

1 Matching Drivers to Riders: A Two-stage Robust 2 Approach

3 **Omar El Housni**

4 School of Operations Research and Information Engineering, Cornell Tech, New York, NY 10044,
5 USA

6 **Vineet Goyal**

7 Industrial Engineering and Operations Research, Columbia University, New York, NY 10027, USA

8 **Oussama Hanguir**

9 Industrial Engineering and Operations Research, Columbia University, New York, NY 10027, USA

10 **Clifford Stein**

11 Industrial Engineering and Operations Research, Columbia University, New York, NY 10027, USA

12 — Abstract —

13 Matching demand (riders) to supply (drivers) efficiently is a fundamental problem for ride-hailing
14 platforms who need to match the riders (almost) as soon as the request arrives with only partial
15 knowledge about future ride requests. A myopic approach that computes an optimal matching for
16 current requests ignoring future uncertainty can be highly sub-optimal. In this paper, we consider a
17 two-stage robust optimization framework for this matching problem where future demand uncertainty
18 is modeled using a set of demand scenarios (specified explicitly or implicitly). The goal is to match
19 the current request to drivers (in the first stage) so that the cost of first stage matching and the
20 worst-case cost over all scenarios for the second stage matching is minimized. We show that this
21 two-stage robust matching is NP-hard under both explicit and implicit models of uncertainty. We
22 present constant approximation algorithms for both models of uncertainty under different settings
23 and show they improve significantly over standard greedy approaches.

24 **2012 ACM Subject Classification** Theory of computation → Approximation algorithms analysis

25 **Keywords and phrases** matching, robust optimization, approximation algorithms

26 **Digital Object Identifier** 10.4230/LIPIcs.APPROX/RANDOM.2021.12

27 **Category** APPROX

28 **Related Version** *Full Version:* <https://arxiv.org/abs/2011.03624>

29 **Funding** Clifford Stein : Research partly supported by NSF Grants CCF-1714818 and CCF-1822809.

30 **1 Introduction**

31 Matching demand (riders) with supply (drivers) is a fundamental problem for ride-hailing
32 platforms such as Uber, Lyft and DiDi. These platforms need to continually make efficient
33 matching decisions with only partial knowledge of future ride requests. A common approach
34 in practice is batched matching: instead of matching each request sequentially as it arrives,
35 aggregate the requests for a short amount of time (typically one to two minutes) and match
36 the aggregated requests to available drivers in one batch [42, 33, 44]. However, computing
37 this batch matching myopically without considering future requests can lead to a highly
38 sub-optimal outcome for some subsequent drivers and riders.

39 Motivated by this shortcoming, and by the possibility of using historical data to hedge
40 against future uncertainty, we study a two-stage framework for matching problems where
41 the future demand uncertainty is modeled as a set of scenarios that are specified explicitly or
42 implicitly. The goal is to compute a matching between the available drivers and the first

© Omar El Housni, Vineet Goyal, Oussama Hanguir and Clifford Stein;

licensed under Creative Commons License CC-BY 4.0
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).

Editors: Mary Wootters and Laura Sanit ; Article No. 12; pp. 12:1–12:22

 Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl – Leibniz-Zentrum f r Informatik, Dagstuhl Publishing, Germany

12:2 Matching Drivers to Riders: A Two-stage Robust Approach

43 batch of riders such that the total worst-case cost of first stage and second stage matching
 44 is minimized. More specifically, we consider an adversarial model of uncertainty where the
 45 adversary observes the first stage matching of our algorithms and presents a worst-case
 46 scenario from the list of specified scenarios in the second stage. We focus on the case where
 47 the first stage cost is the average weight of the first stage matching, and the second stage
 48 cost is the highest edge weight in the second stage matching. This is motivated by the goal of
 49 computing a low-cost first stage matching while also minimizing the worst case waiting time
 50 for any rider in any second stage. All the results of this paper hold when the first stage cost
 51 is the highest edge weight of the first stage matching. We also study several other metrics in
 52 the full version. We consider two common models to describe the uncertainty in the second
 53 stage: an *explicit* list of all possible scenarios and an *implicit* description of the scenarios
 54 using a cardinality constraint. Two-stage robust optimization is a popular model for hedging
 55 against uncertainty [8, 19]. Several combinatorial optimization problems have been studied
 56 in this model, including Set Cover, Capacity Planning [7, 11] and Facility Location [22].
 57 While online matching is a classical problem in graph theory, two-stage matching problems
 58 with uncertainty, have not been studied extensively. We present related work in Section 1.2.

59 1.1 Our Contributions

60 **Problem definition.** We consider the following *Two-stage Robust Matching Problem*. We
 61 are given a set of drivers D , a set of first stage riders R_1 , a universe of potential second stage
 62 riders R_2 and a set of second stage scenarios $\mathcal{S} \subseteq \mathcal{P}(R_2)$ ¹. We are given a metric distance d
 63 on $V = R_1 \cup R_2 \cup D$. The goal is to find a subset of drivers $D_1 \subseteq D$ ($|D_1| = |R_1|$) to match
 64 all the first stage riders R_1 such that the sum of cost of first stage matching and worst-case
 65 cost of second stage matching (between $D \setminus D_1$ and the riders in the second stage scenario)
 66 is minimized. More specifically,

$$67 \min_{D_1 \subseteq D} \left\{ \text{cost}_1(D_1, R_1) + \max_{S \in \mathcal{S}} \text{cost}_2(D \setminus D_1, S) \right\}.$$

68 The first-stage decision is denoted D_1 and its cost is $\text{cost}_1(D_1, R_1)$. Similarly, the second
 69 stage cost for scenario S is denoted $\text{cost}_2(D \setminus D_1, S)$, and $\max\{\text{cost}_2(D \setminus D_1, S) \mid S \in \mathcal{S}\}$
 70 is the worst-case cost over all possible scenarios. Let $|R_1| = m$, $|R_2| = n$. We denote the
 71 objective function for a feasible solution D_1 by

$$72 f(D_1) = \text{cost}_1(D_1, R_1) + \max_{S \in \mathcal{S}} \text{cost}_2(D \setminus D_1, S).$$

73 We assume that there are sufficiently many drivers to satisfy both first and second stage
 74 demand. Given an optimal first-stage solution D_1^* , we denote

$$75 \quad \begin{aligned} OPT_1 &= \text{cost}_1(D_1^*, R_1), & OPT_2 &= \max\{\text{cost}_2(D \setminus D_1^*, S) \mid S \in \mathcal{S}\}, \\ 76 \quad OPT &= OPT_1 + OPT_2. \end{aligned}$$

78 We consider the setting where the first stage cost is the average weight of the matching
 79 between D_1 and R_1 , and the second stage cost is the bottleneck matching cost between
 80 $D \setminus D_1$ and S . The bottleneck matching is the matching that minimizes the longest edge
 81 in a maximum cardinality matching between $D \setminus D_1$ and S . We refer to this variant as
 82 the *Two-Stage Robust Matching Bottleneck Problem (TSRMB)*. Formally, let M_1 be the

¹ $\mathcal{P}(R_2)$ is the power set of R_2 , the set of all subsets of R_2 .

