of its mate. We keep extending these augmenting291

paths until all the riders in {sq+1, . . . , sk} are matched. Furthermore, the augmenting paths292

(ri, si, ti, sj , t̃j , sj′ . . .) starting from two different riders ri ∈ S12 are vertex disjoint. This293

ensures that every driver is used at most once. Again, by the triangle inequality, the edges294

that match {sq+1, . . . , sk} in our solution have weights less then 3OPT2.295

Putting it all together, we have constructed a matching Ma where the first stage cost is296

exactly OPT1 and the second-stage cost is less than 3OPT2 since the edges used for matching297
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S1 ∪ SUnmatch
2 in Ma have a weight less than 3OPT2. Therefore, the total cost of Ma is less298

than OPT1 + 3OPT2. ◀299

Proof of Theorem 4. Let D1 be the drivers returned by Algorithm 2. Lemma 5 implies300

cost1(D1, R1) + cost2(D \ D1, S1) ≤ OPT1 + 3OPT2 (1)301

and302

cost1(D1, R1) + cost2(D \ D1, SUnmatch
2 ) ≤ OPT1 + 3OPT2.303

We have S2 = SMatch
2 ∪ SUnmatch

2 . If the scenario S2 is realized, we use the drivers that were304

assigned to S1 in the matching constructed in Lemma 5 to match SMatch
2 . This is possible305

with edges of weights less than cost2(D \ D1, S1) + 2OPT2 because SMatch
2 is matched to S1306

with edges of weight less than 2OPT2. Hence,307

cost2(D \ D1, S2) ≤ max
{

cost2(D \ D1, SUnmatch
2 ), cost2(D \ D1, S1) + 2OPT2

}
,308

and therefore309

cost1(D1, R1) + cost2(D \ D1, S2) ≤ OPT1 + 5OPT2. (2)310

From (1) and (2), cost1(D1, R1) + max
S∈{S1,S2}

cost2(D \ D1, S) ≤ OPT1 + 5OPT2. ◀311

Algorithm 3 p explicit scenarios.

Input: First-stage riders R1, scenarios {S1, S2, . . . , Sp}, drivers D and value of OPT2.
Output: First stage decision D1.

1: Initialize Ŝj := Sj for j = 1, . . . , p.
2: for i = 1, . . . , log2 p do
3: for j = 1, 2, . . . , p

2i do
4: σ(j) = j + p

2i

5: Mj := maximum cardinality matching between Ŝj and Ŝσ(j) with edges of weight
less than 2 · 3i−1 · OPT2.

6: ŜMatch
σ(j) := {r ∈ Ŝσ(j) | ∃ s ∈ Ŝj s.t (s, r) ∈ Mj}.

7: ŜUnmatch
σ(j) := Ŝσ(j) \ ŜMatch

σ(j)

8: Ŝj = Ŝj ∪ ŜUnmatch
σ(j) .

9: end for
10: end for
11: return D1 := TSRMB-1-Scenario(R1, Ŝ1, D).

3.2 Constant number of scenarios312

We now consider the case of explicit list of p scenarios, i.e., S = {S1, S2, . . . , Sp}. Building313

upon the ideas from Algorithm 2, we present a O(p1.59)-approximation in this case. The314

idea is to construct the representative scenario recursively by processing pairs of “scenarios”315

at each step. Hence, we need O(log2 p) iterations to reduce the problem to an instance of a316

single scenario. At each iteration, we show that we only lose a multiplicative factor of 3 so317

that the final approximation ratio is O(3log2 p) = O(p1.59). We present details in Algorithm318

3.319
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The approximation guarantee of our algorithm grows sub-quadratically with p and it is320

an interesting question if there exists an approximation that does not depend on the number321

of scenarios.322

▶ Theorem 6. Algorithm 3 yields a solution with total cost of O(p1.59) · OPT for TSRMB323

with an explicit list of p scenarios.324

Proof of Theorem 6. The algorithm reduces the number of considered “scenarios” by half325

in every iteration, until only one scenario remains. In iteration i, we have p
2i−1 scenarios326

that we aggregate in p
2i pairs, namely (Ŝj , Ŝσ(j)) for j ∈ {1, 2, . . . , p

2i }. For each pair, we327

construct a single representative scenario which plays the role of the new Ŝj at the start of328

the next iteration i + 1.329

Claim. There exists a first stage decision D∗
1 , such that at every iteration i ∈ {1, . . . , log2 p},330

we have for all j ∈ {1, 2, . . . , p
2i }:331

(i) R1 can be matched to D∗
1 with a first stage cost of OPT1.332

(ii) Ŝj ∪ ŜUnmatch
σ(j) can be matched to D \ D∗

1 with a second stage cost less than 3i · OPT2.333

(iii) There exists a matching between ŜMatch
σ(j) and Ŝj with edge weights less than 2 ·3i−1 ·OPT2.334

