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—— Abstract

Matching demand (riders) to supply (drivers) efficiently is a fundamental problem for ride-hailing
platforms who need to match the riders (almost) as soon as the request arrives with only partial
knowledge about future ride requests. A myopic approach that computes an optimal matching for
current requests ignoring future uncertainty can be highly sub-optimal. In this paper, we consider a
two-stage robust optimization framework for this matching problem where future demand uncertainty
is modeled using a set of demand scenarios (specified explicitly or implicitly). The goal is to match
the current request to drivers (in the first stage) so that the cost of first stage matching and the
worst-case cost over all scenarios for the second stage matching is minimized. We show that this
two-stage robust matching is NP-hard under both explicit and implicit models of uncertainty. We
present constant approximation algorithms for both models of uncertainty under different settings
and show they improve significantly over standard greedy approaches.
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1 Introduction

Matching demand (riders) with supply (drivers) is a fundamental problem for ride-hailing
platforms such as Uber, Lyft and DiDi. These platforms need to continually make efficient
matching decisions with only partial knowledge of future ride requests. A common approach
in practice is batched matching: instead of matching each request sequentially as it arrives,
aggregate the requests for a short amount of time (typically one to two minutes) and match
the aggregated requests to available drivers in one batch [42, 33, 44]. However, computing
this batch matching myopically without considering future requests can lead to a highly
sub-optimal outcome for some subsequent drivers and riders.

Motivated by this shortcoming, and by the possibility of using historical data to hedge
against future uncertainty, we study a two-stage framework for matching problems where
the future demand uncertainty is modeled as a set of scenarios that are specified explicitly or
implicitly. The goal is to compute a matching between the available drivers and the first
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Matching Drivers to Riders: A Two-stage Robust Approach

batch of riders such that the total worst-case cost of first stage and second stage matching
is minimized. More specifically, we consider an adversarial model of uncertainty where the
adversary observes the first stage matching of our algorithms and presents a worst-case
scenario from the list of specified scenarios in the second stage. We focus on the case where
the first stage cost is the average weight of the first stage matching, and the second stage
cost is the highest edge weight in the second stage matching. This is motivated by the goal of
computing a low-cost first stage matching while also minimizing the worst case waiting time
for any rider in any second stage. All the results of this paper hold when the first stage cost
is the highest edge weight of the first stage matching. We also study several other metrics in
the full version. We consider two common models to describe the uncertainty in the second
stage: an explicit list of all possible scenarios and an implicit description of the scenarios
using a cardinality constraint. Two-stage robust optimization is a popular model for hedging
against uncertainty [8, 19]. Several combinatorial optimization problems have been studied
in this model, including Set Cover, Capacity Planning [7, 11] and Facility Location [22].
While online matching is a classical problem in graph theory, two-stage matching problems
with uncertainty, have not been studied extensively. We present related work in Section 1.2.

1.1 OQur Contributions

Problem definition. We consider the following Two-stage Robust Matching Problem. We
are given a set of drivers D, a set of first stage riders Ry, a universe of potential second stage
riders Ry and a set of second stage scenarios S C P(Rg)l. We are given a metric distance d
on V =Ry URyUD. The goal is to find a subset of drivers D; C D (|D1| = |R1]) to match
all the first stage riders Ry such that the sum of cost of first stage matching and worst-case
cost of second stage matching (between D \ D; and the riders in the second stage scenario)
is minimized. More specifically,

Snin {costl(Dl, Ry) + max costa(D \ Dy, S)}

The first-stage decision is denoted D; and its cost is costi (D, R1). Similarly, the second
stage cost for scenario S is denoted costa(D \ D1, S), and max{costa(D \ D1,S5) | S € S}
is the worst-case cost over all possible scenarios. Let |Ri| = m, |Rz| = n. We denote the
objective function for a feasible solution Dy by

f(Dy) = costy (D1, Ry) + max costa(D \ D1, S).

We assume that there are sufficiently many drivers to satisfy both first and second stage
demand. Given an optimal first-stage solution D}, we denote

OPT, = cost1(D7, Ry), OPT; = max{cost2(D \ D}, S) | S € S},
OPT = OPT, + OP1Ts.

We consider the setting where the first stage cost is the average weight of the matching
between D; and R;, and the second stage cost is the bottleneck matching cost between
D\ D; and S. The bottleneck matching is the matching that minimizes the longest edge
in a maximum cardinality matching between D \ D; and S. We refer to this variant as
the Two-Stage Robust Matching Bottleneck Problem (TSRMB). Formally, let M; be the

L P(R2) is the power set of Rz, the set of all subsets of Ra.
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First stage R,

Second stage te .

R,

Figure 1 Bipartite graph of drivers and riders in our two-stage matching problem.

minimum weight perfect matching between R; and D;, and given a scenario S, let M3 be
the bottleneck matching between the scenario S and the available drivers D \ Dy, then the
cost functions for the TSRMB are:

1
cost1(D1,R1) = — Z d(i,j), and costa(D\ D1,S) = max _d(i,}).
M e (3,4)eMs

The difference between the first and second stage metrics is motivated by the fact that
the platform has access to the current requests and can exactly compute the cost of the
matching. On the other hand, to ensure the robustness of the solution, we require all
second stage assignments to have low waiting times by accounting for the maximum wait
time in every scenario. We choose the first stage cost to be the average matching weight
instead of the total weight for homogeneity reasons, so that first and second stage costs have
comparable magnitudes. The bottleneck objective, i.e., finding a subgraph of a certain kind
that minimizes the maximum edge cost in the subgraph, has been considered extensively in
the literature [21, 16, 17]. While the main body of this paper will focus on studying TSRMB,
we note that all our results hold when the first (resp. second) stage cost is equal to the
highest edge weight in the first (resp. second) stage matching. In the full version, we study
other variants of cost metrics, including a stochastic variant of TSRMB, and the case where
both first and second stage costs are simply the total matching weights.

Hardness. We show that TSRMB is NP-hard even for two scenarios and NP-hard to
approximate within a factor better than 2 for three scenarios. We also show that even when
the scenarios are singletons, the problem is NP-hard to approximate within a factor better
than 2. Given these hardness results, we focus on approximation algorithms for the TSRMB
problem. A natural candidate is the greedy approach that minimizes only the first stage cost

without considering the uncertainty in the second stage. However, we show that this myopic
approach can be bad as Q(m) - OPT (See Figure 2.)

Approximations algorithms. We consider both explicit and implicit models of uncertainty.