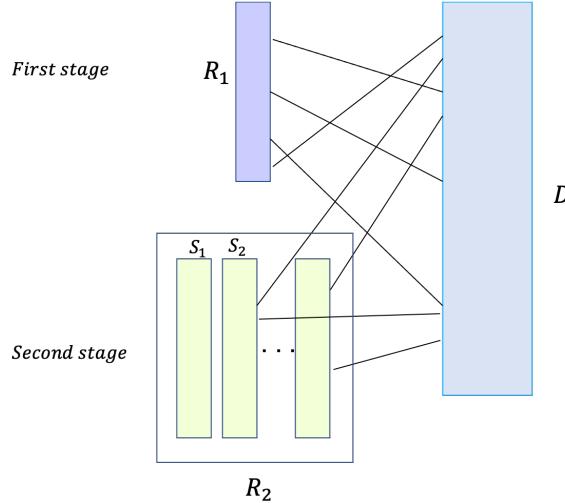


Figure 1 Bipartite graph of drivers and riders in our two-stage matching problem.

minimum weight perfect matching between R_1 and D_1 , and given a scenario S , let M_2^S be the bottleneck matching between the scenario S and the available drivers $D \setminus D_1$, then the cost functions for the TSRMB are:

$$cost_1(D_1, R_1) = \frac{1}{m} \sum_{(i,j) \in M_1} d(i,j), \quad \text{and} \quad cost_2(D \setminus D_1, S) = \max_{(i,j) \in M_2^S} d(i,j).$$

The difference between the first and second stage metrics is motivated by the fact that the platform has access to the current requests and can exactly compute the cost of the matching. On the other hand, to ensure the robustness of the solution, we require all second stage assignments to have low waiting times by accounting for the maximum wait time in every scenario. We choose the first stage cost to be the average matching weight instead of the total weight for homogeneity reasons, so that first and second stage costs have comparable magnitudes. The bottleneck objective, i.e., finding a subgraph of a certain kind that minimizes the maximum edge cost in the subgraph, has been considered extensively in the literature [21, 16, 17]. While the main body of this paper will focus on studying TSRMB, we note that all our results hold when the first (resp. second) stage cost is equal to the highest edge weight in the first (resp. second) stage matching. In the full version, we study other variants of cost metrics, including a stochastic variant of TSRMB, and the case where both first and second stage costs are simply the total matching weights.

Hardness. We show that TSRMB is NP-hard even for two scenarios and NP-hard to approximate within a factor better than 2 for three scenarios. We also show that even when the scenarios are singletons, the problem is NP-hard to approximate within a factor better than 2. Given these hardness results, we focus on approximation algorithms for the TSRMB problem. A natural candidate is the greedy approach that minimizes only the first stage cost without considering the uncertainty in the second stage. However, we show that this myopic approach can be bad as $\Omega(m) \cdot OPT$ (See Figure 2.)

Approximations algorithms. We consider both explicit and implicit models of uncertainty. For the case of explicit model with two scenarios, we give a constant factor approximation algorithm for TSRMB (Theorem 4). We further generalize the ideas of this algorithm to a constant approximation for any fixed number of scenarios (Theorem 6). Our approximation

12:4 Matching Drivers to Riders: A Two-stage Robust Approach

Uncertainty	Approx	Hardness
Explicit (2 scenarios)	5	NP-Hard
Explicit (p scenarios)	$O(p^{1.59})$	2
Implicit (surplus $\ell = 0$)	3	-
Implicit ($\ell < k$ and $k \leq \sqrt{n/2}$)	17	2

Table 1 Summary of our results, where surplus $\ell = |D| - |R_1| - k$.

112 does not depend on the number of first stage riders or the size of scenarios but depends on
113 the number of scenarios. The main idea is to reduce the problem with multiple scenarios
114 to an instance with a single *representative scenario* while losing only a small factor. We
115 then solve the single scenario instance (in polynomial time) to get an approximation for our
116 original problem. The challenge in constructing the representative scenario is to find the
117 right trade-off between capturing the demand of all second stage riders and keeping the cost
118 of this scenario close to the optimal cost of the original instance.

119 For the implicit model of uncertainty, we consider the setting where we are given a
120 universe of second stage riders R_2 and an integer k , and any subset of size less than k can
121 be a scenario. Therefore, $\mathcal{S} = \{S \subset R_2 \text{ s.t. } |S| \leq k\}$. The scenarios can be exponentially
122 many in k , which makes even the evaluation of the cost of a feasible solution challenging
123 and not necessarily achievable in polynomial time. Our analysis depends on the imbalance
124 between supply and demand. In fact, when the number of drivers is very large compared to
125 riders, the problem is less interesting in practice. However, it becomes interesting when the
126 supply and demand are comparable. In this case, drivers might need to be shared between
127 different scenarios. This leads us to define the notion of surplus $\ell = |D| - |R_1| - k$, which is
128 the maximum number of drivers that we can afford not to use in a solution. As a warm-up,
129 we first show that if the surplus is equal to zero (all the drivers are used), using any scenario as
130 a representative scenario gives a 3-approximation. The problem becomes significantly more
131 challenging even with a small surplus. We show that under a reasonable assumption on
132 the size of scenarios, there is a constant approximation in the regime when the surplus ℓ is
133 smaller than the demand k (Theorem 9). Our algorithm is based on finding a clustering of
134 drivers and riders that yields a simplified instance of TSRMB which can be solved within
135 a constant factor. We show that we can cluster the riders into a ball (riders close to each
136 others) and a set of *outliers* (riders far from each others) and apply ideas from the explicit
137 scenario analysis. Finally, since the number of scenarios can be exponential, we construct a
138 set of a polynomial number of proxy scenarios on which we evaluate any feasible solution within
139 a constant approximation. Table 1 summarizes our results. Due to space constraints, we defer
140 some of the proofs to the appendix.