Proof of the claim. Statement (iii) follows from the definition of ŜMatch
σ(j) in Algorithm 3. Let’s335

show (i) and (ii) by induction over i.336

Initialization: for i = 1, let’s take any two scenarios Ŝj = Sj and Ŝσ(j) = Sσ(j). We337

know that these two scenarios can be matched to drivers of the optimal solution in the338

original problem with a cost less than OPT2. In the proof of Lemma 5, we show that if339

we use the optimal first stage decision D∗
1 of the original problem, then we can match Ŝj340

and ŜUnmatch
σ(j) simultaneously to D \ D∗

1 with a cost less than 3OPT2.341

Maintenance. Assume the claim is true for all values less than i ≤ log2 p − 1. We342

show it is true for i + 1. Since the claim is true for iteration i, we know that at the343

start of iteration i + 1, for j ∈ {1, . . . , p
2i }, Ŝj can be matched to D \ D∗

1 with a cost less344

than 3i · OPT2. We can therefore consider a new TSRMB problem with p
2i scenarios,345

where using D∗
1 as a first stage decision ensures a second stage optimal value less than346

ÔPT 2 = 3i · OPT2. By the proof of Lemma 5, and by using D∗
1 as a first stage decision in347

this problem, we ensure that for j ∈ {1, . . . , p
2i+1 }, Ŝj and ŜUnmatch

σ(j) can be simultaneously348

matched to D \ D∗
1 with a cost less than 3ÔPT 2 = 3i+1 · OPT2. ◀349

Our claim implies that in the last iteration i = log2 p:350

R1 can be matched to D∗
1 with a first stage cost of OPT1.351

Ŝ1 can be matched to D \ D∗
1 with a second stage cost less than 3log2 p · OPT2.352

Computing the single scenario solution for Ŝ1 will therefore yield a first stage decision D1
that gives a total cost less than OPT1 + 3log2 p · OPT2 when the second stage is evaluated
on the scenario Ŝ1. We now bound the cost of D1 on the original scenarios {S1, . . . , Sp}.
Consider a scenario S ∈ {S1, . . . , Sp}. The riders in S ∩ Ŝ1 can be matched to some drivers
in D \ D1 with a cost less than OPT1 + 3log2 p · OPT2. As for other riders of S \ Ŝ1, they
are not part of Ŝ1 because they have been matched and deleted at some iteration i < log2 p.
Consider riders r in S \ Ŝ1 that were matched and deleted from a representative scenario at
some iteration, then by statement (iii) in our claim, each r can be connected to a different
rider in Ŝ1 \ (Ŝ1 ∩ S) within a path of length at most

log2 p∑
t=1

2 · 3t−1 · OPT2 = (3log2 p − 1) · OPT2.
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We know that R1 and Ŝ1 can be matched respectively to D1 and D \ D1 with a total cost353

less than OPT1 + 3log2 p · OPT2. Therefore, we can match R1 and S respectively to D1 and354

D \ D1 with a total cost less than355

OPT1 + 3log2 p · OPT2 + (3log2 p − 1) · OPT2 = O(3log2 p) · OPT ≃ O(p1.59) · OPT.356
357

Therefore, the worst-case total cost of the solution returned by Algorithm 3 is O(p1.59) ·358

OPT . ◀359

4 Implicit Scenarios360

Consider an implicit model of scenarios S = {S ⊂ R2 s.t. |S| ≤ k}. While this model is widely361

used, it poses a challenge because the number of scenarios can be exponential. Therefore,362

even computing the worst-case second stage cost, for a given first stage solution, might not363

be possible in polynomial time and we can no longer assume that we can guess OPT2. Note364

that the worst-case scenarios have size exactly k. Our analysis for this model depends on the365

balance between supply (drivers) and demand (riders). We define the surplus ℓ as the excess366

in the number of available drivers for matching first-stage riders and a second-stage scenario:367

ℓ = |D| − |R1| − k. As a warm-up, we study the case of no surplus (ℓ = 0). Then, we address368

the more general case with a small surplus of drivers.369

4.1 Warm-up: no surplus370

When the number of drivers equals the number of first stage riders plus the size of scenarios371

(i.e., ℓ = 0), we show a 3-approximation by simply solving a single scenario TSRMB with372

any of the scenarios. In fact, since ℓ = 0, all scenarios are matched to the same set of drivers373

in the optimal solution. Hence, between any two scenarios, there exists a matching where all374

edge weights are less than 2OPT2. So by solving TSRMB with only one of these scenarios,375

we can recover a solution and bound the cost of the other scenarios within OPT1 + 3OPT2376

using the triangle inequality. The algorithm and proof are presented below.377

Algorithm 4 Implicit scenarios with no surplus.

Input: First stage riders R1, second stage riders R2, size k and drivers D.
Output: First stage decision D1.