For the case of explicit model with two scenarios, we give a constant factor approximation
algorithm for TSRMB (Theorem 4). We further generalize the ideas of this algorithm to a
constant approximation for any fixed number of scenarios (Theorem 6). Our approximation
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Uncertainty Approx | Hardness

Explicit (2 scenarios) 5 NP-Hard
Explicit (p scenarios) o(p**) 2
Implicit (surplus £=10) 3 -
Implicit (¢ < k and k < M) 17 2

Table 1 Summary of our results, where surplus £ = |D| — |Ri| — k.

does not depend on the number of first stage riders or the size of scenarios but depends on
the number of scenarios. The main idea is to reduce the problem with multiple scenarios
to an instance with a single representative scenario while losing only a small factor. We
then solve the single scenario instance (in polynomial time) to get an approximation for our
original problem. The challenge in constructing the representative scenario is to find the
right trade-off between capturing the demand of all second stage riders and keeping the cost
of this scenario close to the optimal cost of the original instance.

For the implicit model of uncertainty, we consider the setting where we are given a
universe of second stage riders Ro and an integer k, and any subset of size less than k can
be a scenario. Therefore, S = {S C Ry s.t. |S| < k}. The scenarios can be exponentially
many in k£, which makes even the evaluation of the cost of a feasible solution challenging
and not necessarily achievable in polynomial time. Our analysis depends on the imbalance
between supply and demand. In fact, when the number of drivers is very large compared to
riders, the problem is less interesting in practice. However, it becomes interesting when the
supply and demand are comparable. In this case, drivers might need to be shared between
different scenarios. This leads us to define the notion of surplus ¢ = |D| — |Ry| — k, which is
the maximum number of drivers that we can afford not to use in a solution. As a warm-up,
we first show that if the surplus is equal to zero (all the drivers are used), using any scenario as
a representative scenario gives a 3-approximation. The problem becomes significantly more
challenging even with a small surplus. We show that under a reasonable assumption on
the size of scenarios, there is a constant approximation in the regime when the surplus ¢ is
smaller than the demand & (Theorem 9). Our algorithm is based on finding a clustering of
drivers and riders that yields a simplified instance of TSRMB which can be solved within
a constant factor. We show that we can cluster the riders into a ball (riders close to each
others) and a set of outliers (riders far from each others) and apply ideas from the explicit
scenario analysis. Finally, since the number of scenarios can be exponential, we construct a
set of a polynomial number of proxy scenarios on which we evaluate any feasible solution within
a constant approximation. Table 1 summarizes our results. Due to space constraints, we defer
some of the proofs to the appendix.

1.2 Related Work

Online bipartite matching. Finding a maximum cardinality bipartite matching has received a
considerable amount of attention over the years. Online matching was first studied by Karp
et al. [27] in the adversarial model. Since then, many online variants have been studied [37].
This includes AdWords [4, 5, 38], vertex-weighted [1, 6], edge-weighted [20, 31], stochastic
matching [12, 35, 39, 13], random vertex arrival [18, 26, 34, 23], and batch arrivals [32, 14, 44].
In the online bipartite metric matching variant, servers and clients correspond to points
from a metric space, and the objective is to find the minimum weight maximum cardinality
matching. Khullet et al. [29] and Kalyanasundaram and Pruhs [24] provided deterministic
algorithms in the adversarial model. In the random arrival model, Meyerson, et al. [40] and
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Bansal et al. [2] provided poly-logarithmic competitive algorithms. Recently, Raghvendra
[41] presented a O(logn)-competitive algorithm.

Two-stage stochastic combinatorial optimization. Within two-stage stochastic optimization,
matching has been studied under various models. Kong and Schaefer [30] and Escoffier et al.
[9] studied the stochastic two-stage maximum matching problem. Katriel et al. [28] studied
the two-stage stochastic minimum weight maximum matching. Feng and Niazadeh [14] study
K-stage variants of vertex weighted bipartite b-matching and AdWords problems, where
online vertices arrive in K batches. More recently, Feng et al. [15] initiate the study and
present online competitive algorithms for vertex-weighted two-stage stochastic matching as
well as two-stage joint matching and pricing.

Two-stage robust combinatorial optimization. Within two-stage robust optimization, match-
ings have not been studied extensively. Matuschke et al. proposed a two-stage robust model
for minimum weight matching with recourse [36]. Our model for TSRMB is different in
three main aspects: i) We use a general class of uncertainty sets to describe the second stage
scenarios while in [36] the only information given is the number of second stage vertices. ii)
We do not allow any recourse and our first stage matching is irrevocable. iii) Our second
stage cost is the bottleneck weight instead of the total weight.

2 Preliminaries

2.1 NP-hardness.

We show that TSRMB is NP-hard under both the implicit and explicit models. In the explicit
model, it is NP-hard even for two scenarios and NP-hard to approximate within a factor
better than 2 even for three scenarios.

In the explicit model with a polynomial number of scenarios, it is clear that the problem
is in NP. However, in the implicit model, the problem can be described with a polynomial
size input, but it is not clear that we can compute the total cost in polynomial time since
there could be exponentially many scenarios. We show that it is NP-hard to approximate
TSRMB in the implicit model within a factor better than 2 even when k = 1. The proof is
presented in Appendix A.

» Theorem 1. In the explicit model of uncertainty, TSRMB is NP-hard even with two
scenarios. Furthermore, when the number of scenarios is > 3, there is no (2—e)-approzimation
algorithm for any fixed € > 0, unless P = NP. In the implicit model of uncertainty, even
when k = 1, there is no (2 — €)-approzimation algorithm for TSRMB for any fized € > 0,
unless P = NP.

2.2 Greedy Approach.

A natural greedy approach is to choose the optimal matching for the first stage riders R;
without considering the second stage uncertainty. It can lead to a solution with a total
cost that scales linearly with m (cardinality of R;) while OPT is a constant, even with one
scenario. Consider the line example in Figure 2. We have m first stage riders and m + 1
drivers alternating on a line with distances 1 and 1 — e. There is one second stage rider at
the right endpoint of the line. The greedy matching minimizes the first stage cost and incurs
a total cost of (2 — €)(m + 1), while the optimal cost is equal to 2. Therefore any attempt to
have a good approximation needs to consider the second stage riders.

» Lemma 2. The cost of the Greedy algorithm can be Q(m) - OPT.
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Figure 2 Riders in first stage are depicted as black dots and drivers as black triangles. The
second stage rider is depicted as a blue cross.

2.3 Single Scenario.

The deterministic version of the TSRMB problem, i.e., when there is only a single scenario
in the second stage, can be solved exactly in polynomial time. This is a simple preliminary
result which we need for the general case. Denote S a single second stage scenario. The
instance (R, S, D) of TSRMB is then simply given by

min {costl(Dl, Ry) + costa(D \ Dy, S)} .
DiCD
Since the second stage problem is a bottleneck problem [21], the value of the optimal second
stage cost w is one of the edge weights between D and S. We iterate over all possible values
of w (at most |S|-|D| values), delete all edges between Ry and D with weights strictly higher
than w and set the weight of the remaining edges between S and D to zero. This reduces
the problem to finding a minimum weight maximum cardinality matching. We can also use
binary search to iterate over the edge weights. We present the details of this algorithm below
and refer to it as TSRMB-1-Scenario in the rest of this paper.
We define the bottleneck graph of w to be BOTTLENECKG(w) = (R USUD, E1UE3)
where Fy = {(i,7) € Dx S, d(i,j) < w} and F; = {(i,j) € DX R;}. Furthermore, we assume
that there are ¢ edges {e1,...,e,} between S and D with weights w1 < ws < ... < w,.