141 1.2 Related Work

142 *Online bipartite matching.* Finding a maximum cardinality bipartite matching has received a
143 considerable amount of attention over the years. Online matching was first studied by Karp
144 *et al.* [27] in the adversarial model. Since then, many online variants have been studied [37].
145 This includes AdWords [4, 5, 38], vertex-weighted [1, 6], edge-weighted [20, 31], stochastic
146 matching [12, 35, 39, 13], random vertex arrival [18, 26, 34, 23], and batch arrivals [32, 14, 44].
147 In the *online bipartite metric matching* variant, servers and clients correspond to points
148 from a metric space, and the objective is to find the minimum weight maximum cardinality
149 matching. Khuller *et al.* [29] and Kalyanasundaram and Pruhs [24] provided deterministic
150 algorithms in the adversarial model. In the random arrival model, Meyerson, *et al.* [40] and

151 Bansal *et al.* [2] provided poly-logarithmic competitive algorithms. Recently, Raghvendra
152 [41] presented a $O(\log n)$ -competitive algorithm.

153 *Two-stage stochastic combinatorial optimization.* Within two-stage stochastic optimization,
154 matching has been studied under various models. Kong and Schaefer [30] and Escoffier *et al.*
155 [9] studied the stochastic two-stage maximum matching problem. Katriel *et al.* [28] studied
156 the two-stage stochastic minimum weight maximum matching. Feng and Niazadeh [14] study
157 K -stage variants of vertex weighted bipartite b-matching and AdWords problems, where
158 online vertices arrive in K batches. More recently, Feng *et al.* [15] initiate the study and
159 present online competitive algorithms for vertex-weighted two-stage stochastic matching as
160 well as two-stage joint matching and pricing.

161 *Two-stage robust combinatorial optimization.* Within two-stage robust optimization, match-
162 ings have not been studied extensively. Matuschke *et al.* proposed a two-stage robust model
163 for minimum weight matching with recourse [36]. Our model for TSRMB is different in
164 three main aspects: i) We use a general class of uncertainty sets to describe the second stage
165 scenarios while in [36] the only information given is the number of second stage vertices. ii)
166 We do not allow any recourse and our first stage matching is irrevocable. iii) Our second
167 stage cost is the bottleneck weight instead of the total weight.

168 2 Preliminaries

169 2.1 NP-hardness.

170 We show that TSRMB is NP-hard under both the implicit and explicit models. In the explicit
171 model, it is NP-hard even for two scenarios and NP-hard to approximate within a factor
172 better than 2 even for three scenarios.

173 In the explicit model with a polynomial number of scenarios, it is clear that the problem
174 is in NP. However, in the implicit model, the problem can be described with a polynomial
175 size input, but it is not clear that we can compute the total cost in polynomial time since
176 there could be exponentially many scenarios. We show that it is NP-hard to approximate
177 TSRMB in the implicit model within a factor better than 2 even when $k = 1$. The proof is
178 presented in Appendix A.

179 ▶ **Theorem 1.** *In the explicit model of uncertainty, TSRMB is NP-hard even with two
180 scenarios. Furthermore, when the number of scenarios is ≥ 3 , there is no $(2 - \epsilon)$ -approximation
181 algorithm for any fixed $\epsilon > 0$, unless $P = NP$. In the implicit model of uncertainty, even
182 when $k = 1$, there is no $(2 - \epsilon)$ -approximation algorithm for TSRMB for any fixed $\epsilon > 0$,
183 unless $P = NP$.*

184 2.2 Greedy Approach.

185 A natural greedy approach is to choose the optimal matching for the first stage riders R_1
186 without considering the second stage uncertainty. It can lead to a solution with a total
187 cost that scales linearly with m (cardinality of R_1) while OPT is a constant, even with one
188 scenario. Consider the line example in Figure 2. We have m first stage riders and $m + 1$
189 drivers alternating on a line with distances 1 and $1 - \epsilon$. There is one second stage rider at
190 the right endpoint of the line. The greedy matching minimizes the first stage cost and incurs
191 a total cost of $(2 - \epsilon)(m + 1)$, while the optimal cost is equal to 2. Therefore any attempt to
192 have a good approximation needs to consider the second stage riders.

193 ▶ **Lemma 2.** *The cost of the Greedy algorithm can be $\Omega(m) \cdot OPT$.*

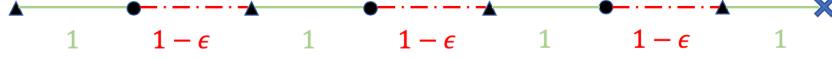


Figure 2 Riders in first stage are depicted as black dots and drivers as black triangles. The second stage rider is depicted as a blue cross.

194 **2.3 Single Scenario.**

195 The *deterministic* version of the TSRMB problem, i.e., when there is only a single scenario
 196 in the second stage, can be solved exactly in polynomial time. This is a simple preliminary
 197 result which we need for the general case. Denote S a single second stage scenario. The
 198 instance (R_1, S, D) of TSRMB is then simply given by

199
$$\min_{D_1 \subset D} \left\{ \text{cost}_1(D_1, R_1) + \text{cost}_2(D \setminus D_1, S) \right\}.$$

200 Since the second stage problem is a bottleneck problem [21], the value of the optimal second
 201 stage cost w is one of the edge weights between D and S . We iterate over all possible values
 202 of w (at most $|S| \cdot |D|$ values), delete all edges between R_2 and D with weights strictly higher
 203 than w and set the weight of the remaining edges between S and D to zero. This reduces
 204 the problem to finding a minimum weight maximum cardinality matching. We can also use
 205 binary search to iterate over the edge weights. We present the details of this algorithm below
 206 and refer to it as *TSRMB-1-Scenario* in the rest of this paper.