1: S1 := a second stage scenario of size k.
2: D1 := TSRMB-1-Scenario(R1, S1, D).
3: return D1.

▶ Lemma 7. Algorithm 4 yields a solution with total cost less than OPT1 + 3OPT2 for378

TSRMB with implicit scenarios and no surplus.379

Proof of Lemma 7. Let OPT1 and OPT2 be the first and second stage cost of the optimal380

solution. Let f(D1) be the total cost of the solution returned by the algorithm. We claim that381

f(D1) ≤ OPT1 + 3OPT2. It is clear that cost1(D1, R1) + cost2(D \ D1, S1) ≤ OPT1 + OPT2.382

Let S ∈ S be another scenario. Because |D| = |R1| + k, the optimal solution uses exactly383

the same k drivers to match all the second stage scenarios. This implies that we can use384

the triangular inequality to find a matching between S and S1 of bottleneck cost less than385

2OPT2. Hence for any scenario S,386

cost1(D1, R1) + cost2(D \ D1, S) ≤ cost1(D1, R1) + cost2(D \ D1, S1) + 2OPT2387

≤ OPT1 + 3OPT2.388
389
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◀390

If the surplus is strictly greater than 0, the above procedure can have an approximation391

ratio of Ω(m). Consider the example in Figure 3, with k = 1 and two second stage riders.392

The single scenario solution for S1 uses the optimal second stage driver of S2. Hence, if S2 is393

realized, the cost of matching S2 to the closest available driver is Ω(m). Similarly, the single394

scenario problem for S2 yields a Ω(m) cost for S1.395

Figure 3 First stage riders are depicted as black dots and drivers as black triangles. The two
second stage riders are depicted as blue crosses. Second stage optimum are depicted as solid green
edges. S = {S1, S2}, k = 1 and ℓ = 1.

4.2 Small surplus396

The TSRMB problem becomes challenging even with a unit surplus. Motivated by this,397

we focus on the case of a small surplus ℓ. In particular, we assume that ℓ < k, i.e., the398

excess in the total available drivers is smaller than the size of any scenario. We present a399

constant approximation algorithm in this regime for the implicit model of uncertainty where400

the size of scenarios is relatively small with respect to the size of the universe (k = O(
√

n)).401

This technical assumption is needed for our analysis but it is not too restrictive and still402

captures the regime where the number of scenarios can be exponential. Our algorithm403

attempts to cluster the second stage riders in different groups (a ball and a set of outliers) in404

order to reduce the number of possible worst-case configurations. We then solve a sequence405

of instances with representative riders from each group. In what follows, we present our406

construction for these groups of riders.407

Our construction. First, we show that many riders are contained in a ball with radius408

3OPT2. The center of this ball, δ, can be found by selecting the driver with the least409

maximum distance to its closest k second-stage riders, i.e.,410

δ = arg min
δ′∈D

max
r∈Rk(δ′)

d(δ′, r), (3)411

where Rk(δ′) is the set of the k closest second stage riders to δ′. Formally, we have the412

following lemma. We present the proof in Appendix B.413

▶ Lemma 8. Suppose k ≤
√

n
2 and ℓ < k and let δ be the driver given by (3). Then, the414

ball B centered at δ with radius 3OPT2 contains at least n − ℓ second stage riders. Moreover,415

the distance between any of these riders and any rider in Rk(δ) is less than 4OPT2.416
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Now, we focus on the rest of second stage riders. We say that a rider r ∈ R2 is417

an outlier if d(δ, r) > 3OPT2. Denote {o1, o2, . . . , oℓ} the farthest ℓ riders from δ with418

d(δ, o1) ≥ d(δ, o2) ≥ . . . ≥ d(δ, oℓ). By Lemma 8, the n − ℓ riders in B are not outliers419

and the only potential outliers can be in {o1, o2, . . . , oℓ}. Let j∗ be the threshold such that420

o1, o2, . . . , oj∗ are outliers and oj∗+1, . . . , oℓ are not, with the convention that j∗ = 0 if there421

is no outlier. There are ℓ + 1 possible values for j∗. We call each of these possibilities422

a configuration. For j = 0, . . . , ℓ, let Cj be the configuration corresponding to threshold423

candidate j. C0 is the configuration where there is no outlier and Cj∗ is the correct424

configuration.425

Algorithm 5 Implicit scenarios with small surplus and k ≤
√

n
2 .

Input: First stage riders R1, second stage riders R2, size k and drivers D.
Output: First stage decision D1.

1: Set δ := driver given by (3).
2: Set S1:= the closest k second stage riders to δ.
3: Set S2 := {o1, . . . , oℓ} the farthest ℓ second stage riders from δ (o1 being the farthest).
4: for j = 0, . . . , ℓ do
5: D1(j) := TSRMB-1-Scenario(R1, S1 ∪ {o1 . . . oj}, D).
6: end for
7: return D1 = arg min

D1(j): j∈{0,...,ℓ}
cost1

(
D1(j), R1

)
+ max

S∈{S1,S2}
cost2

(
D \ D1(j), S

)
.