Algorithm 1 TSRMB-1-Scenario(R1, S, D)

Input: First stage riders R;, scenario S and drivers D.
Output: First stage decision D;.
1: forie{l,...,q} do

2: G; := BOTTLENECKG (w;).

3: Set all weights between D and S in G; to be 0.

4: M; := minimum weight maximum cardinality matching on Gj;.
5: if Ry U S is not completely matched in M; then

6: output certificate of failure.

7: else

8: D} := first stage drivers in M.

9: end if

10: end for

11: return Dy = argmin {costl(Dli,Rl) + costy(D \ Di, S)}

Di:lgigq

Note that the argmin in the last step of Algorithm 1 is only taken over values of i for
which there was no certificate of failure.

» Lemma 3. TSRMB-1-Scenario gives an optimal solution for the single scenario case.

Proof of Lemma 3. Let OPT; and OPT5 be the first and second stage cost of an optimal
solution, and i € {1,..., ¢} such that w; = OPT5. In this case, G; contains all the edges of
this optimal solution. By setting all the edges in E5 to 0, we are able to compute a minimum
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weight maximum cardinality matching between R; U S and D that matches both Ry and S
and minimizes the weight of the edges matching R;. The first stage cost of this matching is
less than OPT;, the second stage cost is clearly less than OPT, because we only allowed
edges with weight less than OPT5; in G;. <

We also observe that we can use binary search in Algorithm 1 to iterate over the edge
weights. For an iteration 4, a failure to find a minimum weight maximum cardinality matching
on G; that matches both Ry and S implies that we need to try an edge weight higher than
w;. On the other hand, if M; matches R; and S such that D} gives a smaller total cost, then
the optimal bottleneck value is lower than w;.

3  Explicit Scenarios

3.1 Two scenarios

Our main contribution in this section is a constant approximation algorithm for TSRMB
with two scenarios. Our analysis shows that we can reduce the problem to an instance with
a single representative scenario by losing a small factor. We then use TSRMB-1-Scenario to
solve the single representative scenario case.

Counsider two scenarios S = {51, S2}. First, we can assume without loss of generality
that we know the exact value of OPT5; which corresponds to one of the edges connecting
second stage riders Ry to drivers D (we can iterate over all the weights of second stage edges).
We construct a representative scenario that serves as a proxy for S; and Ss as follows. In
the second stage, if a pair of riders i € S; and j € Sy is served by the same driver in the
optimal solution, then they should be close to each other. Therefore, we can consider a single
representative rider for each such pair. While it is not easy to guess all such pairs, we can
approximately compute the representative riders by solving a maximum matching on S7 U S
with edges less than 20PT,. More formally, let G; be the induced bipartite subgraph of
G on S7 U S, containing only edges between S; and Sy with weight less than or equal to
20PT;. We compute a maximum cardinality matching M between S; and Sy in Gy, and
construct a representative scenario containing S; as well as the unmatched riders of Sy. We
solve the single scenario problem on this representative scenario and return its optimal first
stage solution. We show in Theorem 4 that this solution leads to a 5-approximation.

Algorithm 2 Two explicit scenarios.

Input: First stage riders Ry, two scenarios S7 and Ss, drivers D and value of OPT5.
Output: First stage decision D;.
1: Let G be the induced subgraph of G on S; U Sy with only the edges between S; and So
of weights less than 20PT5 .
2: Set M := maximum cardinality matching between S; and S5 in Gj.
3: Set Satch .= fr € Sy | F3s€ 8 st (s,r) € M} and SYmmatch = G, \ gMateh
4: return D := TSRMB-1-Scenario(Ry, S U S§nmateh D).

» Theorem 4. Algorithm 2 yields a solution with total cost less than OPTy + 50 P15 for
TSRMB with 2 scenarios.

The proof of Theorem 4 relies on the following structural lemma where we show that the
set Dj returned by Algorithm 2 yields a total cost at most (OPT; + 30 PTs) when evaluated

only on the single representative scenario S; U S 7match,
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» Lemma 5. Let Dy be the set of first stage drivers returned by Algorithm 2. Then
COStl(Dl, Rl) + COStg(D \ Dq{,51U Sé]nmatch) < OPT; + 30PTs.

Proof. It is sufficient to show the existence of a matching M, between R; U .S; U S’g nmatch
and D with a total cost less than O PTy +30PT5. This would imply that the optimal solution
Dy of TSRMB-1-Scenario(R;, S, U S¥mmateh D) has a total cost less than OPT; + 30 PT,
and concludes the proof. We show the existence of M, by construction.

Step 1. We first match R; with their mates in the optimal solution of TSRMB. Hence,
the first stage cost of our constructed matching M, is OPT}.

Step 2. Now, we focus on SY"mateh et SYmmatch — §1,1JS59 be a partition of SYmmateh
where S12 contains riders with a distance less than 20 P75 from S; and Sio contains riders
with a distance strictly bigger than 20 PT, from S7, where the distance from a set is the
minimum distance to any element of the set. A rider in Ss cannot share any driver with a
rider from S in the optimal solution of TSRMB, because otherwise, the distance between
these riders will be less than 20 PT5 by using the triangle inequality. Therefore we can match
Soo to their mates in the optimal solution and add them to M,, without using the optimal
drivers of S7. We pay less than OPT5 for matching Sos.

Step 3. We still need to simultaneously match riders in S; and Si2 to finish the
construction of M,. Notice that some riders in S75 might share their optimal drivers with
riders in .S;. We can assume without loss of generality that all riders in S5 share their optimal
drivers with S; (otherwise we can match them to their optimal drivers without affecting
S1). Denote S12 = {r1,...,7¢} and S1 = {s1,...,sx}. For each i € [¢] let’s say s; € S is
the rider that shares its optimal driver with r;. We show that ¢ < |M]|. In fact, every rider in
S1o shares its optimal driver with a different rider in Sy, and is therefore within a distance
20PT; from S by the triangle inequality. But since Sys is not covered by the maximum
cardinality matching M, this implies by the maximality of M that there are g other riders
from S37ateh that are covered by M. Hence ¢ < |M|. Finally, let {t1,...,t,} C S}et¢" be
the mates of {s1,...,s,} in M, ie., (s;,¢;) € M for all i € [q]. Recall that d(s;,t;) < 20PT,
for all ¢ € [¢]. In what follows, we describe how to match Si2 and Si:

(i) For ¢ € [q], we match r; to its optimal driver and s; to the optimal driver of ¢;. This is
possible because the optimal driver of ¢; cannot be the same as the optimal driver of r; since
both r; and t; are part of the same scenario S;. Therefore, we pay a cost OPT5 for the riders
r; and a cost 30O PTy (follows from the triangle inequality) for the riders s; where i € [g].