207 We define the bottleneck graph of w to be $\text{BOTTLENECKG}(w) = (R_1 \cup S \cup D, E_1 \cup E_2)$
 208 where $E_2 = \{(i, j) \in D \times S, d(i, j) \leq w\}$ and $E_1 = \{(i, j) \in D \times R_1\}$. Furthermore, we assume
 209 that there are q edges $\{e_1, \dots, e_q\}$ between S and D with weights $w_1 \leq w_2 \leq \dots \leq w_q$.

210 **Algorithm 1** TSRMB-1-Scenario(R_1, S, D)

Input: First stage riders R_1 , scenario S and drivers D .

Output: First stage decision D_1 .

```

1: for  $i \in \{1, \dots, q\}$  do
2:    $G_i := \text{BOTTLENECKG}(w_i)$ .
3:   Set all weights between  $D$  and  $S$  in  $G_i$  to be 0.
4:    $M_i :=$  minimum weight maximum cardinality matching on  $G_i$ .
5:   if  $R_1 \cup S$  is not completely matched in  $M_i$  then
6:     output certificate of failure.
7:   else
8:      $D_1^i :=$  first stage drivers in  $M_i$ .
9:   end if
10: end for
11: return  $D_1 = \arg \min_{D_1^i: 1 \leq i \leq q} \left\{ \text{cost}_1(D_1^i, R_1) + \text{cost}_2(D \setminus D_1^i, S) \right\}.$ 

```

210 Note that the $\arg \min$ in the last step of Algorithm 1 is only taken over values of i for
 211 which there was no certificate of failure.

212 ▶ **Lemma 3.** *TSRMB-1-Scenario gives an optimal solution for the single scenario case.*

213 **Proof of Lemma 3.** Let OPT_1 and OPT_2 be the first and second stage cost of an optimal
 214 solution, and $i \in \{1, \dots, q\}$ such that $w_i = OPT_2$. In this case, G_i contains all the edges of
 215 this optimal solution. By setting all the edges in E_2 to 0, we are able to compute a minimum

216 weight maximum cardinality matching between $R_1 \cup S$ and D that matches both R_1 and S
 217 and minimizes the weight of the edges matching R_1 . The first stage cost of this matching is
 218 less than OPT_1 , the second stage cost is clearly less than OPT_2 because we only allowed
 219 edges with weight less than OPT_2 in G_i . \blacktriangleleft

220 We also observe that we can use binary search in Algorithm 1 to iterate over the edge
 221 weights. For an iteration i , a failure to find a minimum weight maximum cardinality matching
 222 on G_i that matches both R_1 and S implies that we need to try an edge weight higher than
 223 w_i . On the other hand, if M_i matches R_1 and S such that D_1^i gives a smaller total cost, then
 224 the optimal bottleneck value is lower than w_i .

225 **3 Explicit Scenarios**

226 **3.1 Two scenarios**

227 Our main contribution in this section is a constant approximation algorithm for TSRMB
 228 with two scenarios. Our analysis shows that we can reduce the problem to an instance with
 229 a single representative scenario by losing a small factor. We then use TSRMB-1-Scenario to
 230 solve the single representative scenario case.

231 Consider two scenarios $\mathcal{S} = \{S_1, S_2\}$. First, we can assume without loss of generality
 232 that we know the exact value of OPT_2 which corresponds to one of the edges connecting
 233 second stage riders R_2 to drivers D (we can iterate over all the weights of second stage edges).
 234 We construct a representative scenario that serves as a proxy for S_1 and S_2 as follows. In
 235 the second stage, if a pair of riders $i \in S_1$ and $j \in S_2$ is served by the same driver in the
 236 optimal solution, then they should be close to each other. Therefore, we can consider a single
 237 representative rider for each such pair. While it is not easy to guess all such pairs, we can
 238 approximately compute the representative riders by solving a maximum matching on $S_1 \cup S_2$
 239 with edges less than $2OPT_2$. More formally, let G_I be the induced bipartite subgraph of
 240 G on $S_1 \cup S_2$ containing only edges between S_1 and S_2 with weight less than or equal to
 241 $2OPT_2$. We compute a maximum cardinality matching M between S_1 and S_2 in G_I , and
 242 construct a representative scenario containing S_1 as well as the unmatched riders of S_2 . We
 243 solve the single scenario problem on this representative scenario and return its optimal first
 244 stage solution. We show in Theorem 4 that this solution leads to a 5-approximation.

245 **Algorithm 2** Two explicit scenarios.

246 **Input:** First stage riders R_1 , two scenarios S_1 and S_2 , drivers D and value of OPT_2 .

247 **Output:** First stage decision D_1 .

- 1: Let G_I be the induced subgraph of G on $S_1 \cup S_2$ with only the edges between S_1 and S_2
 of weights less than $2OPT_2$.
- 2: Set $M :=$ maximum cardinality matching between S_1 and S_2 in G_I .
- 3: Set $S_2^{Match} := \{r \in S_2 \mid \exists s \in S_1 \text{ s.t } (s, r) \in M\}$ and $S_2^{Unmatch} = S_2 \setminus S_2^{Match}$.
- 4: **return** $D_1 :=$ TSRMB-1-Scenario($R_1, S_1 \cup S_2^{Unmatch}, D$).

248 \blacktriangleright **Theorem 4.** Algorithm 2 yields a solution with total cost less than $OPT_1 + 5OPT_2$ for
 249 TSRMB with 2 scenarios.

250 The proof of Theorem 4 relies on the following structural lemma where we show that the
 251 set D_1 returned by Algorithm 2 yields a total cost at most $(OPT_1 + 3OPT_2)$ when evaluated
 252 only on the single representative scenario $S_1 \cup S_2^{Unmatch}$.

12:8 Matching Drivers to Riders: A Two-stage Robust Approach

250 ► **Lemma 5.** Let D_1 be the set of first stage drivers returned by Algorithm 2. Then
251 $\text{cost}_1(D_1, R_1) + \text{cost}_2(D \setminus D_1, S_1 \cup S_2^{\text{Unmatch}}) \leq \text{OPT}_1 + 3\text{OPT}_2$.

252 **Proof.** It is sufficient to show the existence of a matching M_a between $R_1 \cup S_1 \cup S_2^{\text{Unmatch}}$
253 and D with a total cost less than $\text{OPT}_1 + 3\text{OPT}_2$. This would imply that the optimal solution
254 D_1 of TSRMB-1-Scenario($R_1, S_1 \cup S_2^{\text{Unmatch}}, D$) has a total cost less than $\text{OPT}_1 + 3\text{OPT}_2$
255 and concludes the proof. We show the existence of M_a by construction.