Recall that Rk(δ) are the closest k second-stage riders to δ. For the sake of simplicity,426

we denote S1 = Rk(δ) and S2 = {o1 . . . oℓ}. S2 is a feasible scenario since ℓ < k. For427

every configuration Cj , we form a representative scenario using S1 and {o1 . . . oj}. We428

solve TSRMB with this single representative scenario S1 ∪ {o1 . . . oj} and denote D1(j) the429

corresponding optimal solution, i.e.,430

D1(j) = TSRMB-1-Scenario(R1, S1 ∪ {o1 . . . oj}, D).431

Since we can not evaluate the cost of D1(j) on all scenarios, we use the two proxy scenarios432

S1 and S2. We show that the candidate D1(j) with minimum cost over S1 and S2 gives a433

constant approximation to our original problem. The details are presented in Algorithm 5.434

We state the result in the next theorem.435

▶ Theorem 9. Algorithm 5 yields a solution with total cost less than 3OPT1 + 17OPT2 for436

TSRMB with implicit scenarios when k ≤
√

n
2 and ℓ < k.437

Before proving the theorem, we first introduce some notation. For all j ∈ {0, . . . , ℓ},438

denote439

Ωj = cost1
(
D1(j), R1

)
440

∆j = cost2
(
D \ D1(j), S1 ∪ {o1, . . . , oj}

)
441

βj = cost1
(
D1(j), R1

)
+ max

S∈{S1,S2}
cost2

(
D \ D1(j), S

)
442

443

Recall that f the objective function of TSRMB. In particular,

f
(
D1(j)

)
= cost1

(
D1(j), R1

)
+ max

S∈S
cost2

(
D \ D1(j), S

)
Our proof is based on the following two claims. Claim 10 establishes a bound on the cost444

of D1(j∗) when evaluated on the proxy scenarios S1 and S2 and on all the scenarios in S.445
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Recall that j∗ is the threshold index for the outliers as defined earlier in our construction.446

Claim 11 bounds the cost of f(D1(j)) for any j.447

▷ Claim 10. Ωj∗ + ∆j∗ ≤ OPT1 + OPT2. and f(D1(j∗)) ≤ OPT1 + 5OPT2.448

Proof of Claim 10.449

1. In the optimal solution of the original problem, R1 is matched to a subset D∗
1 of drivers.450

The scenario S1 is matched to a set of drivers DS1 where D∗
1 ∩ DS1 = ∅. Let Do be the451

set of drivers that are matched to o1, . . . , o∗
j in a scenario that contains o1, . . . , o∗

j . It is452

clear that D∗
1 ∩ Do = ∅. We claim that Do ∩ DS1 = ∅. In fact, suppose there is a driver453

ρ ∈ Do∩DS1 . This implies the existence of some oj with j ≤ j∗ and some rider r ∈ S1 such454

that d(ρ, oj) ≤ OPT2 and d(ρ, r) ≤ OPT2. But then d(δ, oj) ≤ d(δ, r)+d(ρ, r)+d(ρ, oj) ≤455

3OPT2 which contradicts the fact the oj is an outlier. Therefore Do ∩ DS1 = ∅. We show456

that D∗
1 is a feasible first stage solution to the single scenario problem of S1 ∪ {o1, . . . o∗

j }457

with a cost less than OPT1 + OPT2. In fact, D∗
1 can be matched to R1 with a cost less458

than OPT1, DS1 to S1 and Do to {o1, . . . , o∗
j } with a cost less than OPT2. Therefore459

Ωj∗ + ∆j∗ ≤ OPT1 + OPT2.460

2. Recall that cost1
(
D1(j∗), R1

)
= Ωj∗ . Consider a scenario S and a rider r ∈ S. Let B′ be461

the set of the n − ℓ closest second stage riders to δ. Let DS1(j∗) be set of second stage462

drivers matched to S1 in the single scenario problem for scenario S1 ∪ {o1, . . . , oj∗}. Let463

Do(j∗) be the set of second stage drivers matched to {o1, . . . , oj∗} in the single scenario464

problem for scenario S1 ∪ {o1, . . . , oj∗}. Recall that the second stage cost for this single465

scenario problem is ∆j∗ . We distinguish three cases:466

a. If r ∈ B′, then by Lemma 8, r is connected to every driver in DS1(j∗) within a distance467

less than ∆j∗ + 4OPT2.468

b. If r ∈ {oj∗+1, . . . , oℓ}, then r is connected to every driver in DS1(j∗) within a distance469

less than 3OPT2 + OPT2 + ∆∗
j .470

c. If r ∈ {o1, . . . , oj∗} (i.e., r an outlier), then r can be matched to a different driver in471

Do(j∗) within a distance less than OPT2.472

This means that in every case, we can match r to a driver in D \ D1(j∗) with a cost less
than 4OPT2 + ∆j∗ . This implies that

max
S∈S

cost2
(
D \ D1(j∗), S

)
≤ 4OPT2 + ∆j∗

and therefore

Ωj∗ + max
S∈S

cost2
(
D \ D1(j∗), S

)
≤ Ωj∗ + ∆j∗ + 4OPT2 ≤ OPT1 + 5OPT2.