(ii) We still need to match {sq41,...,5}. Consider a rider s; with j € {¢+1,...,k}.
If the optimal driver of s; is not shared with any ¢; € {ti,...,t,}, then this optimal driver
is still available and can be matched to s; with a cost less than OPT5. If the optimal
driver of s; is shared with some ¢; € {t1,...t,}, then s; is also covered by M. Otherwise
M can be augmented by deleting (s;,t;) and adding (r;,s;) and (s;,¢;). Therefore s; is
covered by M and has a mate ; € S37ateh\ {t; ... t,}. Furthermore, the driver assigned
to #; is still available. We can then match s; to the optimal driver of ;. Similarly if the
optimal driver of some s;; € {Sq41,---,5%} \ {s;} is shared with #;, then s;: is covered by M.
Otherwise (ri, 8;, %, 8j,1;,8j/) is an augmenting path in M. Therefore s;; has a mate in M
and we can match s; to the optimal driver of its mate. We keep extending these augmenting
paths until all the riders in {s;41,..., st} are matched. Furthermore, the augmenting paths
(74, 8istiy 84, t;, 850 . ..) starting from two different riders r; € Sa are vertex disjoint. This
ensures that every driver is used at most once. Again, by the triangle inequality, the edges
that match {sq41,..., s} in our solution have weights less then 30 PT5.

Putting it all together, we have constructed a matching M, where the first stage cost is
exactly OPT} and the second-stage cost is less than 30 PT5 since the edges used for matching
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S1uSY nmatch iy M, have a weight less than 3O PT,. Therefore, the total cost of M, is less
than OPT; + 30PTs. <

Proof of Theorem 4. Let D; be the drivers returned by Algorithm 2. Lemma 5 implies
costy (D1, Ry) + costa(D \ D1,51) < OPTy + 30PT; (1)
and
cost1 (D1, Ry) + costa(D \ Dy, ST"matehy < OPT) + 30 PTs.

We have Sy = SMatch |y gUnmateh If the scenario Sy is realized, we use the drivers that were
assigned to S; in the matching constructed in Lemma 5 to match S379*¢". This is possible
with edges of weights less than costy(D \ Dy, S1) + 20 PTy because S374t" is matched to Sy
with edges of weight less than 20 PT5. Hence,

costa(D \ Dy, S2) < max {costz(D \ Dy, Sgnm‘”Ch)7 costa(D \ Dy, S1) + 2OPT2},

and therefore

cost1 (D1, Ry) + costa(D \ D1,S2) < OPT) + 50PT5. (2)
From (1) and (2), costy (D1, R1) + < E{%a)fq }COSt2<D \ D1,S) < OPT; + 50PT5. <
€191,92

Algorithm 3 p explicit scenarios.

Input: First-stage riders Ry, scenarios {S1, Sa,...,Sp}, drivers D and value of OPT5.
Output: First stage decision D;.
1: Initialize S'j =S8;forj=1,..., p.

2: fori=1,..., logyp do

3: for j=1,2,..., & do

4: o(j)=Jj+% ) )

5: M := maximum cardinality matching between S; and S, ;) with edges of weight

less than 2 - 3°~1 - OPT5.

6 Aé\/([]‘.l)“h ={re S’a(j) |3seS; st (s,r) € M}
. QGUnmatch . & SGMatch

T So(iy " = Soti) \ ()

8 Sj = Sj U Sg(?;natch.

9: end for

10: end for

11: return D; := TSRMB-1-Scenario( R, gl,D).

3.2 Constant number of scenarios

We now consider the case of explicit list of p scenarios, i.e., S = {51, S2,...,S,}. Building

1.59)

upon the ideas from Algorithm 2, we present a O(p -approximation in this case. The

idea is to construct the representative scenario recursively by processing pairs of “scenarios”
at each step. Hence, we need O(log, p) iterations to reduce the problem to an instance of a
single scenario. At each iteration, we show that we only lose a multiplicative factor of 3 so
that the final approximation ratio is O(3!°82P) = O(p'-%?). We present details in Algorithm

3.
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The approximation guarantee of our algorithm grows sub-quadratically with p and it is
an interesting question if there exists an approximation that does not depend on the number
of scenarios.

» Theorem 6. Algorithm 3 yields a solution with total cost of O(p'->°) - OPT for TSRMB
with an explicit list of p scenarios.

Proof of Theorem 6. The algorithm reduces the number of considered “scenarios” by half
in every iteration, until only one scenario remains. In iteration i, we have 5 scenarios
that we aggregate in - pairs, namely (S} , S,(;)) for j € {1,2,..., & }. For each pair, we
construct a single representative scenario which plays the role of the new S; at the start of
the next iteration ¢ + 1.

Claim. There exists a first stage decision D7, such that at every iteration i € {1,...,log, p},
we have for all j € {1,2,..., 5}

(i) Ry can be matched to D} with a first stage cost of OPTj.

(ii) S; U gg(’;?m“h can be matched to D\ D} with a second stage cost less than 3* - OPTy.

s (ili) There exists a matching between S %j‘?)“h and Sj with edge weights less than 2-3'~1.OPT5.

335
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352

Proof of the claim. Statement (iii) follows from the definition of S %J‘?)tc” in Algorithm 3. Let’s

show (i) and (ii) by induction over i.
Initialization: for ¢ = 1, let’s take any two scenarios S'j = 9 and So(j) = S,(;)- We
know that these two scenarios can be matched to drivers of the optimal solution in the
original problem with a cost less than OPT5. In the proof of Lemma 5, we show that if
we use the optimal first stage decision D} of the original problem, then we can match S’j
and S’g(%”“wh simultaneously to D \ Dy with a cost less than 30 PT5.
Maintenance. Assume the claim is true for all values less than ¢ < logop — 1. We
show it is true for ¢ + 1. Since the claim is true for iteration i, we know that at the
start of iteration i + 1, for j € {1,..., &}, Sj can be matched to D \ Dj with a cost less
than 3* - OPT5. We can therefore consider a new TSRMB problem with 37 scenarios,
where using D7 as a first stage decision ensures a second stage optimal value less than
(7P\T2 = 3" OPTy. By the proof of Lemma 5, and by using D? as a first stage decision in

this problem, we ensure that for j € {1,..., 58+ }, S; and S’g{};”“mh can be simultaneously
matched to D\ D} with a cost less than SO/P\TQ = 3. OPTs. <

Our claim implies that in the last iteration ¢ = log, p:
Ry can be matched to D with a first stage cost of OPT;.
S can be matched to D \ D} with a second stage cost less than 3°827 . O PT5.