256 **Step 1.** We first match R_1 with their mates in the optimal solution of TSRMB. Hence,
257 the first stage cost of our constructed matching M_a is OPT_1 .

258 **Step 2.** Now, we focus on S_2^{Unmatch} . Let $S_2^{\text{Unmatch}} = S_{12} \cup S_{22}$ be a partition of S_2^{Unmatch}
259 where S_{12} contains riders with a distance less than 2OPT_2 from S_1 and S_{22} contains riders
260 with a distance strictly bigger than 2OPT_2 from S_1 , where the distance from a set is the
261 minimum distance to any element of the set. A rider in S_{22} cannot share any driver with a
262 rider from S_1 in the optimal solution of TSRMB, because otherwise, the distance between
263 these riders will be less than 2OPT_2 by using the triangle inequality. Therefore we can match
264 S_{22} to their mates in the optimal solution and add them to M_a , without using the optimal
265 drivers of S_1 . We pay less than OPT_2 for matching S_{22} .

266 **Step 3.** We still need to simultaneously match riders in S_1 and S_{12} to finish the
267 construction of M_a . Notice that some riders in S_{12} might share their optimal drivers with
268 riders in S_1 . We can assume without loss of generality that all riders in S_{12} share their optimal
269 drivers with S_1 (otherwise we can match them to their optimal drivers without affecting
270 S_1). Denote $S_{12} = \{r_1, \dots, r_q\}$ and $S_1 = \{s_1, \dots, s_k\}$. For each $i \in [q]$ let's say $s_i \in S_1$ is
271 the rider that shares its optimal driver with r_i . We show that $q \leq |M|$. In fact, every rider in
272 S_{12} shares its optimal driver with a different rider in S_1 , and is therefore within a distance
273 2OPT_2 from S_1 by the triangle inequality. But since S_{12} is not covered by the maximum
274 cardinality matching M , this implies by the maximality of M that there are q other riders
275 from S_2^{Match} that are covered by M . Hence $q \leq |M|$. Finally, let $\{t_1, \dots, t_q\} \subset S_2^{\text{Match}}$ be
276 the mates of $\{s_1, \dots, s_q\}$ in M , i.e., $(s_i, t_i) \in M$ for all $i \in [q]$. Recall that $d(s_i, t_i) \leq 2\text{OPT}_2$
277 for all $i \in [q]$. In what follows, we describe how to match S_{12} and S_1 :

278 (i) For $i \in [q]$, we match r_i to its optimal driver and s_i to the optimal driver of t_i . This is
279 possible because the optimal driver of t_i cannot be the same as the optimal driver of r_i since
280 both r_i and t_i are part of the same scenario S_2 . Therefore, we pay a cost OPT_2 for the riders
281 r_i and a cost 3OPT_2 (follows from the triangle inequality) for the riders s_i where $i \in [q]$.

282 (ii) We still need to match $\{s_{q+1}, \dots, s_k\}$. Consider a rider s_j with $j \in \{q+1, \dots, k\}$.
283 If the optimal driver of s_j is not shared with any $t_i \in \{t_1, \dots, t_q\}$, then this optimal driver
284 is still available and can be matched to s_j with a cost less than OPT_2 . If the optimal
285 driver of s_j is shared with some $t_i \in \{t_1, \dots, t_q\}$, then s_j is also covered by M . Otherwise
286 M can be augmented by deleting (s_i, t_i) and adding (r_i, s_i) and (s_j, t_i) . Therefore s_j is
287 covered by M and has a mate $\tilde{t}_j \in S_2^{\text{Match}} \setminus \{t_1, \dots, t_q\}$. Furthermore, the driver assigned
288 to \tilde{t}_j is still available. We can then match s_j to the optimal driver of \tilde{t}_j . Similarly if the
289 optimal driver of some $s_{j'} \in \{s_{q+1}, \dots, s_k\} \setminus \{s_j\}$ is shared with \tilde{t}_j , then $s_{j'}$ is covered by M .
290 Otherwise $(r_i, s_i, t_i, s_j, \tilde{t}_j, s_{j'})$ is an augmenting path in M . Therefore $s_{j'}$ has a mate in M
291 and we can match $s_{j'}$ to the optimal driver of its mate. We keep extending these augmenting
292 paths until all the riders in $\{s_{q+1}, \dots, s_k\}$ are matched. Furthermore, the augmenting paths
293 $(r_i, s_i, t_i, s_j, \tilde{t}_j, s_{j'}, \dots)$ starting from two different riders $r_i \in S_{12}$ are vertex disjoint. This
294 ensures that every driver is used at most once. Again, by the triangle inequality, the edges
295 that match $\{s_{q+1}, \dots, s_k\}$ in our solution have weights less than 3OPT_2 .

296 Putting it all together, we have constructed a matching M_a where the first stage cost is
297 exactly OPT_1 and the second-stage cost is less than 3OPT_2 since the edges used for matching

298 $S_1 \cup S_2^{Unmatch}$ in M_a have a weight less than $3OPT_2$. Therefore, the total cost of M_a is less
 299 than $OPT_1 + 3OPT_2$. \blacktriangleleft

300 **Proof of Theorem 4.** Let D_1 be the drivers returned by Algorithm 2. Lemma 5 implies

$$301 \quad cost_1(D_1, R_1) + cost_2(D \setminus D_1, S_1) \leq OPT_1 + 3OPT_2 \quad (1)$$

302 and

$$303 \quad cost_1(D_1, R_1) + cost_2(D \setminus D_1, S_2^{Unmatch}) \leq OPT_1 + 3OPT_2.$$

304 We have $S_2 = S_2^{Match} \cup S_2^{Unmatch}$. If the scenario S_2 is realized, we use the drivers that were
 305 assigned to S_1 in the matching constructed in Lemma 5 to match S_2^{Match} . This is possible
 306 with edges of weights less than $cost_2(D \setminus D_1, S_1) + 2OPT_2$ because S_2^{Match} is matched to S_1
 307 with edges of weight less than $2OPT_2$. Hence,

$$308 \quad cost_2(D \setminus D_1, S_2) \leq \max \{ cost_2(D \setminus D_1, S_2^{Unmatch}), cost_2(D \setminus D_1, S_1) + 2OPT_2 \},$$

309 and therefore

$$310 \quad cost_1(D_1, R_1) + cost_2(D \setminus D_1, S_2) \leq OPT_1 + 5OPT_2. \quad (2)$$

311 From (1) and (2), $cost_1(D_1, R_1) + \max_{S \in \{S_1, S_2\}} cost_2(D \setminus D_1, S) \leq OPT_1 + 5OPT_2$. \blacktriangleleft

Algorithm 3 p explicit scenarios.