◀473

▷ Claim 11. For all j ∈ {0, . . . , l} we have, βj ≤ f(D1(j)) ≤ max{βj+4OPT2, 3βj+2OPT2}.474

Proof of Claim 11. Let αj be the second stage cost of D1(j) on the TSRBM instance with475

scenarios S1 and S2. Formally, αj = max
S∈{S1,S2}

cost2
(
D \ D1(j), S

)
. Therefore βj = Ωj + αj .476

Let’s consider the two sets477

O1 = {r ∈ {o1, . . . , oℓ} | d(r, δ) > 2αj + OPT2}.478

O2 = {o1, . . . , oℓ} \ O1.479
480

Consider D1(j) as a first stage decision to TSRMB with scenarios S1 and S2. Let D̃1 ⊂481

D \ D1(j) be the set of drivers that are matched to O1 when the scenario S2 = {o1, . . . , oℓ}482
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is realized. Similarly, let D̃2 ⊂ D \ D1(j) be the drivers matched to scenario S1. We claim483

that D̃1 ∩ D̃2 = ∅. Suppose that there exists some driver ρ ∈ D̃1 ∩ D̃2, this implies the484

existence of some o ∈ O1 and r ∈ S1 such that d(ρ, o) ≤ αj and d(ρ, r) ≤ αj . And since485

d(r, δ) ≤ OPT2 by definition of δ we would have486

d(o, δ) ≤ d(ρ, o) + d(ρ, r) + d(r, δ) ≤ 2αj + OPT2,487

which contradicts the definition of O1. Therefore D̃1 ∩ D̃2 = ∅.488

489

Now consider a scenario S ∈ S. The riders of S ∩ O1 can be matched to D̃1 with a490

bottleneck cost less than αj . Recall that by Lemma 8, any rider in R2 \ {o1, . . . , oℓ} is within491

a distance less than 4OPT2 from any rider in S1. The riders r ∈ S \{o1, . . . , oℓ} can therefore492

be matched to any driver ρ ∈ D̃2 within a distance less than493

d(r, ρ) ≤ d(r, S1) + d(S1, ρ) ≤ 4OPT2 + αj .494

As for riders r ∈ S ∩ O2, they can also be matched to any driver ρ of D̃2 within a distance495

less than496

d(r, ρ) ≤ d(r, δ) + d(δ, S1) + d(S1, ρ) ≤ 2αj + OPT2 + OPT2 + αj = 3αj + 2OPT2.497

Therefore we can bound the second stage cost498

max
S∈S

cost2
(
D \ D1(j), S

)
≤ max{αj + 4OPT2, 3αj + 2OPT2}499

and we get that500

cost1
(
D1(j), R1

)
+ max

S∈S
cost2

(
D \ D1(j), S

)
≤ max{βj + 4OPT2, 3βj + 2OPT2}501

The other inequality βj ≤ cost1
(
D1(j), R1

)
+ max

S∈S
cost2

(
D \ D1(j)

)
is trivial. ◀502

We are now ready to prove the theorem.503

Proof of Theorem 9. Suppose Algorithm 5 returns D1(j̃) for some j̃. From Claim 11 and
the minimality of βj̃ :

f
(
D1(j̃)

)
≤ max{βj̃ + 4OPT2, 3βj̃ + 2OPT2} ≤ max{βj∗ + 4OPT2, 3βj∗ + 2OPT2}.

From Claim 10 and Claim 11, we have βj∗ ≤ f
(
D1(j∗)

)
≤ OPT1 + 5OPT2. We conclude

that,

f
(
D1(j̃)

)
≤ max

{
OPT1 + 9OPT2, 3OPT1 + 17OPT2

}
= 3OPT1 + 17OPT2.