Computing the single scenario solution for Sy will therefore yield a first stage decision Dy
that gives a total cost less than OPTy + 3'°%2P . OPT, when the second stage is evaluated
on the scenario $;. We now bound the cost of D; on the original scenarios {S1,..., Sp}.
Consider a scenario S € {S1,..., Sp}. The riders in SN S can be matched to some drivers
in D\ D; with a cost less than OPT} + 31°827 . OPT,. As for other riders of S\ S, they
are not part of Sy because they have been matched and deleted at some iteration ¢ < log, p.
Consider riders 7 in S\ S, that were matched and deleted from a representative scenario at
some iteration, then by statement (iii) in our claim, each r can be connected to a different
rider in S \ ($) NS) within a path of length at most

logy p
> 2.3 OPT, = (37 — 1) - OPT,.

t=1
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We know that R; and 5’1 can be matched respectively to Dy and D \ D; with a total cost
less than OPT + 3'°827 . OPT,. Therefore, we can match R, and S respectively to D; and
D\ D; with a total cost less than

OPT, + 39827 . OPT, + (31527 — 1) . OPT, = O(3"°82P) . OPT ~ O(p**°) - OPT.

Therefore, the worst-case total cost of the solution returned by Algorithm 3 is O(p!-®?) -
OPT. |

4 Implicit Scenarios

Consider an implicit model of scenarios S = {S C Ry s.t. |S| < k}. While this model is widely
used, it poses a challenge because the number of scenarios can be exponential. Therefore,
even computing the worst-case second stage cost, for a given first stage solution, might not
be possible in polynomial time and we can no longer assume that we can guess OPT5. Note
that the worst-case scenarios have size exactly k. Our analysis for this model depends on the
balance between supply (drivers) and demand (riders). We define the surplus ¢ as the excess
in the number of available drivers for matching first-stage riders and a second-stage scenario:
¢ = |D| —|R1| — k. As a warm-up, we study the case of no surplus (¢ = 0). Then, we address
the more general case with a small surplus of drivers.

4.1 Warm-up: no surplus

When the number of drivers equals the number of first stage riders plus the size of scenarios
(i.e., £ = 0), we show a 3-approximation by simply solving a single scenario TSRMB with
any of the scenarios. In fact, since ¢ = 0, all scenarios are matched to the same set of drivers
in the optimal solution. Hence, between any two scenarios, there exists a matching where all
edge weights are less than 20 PT5. So by solving TSRMB with only one of these scenarios,
we can recover a solution and bound the cost of the other scenarios within OPT; + 30PT5
using the triangle inequality. The algorithm and proof are presented below.

Algorithm 4 Implicit scenarios with no surplus.

Input: First stage riders Ry, second stage riders Ro, size k and drivers D.
Output: First stage decision D1.

1: S7 := a second stage scenario of size k.

2: Dy := TSRMB-1-Scenario( Ry, S1, D).

3: return D;.

» Lemma 7. Algorithm 4 yields a solution with total cost less than OPTy + 30PTy for
TSRMB with implicit scenarios and no surplus.

Proof of Lemma 7. Let OPT; and OPT5; be the first and second stage cost of the optimal
solution. Let f(D;) be the total cost of the solution returned by the algorithm. We claim that

f(Dl) S OPT1 +3OPT2 It is clear that COStl(Dl, Rl) +COSt2(D\D1, Sl) S OPT1 +OPT2

Let S € S be another scenario. Because |D| = |Ry| + k, the optimal solution uses exactly
the same k drivers to match all the second stage scenarios. This implies that we can use
the triangular inequality to find a matching between S and S; of bottleneck cost less than
20PT5. Hence for any scenario S,

cost1(D1, Ry) + costa(D \ D1, 8) < cost1(D1, Ry) + costa(D \ D1, S1) + 20PT,
< OPT; + 30PT5.
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<

If the surplus is strictly greater than 0, the above procedure can have an approximation
ratio of Q(m). Consider the example in Figure 3, with k£ = 1 and two second stage riders.
The single scenario solution for S7 uses the optimal second stage driver of S;. Hence, if Ss is
realized, the cost of matching S5 to the closest available driver is Q(m). Similarly, the single
scenario problem for Sy yields a (m) cost for Sj.

A X S,

\‘

,/A

\/
N

N/ \/
\ /
»

ARAR
\

/

A xS,

Figure 3 First stage riders are depicted as black dots and drivers as black triangles. The two
second stage riders are depicted as blue crosses. Second stage optimum are depicted as solid green

edges. S = {51,552}, k=1and £ =1.

4.2 Small surplus

The TSRMB problem becomes challenging even with a unit surplus. Motivated by this,
we focus on the case of a small surplus ¢. In particular, we assume that ¢ < k, i.e., the
excess in the total available drivers is smaller than the size of any scenario. We present a
constant approximation algorithm in this regime for the implicit model of uncertainty where
the size of scenarios is relatively small with respect to the size of the universe (k = O(y/n)).
This technical assumption is needed for our analysis but it is not too restrictive and still
captures the regime where the number of scenarios can be exponential. Our algorithm
attempts to cluster the second stage riders in different groups (a ball and a set of outliers) in
order to reduce the number of possible worst-case configurations. We then solve a sequence
of instances with representative riders from each group. In what follows, we present our
construction for these groups of riders.

Our construction. First, we show that many riders are contained in a ball with radius
30PT,. The center of this ball, 4, can be found by selecting the driver with the least
maximum distance to its closest k second-stage riders, i.e.,
§ =argmin max d(&,7), 3
6g/ED r€RL(S) (0>7) ®)
where Ry (d') is the set of the k closest second stage riders to ¢’. Formally, we have the
following lemma. We present the proof in Appendix B.

» Lemma 8. Suppose k < \/g and ¢ < k and let § be the driver given by (3). Then, the
ball B centered at & with radius 30O PTy contains at least n — £ second stage riders. Moreover,
the distance between any of these riders and any rider in Ry (9) is less than 4O PTs.
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Now, we focus on the rest of second stage riders. We say that a rider r € Ry is
an outlier if d(§,r) > 30PT,. Denote {01,09,...,0¢} the farthest ¢ riders from § with
d(6,01) > d(6,02) > ... > d(6,00). By Lemma 8, the n — £ riders in B are not outliers
and the only potential outliers can be in {o01,09,...,0¢}. Let j* be the threshold such that
01,02, ...,04+ are outliers and 0j-41,...,0; are not, with the convention that j* = 0 if there
is no outlier. There are ¢ + 1 possible values for j*. We call each of these possibilities
a configuration. For j = 0,...,¢, let C; be the configuration corresponding to threshold
candidate j. Cp is the configuration where there is no outlier and Cj- is the correct
configuration.

Algorithm 5 Implicit scenarios with small surplus and k& < \/g .

Input: First stage riders Ry, second stage riders Rs, size k and drivers D.
Output: First stage decision D1.

1: Set ¢ := driver given by (3).

2: Set Sp:= the closest k second stage riders to 9.