Input: First-stage riders R_1 , scenarios $\{S_1, S_2, \dots, S_p\}$, drivers D and value of OPT_2 .

Output: First stage decision D_1 .

```

1: Initialize  $\hat{S}_j := S_j$  for  $j = 1, \dots, p$ .
2: for  $i = 1, \dots, \log_2 p$  do
3:   for  $j = 1, 2, \dots, \frac{p}{2^i}$  do
4:      $\sigma(j) = j + \frac{p}{2^i}$ 
5:      $M_j :=$  maximum cardinality matching between  $\hat{S}_j$  and  $\hat{S}_{\sigma(j)}$  with edges of weight
       less than  $2 \cdot 3^{i-1} \cdot OPT_2$ .
6:      $\hat{S}_{\sigma(j)}^{Match} := \{r \in \hat{S}_{\sigma(j)} \mid \exists s \in \hat{S}_j \text{ s.t } (s, r) \in M_j\}$ .
7:      $\hat{S}_{\sigma(j)}^{Unmatch} := \hat{S}_{\sigma(j)} \setminus \hat{S}_{\sigma(j)}^{Match}$ 
8:      $\hat{S}_j = \hat{S}_j \cup \hat{S}_{\sigma(j)}^{Unmatch}$ .
9:   end for
10: end for
11: return  $D_1 := \text{TSRMB-1-Scenario}(R_1, \hat{S}_1, D)$ .
```

3.2 Constant number of scenarios

312 We now consider the case of explicit list of p scenarios, i.e., $\mathcal{S} = \{S_1, S_2, \dots, S_p\}$. Building
 313 upon the ideas from Algorithm 2, we present a $O(p^{1.59})$ -approximation in this case. The
 314 idea is to construct the representative scenario recursively by processing pairs of “scenarios”
 315 at each step. Hence, we need $O(\log_2 p)$ iterations to reduce the problem to an instance of a
 316 single scenario. At each iteration, we show that we only lose a multiplicative factor of 3 so
 317 that the final approximation ratio is $O(3^{\log_2 p}) = O(p^{1.59})$. We present details in Algorithm
 318 3.
 319

12:10 Matching Drivers to Riders: A Two-stage Robust Approach

320 The approximation guarantee of our algorithm grows sub-quadratically with p and it is
 321 an interesting question if there exists an approximation that does not depend on the number
 322 of scenarios.

323 ▶ **Theorem 6.** *Algorithm 3 yields a solution with total cost of $O(p^{1.59}) \cdot OPT$ for TSRMB*
 324 *with an explicit list of p scenarios.*

325 **Proof of Theorem 6.** The algorithm reduces the number of considered “scenarios” by half
 326 in every iteration, until only one scenario remains. In iteration i , we have $\frac{p}{2^{i-1}}$ scenarios
 327 that we aggregate in $\frac{p}{2^i}$ pairs, namely $(\hat{S}_j, \hat{S}_{\sigma(j)})$ for $j \in \{1, 2, \dots, \frac{p}{2^i}\}$. For each pair, we
 328 construct a single representative scenario which plays the role of the new \hat{S}_j at the start of
 329 the next iteration $i + 1$.

330 *Claim.* There exists a first stage decision D_1^* , such that at every iteration $i \in \{1, \dots, \log_2 p\}$,
 331 we have for all $j \in \{1, 2, \dots, \frac{p}{2^i}\}$:

- 332 (i) R_1 can be matched to D_1^* with a first stage cost of OPT_1 .
- 333 (ii) $\hat{S}_j \cup \hat{S}_{\sigma(j)}^{Unmatch}$ can be matched to $D \setminus D_1^*$ with a second stage cost less than $3^i \cdot OPT_2$.
- 334 (iii) There exists a matching between $\hat{S}_{\sigma(j)}^{Match}$ and \hat{S}_j with edge weights less than $2 \cdot 3^{i-1} \cdot OPT_2$.

335 *Proof of the claim.* Statement (iii) follows from the definition of $\hat{S}_{\sigma(j)}^{Match}$ in Algorithm 3. Let’s
 336 show (i) and (ii) by induction over i .

337 ■ **Initialization:** for $i = 1$, let’s take any two scenarios $\hat{S}_j = S_j$ and $\hat{S}_{\sigma(j)} = S_{\sigma(j)}$. We
 338 know that these two scenarios can be matched to drivers of the optimal solution in the
 339 original problem with a cost less than OPT_2 . In the proof of Lemma 5, we show that if
 340 we use the optimal first stage decision D_1^* of the original problem, then we can match \hat{S}_j
 341 and $\hat{S}_{\sigma(j)}^{Unmatch}$ simultaneously to $D \setminus D_1^*$ with a cost less than $3OPT_2$.

342 ■ **Maintenance.** Assume the claim is true for all values less than $i \leq \log_2 p - 1$. We
 343 show it is true for $i + 1$. Since the claim is true for iteration i , we know that at the
 344 start of iteration $i + 1$, for $j \in \{1, \dots, \frac{p}{2^i}\}$, \hat{S}_j can be matched to $D \setminus D_1^*$ with a cost less
 345 than $3^i \cdot OPT_2$. We can therefore consider a new TSRMB problem with $\frac{p}{2^i}$ scenarios,
 346 where using D_1^* as a first stage decision ensures a second stage optimal value less than
 347 $\widehat{OPT}_2 = 3^i \cdot OPT_2$. By the proof of Lemma 5, and by using D_1^* as a first stage decision in
 348 this problem, we ensure that for $j \in \{1, \dots, \frac{p}{2^{i+1}}\}$, \hat{S}_j and $\hat{S}_{\sigma(j)}^{Unmatch}$ can be simultaneously
 349 matched to $D \setminus D_1^*$ with a cost less than $3\widehat{OPT}_2 = 3^{i+1} \cdot OPT_2$. ◀

350 Our claim implies that in the last iteration $i = \log_2 p$:

- 351 ■ R_1 can be matched to D_1^* with a first stage cost of OPT_1 .
- 352 ■ \hat{S}_1 can be matched to $D \setminus D_1^*$ with a second stage cost less than $3^{\log_2 p} \cdot OPT_2$.