◀504

5 Conclusion505

In this paper, we present a new two-stage robust optimization framework for matching506

problems under both explicit and implicit models of uncertainty. Our problem is motivated507

by real-life applications in the ride-hailing industry. We study the Two-Stage Robust Matching508

Bottleneck problem, prove its hardness, and design approximation algorithms under different509

settings. Our algorithms give a constant approximation if the number of scenarios is fixed,510

but require additional assumptions when there are polynomially or exponentially many511

scenarios. It is an interesting question if there exists a constant approximation in the general512

case that does not depend on the number of scenarios.513
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A NP-Hardness proofs for TSRMB630

We start by presenting the 3-Dimensional Matching (3-DM) and Set Cover problems, that we631

use in our reductions to show Theorem 1. Both problems are known to be strongly NP-hard632

[10, 25].633

634

3-Dimensional Matching (3-DM): Given three sets U , V , and W of equal cardinality n,635

and a subset T of U × V × W , is there a subset M of T with |M | = n such that whenever636

(u, v, w) and (u′, v′, w′) are distinct triples in M , u ̸= u′, v ̸= v′, and w ̸= w′ ?637

638

Set Cover Problem: Given a set of elements U = {1, 2, ..., n} (called the universe), a639

collection S1, . . . , Sm of m sets whose union equals the universe and an integer p.640

Question: Is there a set C ⊂ {1, . . . , m} such that |C| ≤ p and
⋃

i∈C

Si = U ?641

Proof of Theorem 1.642

Explicit uncertainty. Consider an instance of the 3-Dimensional Matching Problem. We643

can use it to construct (in polynomial time) an instance of TSRMB with 2 scenarios as644

follows:645

Create two scenarios of size n: S1 = U and S2 = V .646

Set D = T , every driver corresponds to a triple in T .647

For every w ∈ W , let dT (w) be the number of sets in T that contain w. We create648

dT (w) − 1 first stage riders, that are all copies of w. The total number of first stage riders649

is therefore |R1| = |T | − n.650

For (w, e) ∈ R1 × D, d(w, e) =
{

1 if w ∈ e

3 otherwise.651

For (u, e) ∈ S1 ∪ S2 × D, d(u, e) =
{

1 if u ∈ e

3 otherwise.652

For u, v ∈ R1 ∪ S1 ∪ S2, d(u, v) = min
e∈D

d(u, e) + d(v, e).653

For e, f ∈ D, d(e, f) = min
u∈R1∪S1∪S2

d(u, e) + d(u, f).654

This choice of distances induces a metric graph. We claim that there exists a 3-dimensional655

matching if and only if there exists a solution to this TSRMB instance with total cost equal656

to 2. Suppose that M = {e1, . . . , en} ⊂ T is a 3-Dimensional matching. Let e1, . . . , en657

be the drivers that correspond to M in the TSRMB instance. We show that by using658

D1 = D \ {e1, . . . , en} as a first stage decision, we ensure that the total cost for the TSRMB659

https:// marketplace.uber.com/ matching
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instance is equal to 2. For any rider u in scenario S1, by definition of M , there exits a unique660

edge ei ∈ M that covers u. The corresponding driver ei ̸∈ D1 can be matched to u with661

a distance equal to 1. Furthermore, ei cannot be matched to any other rider in S1 with a662

cost less than 1. Similarly, for any rider v in scenario S2, since there exits a unique edge663

ej ∈ M that covers v, the corresponding driver can be matched to v with a cost of 1. The664

second stage cost is therefore equal to 1. As for the first stage cost, we know by definition of665

M , that every element w ∈ W is covered exactly once. Therefore, for every w ∈ W , there666

exists dT (w) − 1 edges that contain w in T \ M . This means that every 1st stage rider can667

be matched to a driver in D1 with a cost equal to 1. Hence the total cost of this two-stage668

matching is equal to 2.669

Suppose now that there exists a solution to the TSRMB instance with a cost equal to 2.670

This means that the first and second stage costs are both equal to 1. Let M = {e1, . . . , en}671

be the set of drivers used in the second stage of this solution. We show that M is a 3-672

dimensional matching. Let ei = (u, v, w) and ej = (u′, v′, w′) be distinct triples in M . Since673

the second stage cost is equal to 1, the driver ei (resp. ej) must be matched to u (resp.674

u′) in S1. Since we have exactly n second stage drivers and n riders in S1, this means675

that ei and ej have to be matched to different second stage riders in S1. Therefore we676

get u′ ≠ u. Similarly we see that v′ ̸= v. Assume now that w = w′, this means that the677

TSRMB solution has used two drivers (triples) ei and ej that contain w in the second stage.678

It is therefore impossible to match all the dT (w) − 1 copies of w in the first stage with a679

cost equal to 1. Therefore w ̸= w′. The above construction can be performed in polyno-680

mial time of the 3-DM input, and therefore shows that TSRMB with two scenarios is NP-hard.681