3: Set Sy :={o01,...,00} the farthest ¢ second stage riders from ¢ (01 being the farthest).
4: for j=0,...,4do

5: Dy (]) = TSRMB—I—SCGH&I‘iO(Rl, S U {01 e Oj}7 D)

6: end for

7: return Dy = argmin  costy (D1 (), Rl) 4+  max costy (D \ D1(5), S).

D1(j): j€{0,....0} S€{51,82}

Recall that Ry(d) are the closest k second-stage riders to §. For the sake of simplicity,
we denote S1 = Ry (d) and So = {o1...0¢}. Sz is a feasible scenario since ¢ < k. For
every configuration C;, we form a representative scenario using S; and {01...0;}. We
solve TSRMB with this single representative scenario S7 U {01 ...0,} and denote D;(j) the
corresponding optimal solution, i.e.,

D1 (j) = TSRMB-1-Scenario(Ry, S1 U {o1 ...0;}, D).

Since we can not evaluate the cost of Di(j) on all scenarios, we use the two proxy scenarios
S7 and So. We show that the candidate D;(j) with minimum cost over S; and Sy gives a
constant approximation to our original problem. The details are presented in Algorithm 5.
We state the result in the next theorem.

» Theorem 9. Algorithm 5 yields a solution with total cost less than 30O PTy + 1TOPTy for
TSRMB with implicit scenarios when k < \/g and 0 < k.

Before proving the theorem, we first introduce some notation. For all j € {0,...,¢},
denote

Qj = COStl <D1 (j), R1>

Aj = COStQ(D \ Dl(])7 Sl @] {017 o ,Oj})

B; = costy (Dl(j), Rl) + SE?}S%?{SQ} costy (D \ D1(j), S)
Recall that f the objective function of TSRMB. In particular,

f(D1(j)) = cost1(D1(j), R1) + rélgé(costg (D\ D1(4),5)

Our proof is based on the following two claims. Claim 10 establishes a bound on the cost
of D1(5*) when evaluated on the proxy scenarios S; and Sy and on all the scenarios in S.
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Recall that j* is the threshold index for the outliers as defined earlier in our construction.
Claim 11 bounds the cost of f(D;(j)) for any j.

Proof of Claim 10.

1. In the optimal solution of the original problem, R; is matched to a subset D of drivers.
The scenario S; is matched to a set of drivers Dg, where Di N Dg, = ). Let D, be the
set of drivers that are matched to o1, ..., 0} in a scenario that contains oy, ...,0j. It is
clear that Df N D, = (). We claim that D, N Dg, = 0. In fact, suppose there is a driver
p € D,NDg,. This implies the existence of some o; with j < j* and some rider r € S; such
that d(p, 0;) < OPT; and d(p,r) < OPT5,. But then d(9,0;) < d(8,7)+d(p,r)+d(p,0;) <
3OPT; which contradicts the fact the o; is an outlier. Therefore D, N Dg, = (. We show
that D7 is a feasible first stage solution to the single scenario problem of S; U {oy,... o;‘?}
with a cost less than OPT} + OPTs. In fact, D} can be matched to Ry with a cost less
than OPTy, Dg, to S; and D, to {oq,..., oj} with a cost less than OPT,. Therefore
Qj* —+ Aj* < OPT1 +OPT2

2. Recall that costy (Dl(j*), Rl) = j~. Consider a scenario S and a rider r € S. Let B’ be
the set of the n — ¢ closest second stage riders to . Let Dg, (j*) be set of second stage
drivers matched to S in the single scenario problem for scenario S7 U {o1, ... ,oj*}. Let
D,(j*) be the set of second stage drivers matched to {o01,...,0;-} in the single scenario
problem for scenario S; U {01, ...,0;-}. Recall that the second stage cost for this single
scenario problem is Aj-. We distinguish three cases:

a. If r € B, then by Lemma 8, r is connected to every driver in Dg, (j*) within a distance
less than Aj- +40PT5.

b. If r € {0j«41,...,0/}, then 7 is connected to every driver in Dg, (j*) within a distance
less than 30OPT5 + OPTs + A;f.
c. If r € {o1,...,05+} (i-e., r an outlier), then r can be matched to a different driver in

D,(j*) within a distance less than OPT5.
This means that in every case, we can match r to a driver in D \ D;(j*) with a cost less
than 4OPT5 + Aj-. This implies that

¥ < .
max costa (D \ D1(j*), S) < 40PTs + A

and therefore
Q- + ré{lgg{costg (D\ D1(j*),S) < Qj« + Aj« +40PT5 < OPTy + 50PTs.

<
> Claim 11. Forallj € {0,...,l} we have, 8; < f(D1(j)) < max{B;+40PTs, 35;+20PT>}.

Proof of Claim 11. Let a; be the second stage cost of Dq(j) on the TSRBM instance with

scenarios S7 and Sy. Formally, a; = X, }COStQ (D\ D1(j),S). Therefore 8; = Q; + a;.
€151,92

Let’s consider the two sets

O ={refor,...,00} | d(r,8) > 2c; + OPT5}.
02 = {01,...,02}\01.

Consider Dy (j) as a first stage decision to TSRMB with scenarios S; and Sy. Let Dy C
D\ D;(j) be the set of drivers that are matched to O; when the scenario Sy = {o1,..., 04}
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is realized. Similarly, let Dy C D\ D;(j) be the drivers matched to scenario S;. We claim
that D; N Dy = (. Suppose that there exists some driver p € D; N Dy, this implies the
existence of some o € O; and r € Sy such that d(p,0) < a; and d(p,r) < a;. And since
d(r,8) < OPT; by definition of § we would have

d(o,8) <d(p,0) + d(p,r) +d(r,0) < 2a; + OPT5,

which contradicts the definition of O;. Therefore Dy N Dy = 0.

Now consider a scenario S € S. The riders of S N O; can be matched to D; with a
bottleneck cost less than «;. Recall that by Lemma 8, any rider in R\ {o1,..., 00} is within
a distance less than 40 PT, from any rider in S;. The riders r € S\ {o1, ..., 0} can therefore
be matched to any driver p € Dy within a distance less than

d(?“, p) < d(T, Sl) + d(Sl, p) < 40PTs + Q.

As for riders 7 € S N Oy, they can also be matched to any driver p of Dy within a distance
less than

d(r,p) < d(r,8) +d(d,51) + d(S1,p) <2a; + OPTy + OPT, + o = 3cj + 20PT5.
Therefore we can bound the second stage cost

max costz (D \ D1(j), S) < max{a; + 4OPT>,3a; + 20PT»}
and we get that

costy (D1(j), R1) + ma cost (D\ D1(j),5) <max{B; + 40PT3, 3f; + 20PT»}

The other inequality 5; < costy (D1 (), Rl) + max costs (D \ Dl(j)) is trivial. <
€

We are now ready to prove the theorem.