Computing the single scenario solution for \hat{S}_1 will therefore yield a first stage decision D_1
 that gives a total cost less than $OPT_1 + 3^{\log_2 p} \cdot OPT_2$ when the second stage is evaluated
 on the scenario \hat{S}_1 . We now bound the cost of D_1 on the original scenarios $\{S_1, \dots, S_p\}$.
 Consider a scenario $S \in \{S_1, \dots, S_p\}$. The riders in $S \cap \hat{S}_1$ can be matched to some drivers
 in $D \setminus D_1$ with a cost less than $OPT_1 + 3^{\log_2 p} \cdot OPT_2$. As for other riders of $S \setminus \hat{S}_1$, they
 are not part of \hat{S}_1 because they have been matched and deleted at some iteration $i < \log_2 p$.
 Consider riders r in $S \setminus \hat{S}_1$ that were matched and deleted from a representative scenario at
 some iteration, then by statement (iii) in our claim, each r can be connected to a different
 rider in $\hat{S}_1 \setminus (\hat{S}_1 \cap S)$ within a path of length at most

$$\sum_{t=1}^{\log_2 p} 2 \cdot 3^{t-1} \cdot OPT_2 = (3^{\log_2 p} - 1) \cdot OPT_2.$$

353 We know that R_1 and \hat{S}_1 can be matched respectively to D_1 and $D \setminus D_1$ with a total cost
 354 less than $OPT_1 + 3^{\log_2 p} \cdot OPT_2$. Therefore, we can match R_1 and S respectively to D_1 and
 355 $D \setminus D_1$ with a total cost less than

$$356 \quad OPT_1 + 3^{\log_2 p} \cdot OPT_2 + (3^{\log_2 p} - 1) \cdot OPT_2 = O(3^{\log_2 p}) \cdot OPT \simeq O(p^{1.59}) \cdot OPT. \\ 357$$

358 Therefore, the worst-case total cost of the solution returned by Algorithm 3 is $O(p^{1.59}) \cdot$
 359 OPT . \blacktriangleleft

360 **4 Implicit Scenarios**

361 Consider an implicit model of scenarios $\mathcal{S} = \{S \subset R_2 \text{ s.t. } |S| \leq k\}$. While this model is widely
 362 used, it poses a challenge because the number of scenarios can be exponential. Therefore,
 363 even computing the worst-case second stage cost, for a given first stage solution, might not
 364 be possible in polynomial time and we can no longer assume that we can guess OPT_2 . Note
 365 that the worst-case scenarios have size exactly k . Our analysis for this model depends on the
 366 balance between supply (drivers) and demand (riders). We define the surplus ℓ as the excess
 367 in the number of available drivers for matching first-stage riders and a second-stage scenario:
 368 $\ell = |D| - |R_1| - k$. As a warm-up, we study the case of no surplus ($\ell = 0$). Then, we address
 369 the more general case with a small surplus of drivers.

370 **4.1 Warm-up: no surplus**

371 When the number of drivers equals the number of first stage riders plus the size of scenarios
 372 (i.e., $\ell = 0$), we show a 3-approximation by simply solving a single scenario TSRMB with
 373 any of the scenarios. In fact, since $\ell = 0$, all scenarios are matched to the same set of drivers
 374 in the optimal solution. Hence, between any two scenarios, there exists a matching where all
 375 edge weights are less than $2OPT_2$. So by solving TSRMB with only one of these scenarios,
 376 we can recover a solution and bound the cost of the other scenarios within $OPT_1 + 3OPT_2$
 377 using the triangle inequality. The algorithm and proof are presented below.

■ **Algorithm 4** Implicit scenarios with no surplus.

Input: First stage riders R_1 , second stage riders R_2 , size k and drivers D .

Output: First stage decision D_1 .

- 1: $S_1 :=$ a second stage scenario of size k .
- 2: $D_1 :=$ TSRMB-1-Scenario(R_1, S_1, D).
- 3: **return** D_1 .

378 ► **Lemma 7.** *Algorithm 4 yields a solution with total cost less than $OPT_1 + 3OPT_2$ for*
 379 *TSRMB with implicit scenarios and no surplus.*

380 **Proof of Lemma 7.** Let OPT_1 and OPT_2 be the first and second stage cost of the optimal
 381 solution. Let $f(D_1)$ be the total cost of the solution returned by the algorithm. We claim that
 382 $f(D_1) \leq OPT_1 + 3OPT_2$. It is clear that $cost_1(D_1, R_1) + cost_2(D \setminus D_1, S_1) \leq OPT_1 + OPT_2$.
 383 Let $S \in \mathcal{S}$ be another scenario. Because $|D| = |R_1| + k$, the optimal solution uses exactly
 384 the same k drivers to match all the second stage scenarios. This implies that we can use
 385 the triangular inequality to find a matching between S and S_1 of bottleneck cost less than
 386 $2OPT_2$. Hence for any scenario S ,

$$387 \quad cost_1(D_1, R_1) + cost_2(D \setminus D_1, S) \leq cost_1(D_1, R_1) + cost_2(D \setminus D_1, S_1) + 2OPT_2 \\ 388 \leq OPT_1 + 3OPT_2.$$

390

391 If the surplus is strictly greater than 0, the above procedure can have an approximation
 392 ratio of $\Omega(m)$. Consider the example in Figure 3, with $k = 1$ and two second stage riders.
 393 The single scenario solution for S_1 uses the optimal second stage driver of S_2 . Hence, if S_2 is
 394 realized, the cost of matching S_2 to the closest available driver is $\Omega(m)$. Similarly, the single
 395 scenario problem for S_2 yields a $\Omega(m)$ cost for S_1 .