682

Now, to show that TSRMB is hard to approximate within a factor better than 2, we683

consider three scenarios. Consider an instance of 3-DM. We can use it to construct an684

instance of TSRMB with 3 scenarios as follows:685

Create 3 scenarios of size n: S1 = U , S2 = V and S3 = W .686

Set D = T .687

Create |R1| = |T | − n first stage riders.688

For (w, e) ∈ R1 × D, d(w, e) = 1.689

For (u, e) ∈ S1 ∪ S2 ∪ S3 × D, d(u, e) =
{

1 if u ∈ e

3 otherwise.690

For u, v ∈ R1 ∪ S1 ∪ S2 ∪ S3, d(u, v) = min
e∈D

d(u, e) + d(v, e).691

For e, f ∈ D, d(e, f) = min
u∈R1∪S1∪S2∪S3

d(u, e) + d(u, f).692

This choice of distances induces a metric graph. Similarly to the proof of 2 scenarios, we693

can show that there exists a 3-dimensional matching if and only if there exists a TSRMB694

solution with cost equal to 2. Furthermore, any solution for this TSRMB instance has695

either a total cost of 2 or 4 (the first stage cost is always equal to 1). We show that if a696

(2 − ϵ)-approximation (for some ϵ > 0) to the TSRMB exists then 3-Dimensional Matching is697

decidable. We know that this instance of TSRMB has a solution with total cost equal to 2698

if and only if there is a 3-dimensional matching. Furthermore, if there is no 3-dimensional699

matching, the cost of the optimal solution to TSRMB must be 4. Therefore, if an algorithm700

guarantees a ratio of (2 − ϵ) and a 3-dimensional matching exists, the algorithm delivers a701

solution with total cost equal to 2. If there is no 3-dimensional matching, then the solution702

produced by the algorithm has a total cost of 4.703

Implicit uncertainty. We prove the hardness for k = 1. We start from an instance of the704

Set Cover problem and construct an instance of the TSRMB problem. Consider an instance705
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of the decision problem of set cover. We can use it to construct the following TSRMB706

instance:707

Create m drivers D = {1, . . . , m}. For each j ∈ {1, . . . , m}, driver j corresponds to set708

Sj .709

Create m − p first stage riders, R1 = {1, . . . , m − p}.710

Create n second stage riders, R2 = {1, . . . , n}.711

Set S = {{1}, . . . , {n}}. Every scenario is of size 1.712

As for the distances between riders and drivers, we define them as follows:713

For (i, j) ∈ R1 × D, d(i, j) = 1.714

For (i, j) ∈ R2 × D, d(i, j) =
{

1 if i ∈ Sj

3 otherwise.715

For i, i′ ∈ R1 ∪ R2, d(i, i′) = min
j∈D

d(i, j) + d(i′, j).716

For j, j′ ∈ D, d(j, j′) = min
i∈R1∪R2

d(i, j) + d(i, j′).717

This choice of distances induces a metric graph. Moreover, every feasible solution to this718

TSRMB instance has a first stage cost of exactly 1. We show that a set cover of size ≤ p719

exists if and only if there is a TSRMB solution with total cost equal to 2. Suppose without720

loss of generality that S1, . . . , Sp is a set cover. Then by using the drivers {1, . . . , p} in the721

second stage, we ensure that every scenario is matched with a cost of 1. This implies the722

existence of a solution with total cost equal to 2. Now suppose there is a solution to the723

TSRMB problem with cost equal to 2. Let D2 be the set of second stage drivers of this724

solution, then we have |D2| = p. We claim that the sets corresponding to drivers in D2 form725

a set cover. In fact, since the total cost of the TSRMB solution is equal to 2, the second726

stage cost is equal to 1. This means that for every scenario i ∈ {1, . . . , n}, there is a driver727

j ∈ D2 within a distance 1 from i. Therefore i ∈ Sj and {Sj : j ∈ D2} is a set cover.728

Next we show that if (2 − ϵ)-approximation (for some ϵ > 0) to the TSRMB exists then729

Set Cover is decidable. We know that the TSRMB problem has a solution of cost 2 if and730

only if there is a set cover of size less than p. Furthermore, if there is no such set cover, the731

cost of the optimal solution must be 4. Therefore, if the algorithm guarantees a ratio of732

(2 − ϵ) and there is a set cover of size less than p, the algorithm delivers a solution with a733

total cost of 2. If there is no set cover, then clearly the solution produced by the algorithm734

has a cost of 4. ◀735

▶ Remark 12. For k ≥ 2, we can use a generalization of Set Cover to show that the problem736

is hard for any k. We use a reduction from the Set MultiCover Problem ([3, 43]) defined737

below.738

Set MultiCover Problem: Given a set of elements U = {1, 2, ..., n} (called the universe)739

and a collection S1, . . . , Sm of m sets whose union equals the universe. A "coverage factor"740

(positive integer) k and an integer p. Is there a set C ⊂ {1, . . . , m} such that |C| ≤ p and for741

each element x ∈ U , |j ∈ C : x ∈ Sj | ≥ k ?742

743

We can create an instance of TSRMB from a Set MultiCover instance similarly to Set744