Proof of Theorem 9. Suppose Algorithm 5 returns D;(j) for some j. From Claim 11 and
the minimality of 5;:

f(Dl(j)) S max{ﬁ; + 4OPT2, 3ﬂ5 + QOPTQ} S max{ﬁj* + 401:)7"27 36]'* + 20PT2}

From Claim 10 and Claim 11, we have 3;- < f(D1 (j*)) < OPT; + 50PT,. We conclude
that,

F(D1(5)) < max {OPT, + 90PT,,30PT, + 17T0PT,} = 30PT; + 170 PTs.

5 Conclusion

In this paper, we present a new two-stage robust optimization framework for matching
problems under both explicit and implicit models of uncertainty. Our problem is motivated
by real-life applications in the ride-hailing industry. We study the Two-Stage Robust Matching
Bottleneck problem, prove its hardness, and design approximation algorithms under different
settings. Our algorithms give a constant approximation if the number of scenarios is fixed,
but require additional assumptions when there are polynomially or exponentially many
scenarios. It is an interesting question if there exists a constant approximation in the general
case that does not depend on the number of scenarios.
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A NP-Hardness proofs for TSRMB

We start by presenting the 3-Dimensional Matching (3-DM) and Set Cover problems, that we
use in our reductions to show Theorem 1. Both problems are known to be strongly NP-hard
[10, 25].

3-Dimensional Matching (3-DM): Given three sets U, V, and W of equal cardinality n,
and a subset T of U x V' x W, is there a subset M of T with |M| = n such that whenever

(u,v,w) and (u’,v’, w’) are distinet triples in M, v # v, v Z v, and w # w’ ?

Set Cover Problem: Given a set of elements U = {1,2,...,n} (called the universe), a

collection Sy, ...,S,, of m sets whose union equals the universe and an integer p.
Question: Is there a set C' C {1,...,m} such that |C|<pand |J S;=U"?
ieC

Proof of Theorem 1.
Explicit uncertainty. Consider an instance of the 3-Dimensional Matching Problem. We
can use it to construct (in polynomial time) an instance of TSRMB with 2 scenarios as
follows:
Create two scenarios of size n: S; =U and Sy, = V.
Set D =T, every driver corresponds to a triple in 7.
For every w € W, let dr(w) be the number of sets in 7" that contain w. We create
dr(w) — 1 first stage riders, that are all copies of w. The total number of first stage riders
is therefore |Ry| = |T| — n.
1 fwee
3 otherwise.
1 ifuece
3 otherwise.
For u,v € Ry U S1 U Sy, d(u,v) = IeIéiB d(u,e) +d(v,e).

Fore, f € D,d(e,f)=  min  d(u,e) + d(u, f).

u€ER1US1US
This choice of distances induces a metric graph. We claim that there exists a 3-dimensional

matching if and only if there exists a solution to this TSRMB instance with total cost equal
to 2. Suppose that M = {ej,...,e,} C T is a 3-Dimensional matching. Let e1,...,e,
be the drivers that correspond to M in the TSRMB instance. We show that by using
Dy =D\ {e1,...,en} as a first stage decision, we ensure that the total cost for the TSRMB

For (w,e) € Ry x D, d(w,e) = {

For (u,e) € S1USy x D, d(u,e) = {


https:// marketplace.uber.com/ matching
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instance is equal to 2. For any rider w in scenario S7, by definition of M, there exits a unique
edge e; € M that covers u. The corresponding driver e; ¢ Dy can be matched to u with
a distance equal to 1. Furthermore, e; cannot be matched to any other rider in S; with a
cost less than 1. Similarly, for any rider v in scenario Ss, since there exits a unique edge
ej € M that covers v, the corresponding driver can be matched to v with a cost of 1. The
second stage cost is therefore equal to 1. As for the first stage cost, we know by definition of
M, that every element w € W is covered exactly once. Therefore, for every w € W, there
exists dr(w) — 1 edges that contain w in 7'\ M. This means that every 1st stage rider can
be matched to a driver in Dy with a cost equal to 1. Hence the total cost of this two-stage
matching is equal to 2.

Suppose now that there exists a solution to the TSRMB instance with a cost equal to 2.
This means that the first and second stage costs are both equal to 1. Let M = {ey,...,e,}
be the set of drivers used in the second stage of this solution. We show that M is a 3-
dimensional matching. Let e¢; = (u,v,w) and e; = (v, v',w’) be distinct triples in M. Since
the second stage cost is equal to 1, the driver e; (resp. e;) must be matched to u (resp.
u') in S;. Since we have exactly n second stage drivers and n riders in Sy, this means
that e; and e; have to be matched to different second stage riders in S;. Therefore we
get v’ # u. Similarly we see that v/ # v. Assume now that w = w’, this means that the
TSRMB solution has used two drivers (triples) e; and e; that contain w in the second stage.
It is therefore impossible to match all the dp(w) — 1 copies of w in the first stage with a
cost equal to 1. Therefore w # w’. The above construction can be performed in polyno-
mial time of the 3-DM input, and therefore shows that TSRMB with two scenarios is NP-hard.

Now, to show that TSRMB is hard to approximate within a factor better than 2, we
consider three scenarios. Consider an instance of 3-DM. We can use it to construct an
instance of TSRMB with 3 scenarios as follows:

Create 3 scenarios of size n: S; =U, So =V and S5 =W.

Set D=T.

Create |Ry| = |T'| — n first stage riders.

For (w,e) € Ry x D, d(w,e) = 1.

1 ifuee
3  otherwise.
For u,v € Ry US; U SyUSs, d(u,v) = iréi[r)ld(u, e) +d(v,e).

Fore, f € D,d(e, f) = uERlLJIglllIL}SQUS;; d(u,e) + d(u, f).

This choice of distances induces a metric graph. Similarly to the proof of 2 scenarios, we
can show that there exists a 3-dimensional matching if and only if there exists a TSRMB
solution with cost equal to 2. Furthermore, any solution for this TSRMB instance has
either a total cost of 2 or 4 (the first stage cost is always equal to 1). We show that if a
(2 — €)-approximation (for some € > 0) to the TSRMB exists then 3-Dimensional Matching is
decidable. We know that this instance of TSRMB has a solution with total cost equal to 2
if and only if there is a 3-dimensional matching. Furthermore, if there is no 3-dimensional
matching, the cost of the optimal solution to TSRMB must be 4. Therefore, if an algorithm
guarantees a ratio of (2 — ¢€) and a 3-dimensional matching exists, the algorithm delivers a
solution with total cost equal to 2. If there is no 3-dimensional matching, then the solution
produced by the algorithm has a total cost of 4.

For (u,e) € S1 U Sy U S3 x D, d(u,e):{

Implicit uncertainty. We prove the hardness for £k = 1. We start from an instance of the
Set Cover problem and construct an instance of the TSRMB problem. Consider an instance
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of the decision problem of set cover. We can use it to construct the following TSRMB
instance:

Create m drivers D = {1,...,m}. For each j € {1,...,m}, driver j corresponds to set
Create m — p first stage riders, Ry = {1,...,m — p}.
Create n second stage riders, Ry = {1,...,n}.

Set S = {{1},...,{n}}. Every scenario is of size 1.
As for the distances between riders and drivers, we define them as follows:

For (i,j) € Ry x D, d(i,j) = 1.
1 ifielS;

For (i, j D, d(i,j) = J

or (i, 7) € Rp x D, d(i, j) { 3 otherwise.
For i,i" € R1 U Ra, d(i,i) = HéiB d(i,j) +d@@, j).

j
- A ; - i

For j,j" € D, d(j,5') = cmin d(i, j) + d(i, j").

This choice of distances induces a metric graph. Moreover, every feasible solution to this
TSRMB instance has a first stage cost of exactly 1. We show that a set cover of size < p
exists if and only if there is a TSRMB solution with total cost equal to 2. Suppose without
loss of generality that Si,...,S) is a set cover. Then by using the drivers {1,...,p} in the
second stage, we ensure that every scenario is matched with a cost of 1. This implies the
existence of a solution with total cost equal to 2. Now suppose there is a solution to the
TSRMB problem with cost equal to 2. Let Ds be the set of second stage drivers of this
solution, then we have |Dy| = p. We claim that the sets corresponding to drivers in Dy form
a set cover. In fact, since the total cost of the TSRMB solution is equal to 2, the second
stage cost is equal to 1. This means that for every scenario i € {1,...,n}, there is a driver
J € Dy within a distance 1 from i. Therefore i € S; and {S; : j € Ds} is a set cover.

Next we show that if (2 — €)-approximation (for some € > 0) to the TSRMB exists then
Set Cover is decidable. We know that the TSRMB problem has a solution of cost 2 if and
only if there is a set cover of size less than p. Furthermore, if there is no such set cover, the
cost of the optimal solution must be 4. Therefore, if the algorithm guarantees a ratio of
(2 — €) and there is a set cover of size less than p, the algorithm delivers a solution with a
total cost of 2. If there is no set cover, then clearly the solution produced by the algorithm
has a cost of 4. <

» Remark 12. For k > 2, we can use a generalization of Set Cover to show that the problem
is hard for any k. We use a reduction from the Set MultiCover Problem ([3, 43]) defined
below.

Set MultiCover Problem: Given a set of elements & = {1,2,...,n} (called the universe)
and a collection Si,...,S,, of m sets whose union equals the universe. A "coverage factor"
(positive integer) k and an integer p. Is there a set C C {1,...,m} such that |C| < p and for
each element z €U, |j€C : z €S| >k?

We can create an instance of TSRMB from a Set MultiCover instance similarly to Set
Cover with the exception that S = {S C Ry s.t. |S| = k}. The hardness result follows
similarly.

B Implicit scenarios: small surplus

Proof of Lemma 8. Let ¢ be the driver given by (3). We claim that the k closest riders
to 0 are all within a distance less than OPT5 from §. Consider D4 to be the k + ¢ drivers
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left for the second stage in the optimal solution. Every driver in D3 can be matched to a
set of different second stage riders over different scenarios. Let us rank the drivers in Dj
according to how many different second stage riders they are matched to over all scenarios,
in descending order. Formally, let D} = {61, d2,...,dk1e} and let R*(d;) be the second stage
riders that are matched to d; in the optimal solution in some scenario, such that

|[R*(61)] = ... = [R" (Ok+0)l-

k+¢

We claim that |R*(d1)| > k. In fact, we have > |R*(d;)| > n because every second stage
i=1

rider is matched to at least one driver in some scenario. Therefore

1> > >

k+4¢ — 2k

We know that all the second stage riders in R*(d;) are within a distance less than OPT;

from §1. Therefore rga(;g )d(él, r) < OPT,. But we know that by definition of §,
reRE(01

|R"(61)

max d(0,7) < max d(d1,r) < OPTy

r€R(S) r€Rk(d1)

This proves that the k closest second stage riders to § are within a distance less than
OPT,. Let R(J) be the set of all second stage riders that are within a distance less than
OPT; from §. Recall that Ry () is the set of the k closest second stage riders to §. In
the optimal solution, the scenario Ry (d) is matched to a set of at least new k — 1 drivers
{0iy,---0i,_,} C D3\ {0}. We show a lower bound on the size of R(J) and the number of
riders matched to {d;,,...d;,_, } over all scenarios in the optimal solution.

k—1
> Claim 13. |R(6) U R*(6;,)| >n—¢
Jj=1

Proof. Suppose the opposite, suppose that at least ¢+ 1 riders from Ry are not in the union.

Let F be the set of these ¢ + 1 riders. Since £ + 1 < k, we can construct a scenario S that
includes F'. In the optimal solution, and in particular, in the second stage matching of .5,
at least one rider from F needs to be matched to a driver from {0, d;,,...d;,_, }. Otherwise
there are only ¢ second stage drivers left to match all of F'. Therefore there exists r € F' such
that either » € R(J) or there exists j € {1,...,k — 1} such that r € R*(d;,;). This shows that

k—1
r € R(6) U R*(d;;), which is a contradiction. Therefore, at most ¢ second stage riders are
j=1

not in the union. <
k—1

> Claim 14.  For any rider r € R(d) |J R*(;;), we have d(r,d) < 30PTs.
j=1

Proof. If r € R(§) then by definition we have d(r,d) < OPTs. Now suppose r € R*(J;.) for

J € [k —1]. Let v’ be the rider from scenario Ry(d) that was matched to ¢;; in the ogiimal
solution. Then by the triangular inequality
d(r,0) < d(r,d;,) 4+ d(d;,,7") + d(r',8) < 30PTy.
<
From Claim 14, we see that the ball centered at §, with radius 30O PT5, contains at least
g

k—1
n — £ second stage riders in R(4) |J R*(d;,). This proves the first part of the lemma. The
j=1

second part is proved in the next claim.
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k—1
> Claim 15. For r € R(d) and 5 € R(d) |J R*(d;,), we have d(ry,ry) < 4O0PT5.
=1

J
j=

Proof. Let r; € Ry(0). If ro € R(S) then d(ri,7m2) < d(r1,9) + d(d,r2) < 20PTy. 1If
ry € R*(d;;) for some j, and 7’ is the rider from scenario Ry (d) that was matched to d;,

d(ri,m2) < d(ry,0) +d(8,7") + d(r',8;;) + d(05,,72) < 4OPT.
<

k—1
Claim 13 shows that the number of riders included in R(5) |J R*(d;;) is at least n —£. Claim
j=1

14 shows that each one of this rider has distance less than ?:OPTQ from 4. Finally, Claim 15
shows that the distance between any one of this riders and any rider in Ry (0) is less than
30PT,. This concludes the proof of Lemma 8. |
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