Cover with the exception that S = {S ⊂ R2 s.t. |S| = k}. The hardness result follows745

similarly.746

B Implicit scenarios: small surplus747

Proof of Lemma 8. Let δ be the driver given by (3). We claim that the k closest riders
to δ are all within a distance less than OPT2 from δ. Consider D∗

2 to be the k + ℓ drivers
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left for the second stage in the optimal solution. Every driver in D∗
2 can be matched to a

set of different second stage riders over different scenarios. Let us rank the drivers in D∗
2

according to how many different second stage riders they are matched to over all scenarios,
in descending order. Formally, let D∗

2 = {δ1, δ2, . . . , δk+ℓ} and let R∗(δi) be the second stage
riders that are matched to δi in the optimal solution in some scenario, such that

|R∗(δ1)| ≥ . . . ≥ |R∗(δk+ℓ)|.

We claim that |R∗(δ1)| ≥ k. In fact, we have
k+ℓ∑
i=1

|R∗(δi)| ≥ n because every second stage

rider is matched to at least one driver in some scenario. Therefore

|R∗(δ1)| ≥ n

k + ℓ
≥ n

2k
≥ k.

We know that all the second stage riders in R∗(δ1) are within a distance less than OPT2748

from δ1. Therefore max
r∈Rk(δ1)

d(δ1, r) ≤ OPT2. But we know that by definition of δ,749

max
r∈Rk(δ)

d(δ, r) ≤ max
r∈Rk(δ1)

d(δ1, r) ≤ OPT2750

This proves that the k closest second stage riders to δ are within a distance less than751

OPT2. Let R(δ) be the set of all second stage riders that are within a distance less than752

OPT2 from δ. Recall that Rk(δ) is the set of the k closest second stage riders to δ. In753

the optimal solution, the scenario Rk(δ) is matched to a set of at least new k − 1 drivers754

{δi1 , . . . δik−1} ⊂ D∗
2 \ {δ}. We show a lower bound on the size of R(δ) and the number of755

riders matched to {δi1 , . . . δik−1} over all scenarios in the optimal solution.756

▷ Claim 13.
∣∣R(δ)

k−1⋃
j=1

R∗(δij
)
∣∣ ≥ n − ℓ757

Proof. Suppose the opposite, suppose that at least ℓ + 1 riders from R2 are not in the union.758

Let F be the set of these ℓ + 1 riders. Since ℓ + 1 ≤ k, we can construct a scenario S that759

includes F . In the optimal solution, and in particular, in the second stage matching of S,760

at least one rider from F needs to be matched to a driver from {δ, δi1 , . . . δik−1}. Otherwise761

there are only ℓ second stage drivers left to match all of F . Therefore there exists r ∈ F such762

that either r ∈ R(δ) or there exists j ∈ {1, . . . , k − 1} such that r ∈ R∗(δij ). This shows that763

r ∈ R(δ)
k−1⋃
j=1

R∗(δij
), which is a contradiction. Therefore, at most ℓ second stage riders are764

not in the union. ◀765

▷ Claim 14. For any rider r ∈ R(δ)
k−1⋃
j=1

R∗(δij
), we have d(r, δ) ≤ 3OPT2.766

Proof. If r ∈ R(δ) then by definition we have d(r, δ) ≤ OPT2. Now suppose r ∈ R∗(δij
) for767

j ∈ [k − 1]. Let r′ be the rider from scenario Rk(δ) that was matched to δij
in the optimal768

solution. Then by the triangular inequality769

d(r, δ) ≤ d(r, δij ) + d(δij , r′) + d(r′, δ) ≤ 3OPT2.770

◀771

From Claim 14, we see that the ball centered at δ, with radius 3OPT2, contains at least772

n − ℓ second stage riders in R(δ)
k−1⋃
j=1

R∗(δij
). This proves the first part of the lemma. The773

second part is proved in the next claim.774
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▷ Claim 15. For r1 ∈ Rk(δ) and r2 ∈ R(δ)
k−1⋃
j=1

R∗(δij ), we have d(r1, r2) ≤ 4OPT2.775

Proof. Let r1 ∈ Rk(δ). If r2 ∈ R(δ) then d(r1, r2) ≤ d(r1, δ) + d(δ, r2) ≤ 2OPT2. If776

r2 ∈ R∗(δij
) for some j, and r′ is the rider from scenario Rk(δ) that was matched to δij

777

d(r1, r2) ≤ d(r1, δ) + d(δ, r′) + d(r′, δij
) + d(δij

, r2) ≤ 4OPT2.778

◀779

Claim 13 shows that the number of riders included in R(δ)
k−1⋃
j=1

R∗(δij
) is at least n− ℓ. Claim780

14 shows that each one of this rider has distance less than 3OPT2 from δ. Finally, Claim 15781

shows that the distance between any one of this riders and any rider in Rk(δ) is less than782

3OPT2. This concludes the proof of Lemma 8. ◀783
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