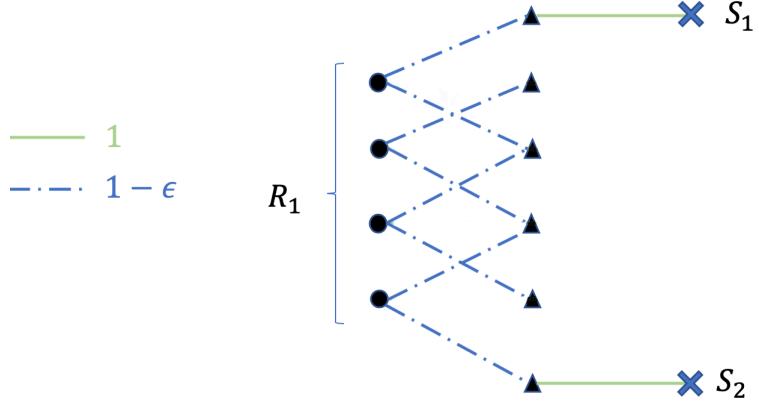


Figure 3 First stage riders are depicted as black dots and drivers as black triangles. The two second stage riders are depicted as blue crosses. Second stage optimum are depicted as solid green edges. $\mathcal{S} = \{S_1, S_2\}$, $k = 1$ and $\ell = 1$.

396 **4.2 Small surplus**

397 The TSRMB problem becomes challenging even with a unit surplus. Motivated by this,
 398 we focus on the case of a small surplus ℓ . In particular, we assume that $\ell < k$, i.e., the
 399 excess in the total available drivers is smaller than the size of any scenario. We present a
 400 constant approximation algorithm in this regime for the implicit model of uncertainty where
 401 the size of scenarios is relatively small with respect to the size of the universe ($k = O(\sqrt{n})$).
 402 This technical assumption is needed for our analysis but it is not too restrictive and still
 403 captures the regime where the number of scenarios can be exponential. Our algorithm
 404 attempts to cluster the second stage riders in different groups (a *ball* and a set of *outliers*) in
 405 order to reduce the number of possible worst-case configurations. We then solve a sequence
 406 of instances with representative riders from each group. In what follows, we present our
 407 construction for these groups of riders.

408 **Our construction.** First, we show that many riders are contained in a ball with radius
 409 $3OPT_2$. The center of this ball, δ , can be found by selecting the driver with the least
 410 maximum distance to its closest k second-stage riders, i.e.,

$$411 \delta = \arg \min_{\delta' \in D} \max_{r \in R_k(\delta')} d(\delta', r), \quad (3)$$

412 where $R_k(\delta')$ is the set of the k closest second stage riders to δ' . Formally, we have the
 413 following lemma. We present the proof in Appendix B.

414 **Lemma 8.** Suppose $k \leq \sqrt{\frac{n}{2}}$ and $\ell < k$ and let δ be the driver given by (3). Then, the
 415 ball \mathcal{B} centered at δ with radius $3OPT_2$ contains at least $n - \ell$ second stage riders. Moreover,
 416 the distance between any of these riders and any rider in $R_k(\delta)$ is less than $4OPT_2$.

417 Now, we focus on the rest of second stage riders. We say that a rider $r \in R_2$ is
 418 an *outlier* if $d(\delta, r) > 3OPT_2$. Denote $\{o_1, o_2, \dots, o_\ell\}$ the farthest ℓ riders from δ with
 419 $d(\delta, o_1) \geq d(\delta, o_2) \geq \dots \geq d(\delta, o_\ell)$. By Lemma 8, the $n - \ell$ riders in \mathcal{B} are not outliers
 420 and the only potential outliers can be in $\{o_1, o_2, \dots, o_\ell\}$. Let j^* be the threshold such that
 421 o_1, o_2, \dots, o_{j^*} are outliers and o_{j^*+1}, \dots, o_ℓ are not, with the convention that $j^* = 0$ if there
 422 is no outlier. There are $\ell + 1$ possible values for j^* . We call each of these possibilities
 423 a *configuration*. For $j = 0, \dots, \ell$, let C_j be the configuration corresponding to threshold
 424 candidate j . C_0 is the configuration where there is no outlier and C_{j^*} is the correct
 425 configuration.

■ **Algorithm 5** Implicit scenarios with small surplus and $k \leq \sqrt{\frac{n}{2}}$.

Input: First stage riders R_1 , second stage riders R_2 , size k and drivers D .

Output: First stage decision D_1 .

1: Set $\delta :=$ driver given by (3).
 2: Set $S_1 :=$ the closest k second stage riders to δ .
 3: Set $S_2 := \{o_1, \dots, o_\ell\}$ the farthest ℓ second stage riders from δ (o_1 being the farthest).
 4: **for** $j = 0, \dots, \ell$ **do**
 5: $D_1(j) := \text{TSRMB-1-Scenario}(R_1, S_1 \cup \{o_1 \dots o_j\}, D)$.
 6: **end for**
 7: **return** $D_1 = \arg \min_{D_1(j): j \in \{0, \dots, \ell\}} \text{cost}_1(D_1(j), R_1) + \max_{S \in \{S_1, S_2\}} \text{cost}_2(D \setminus D_1(j), S)$.

426 Recall that $R_k(\delta)$ are the closest k second-stage riders to δ . For the sake of simplicity,
 427 we denote $S_1 = R_k(\delta)$ and $S_2 = \{o_1 \dots o_\ell\}$. S_2 is a feasible scenario since $\ell < k$. For
 428 every configuration C_j , we form a representative scenario using S_1 and $\{o_1 \dots o_j\}$. We
 429 solve TSRMB with this single representative scenario $S_1 \cup \{o_1 \dots o_j\}$ and denote $D_1(j)$ the
 430 corresponding optimal solution, i.e.,

431 $D_1(j) = \text{TSRMB-1-Scenario}(R_1, S_1 \cup \{o_1 \dots o_j\}, D)$.

432 Since we can not evaluate the cost of $D_1(j)$ on all scenarios, we use the two proxy scenarios
 433 S_1 and S_2 . We show that the candidate $D_1(j)$ with minimum cost over S_1 and S_2 gives a
 434 constant approximation to our original problem. The details are presented in Algorithm 5.
 435 We state the result in the next theorem.

436 ▶ **Theorem 9.** *Algorithm 5 yields a solution with total cost less than $3OPT_1 + 17OPT_2$ for
 437 TSRMB with implicit scenarios when $k \leq \sqrt{\frac{n}{2}}$ and $\ell < k$.*

438 Before proving the theorem, we first introduce some notation. For all $j \in \{0, \dots, \ell\}$,
 439 denote

$$\begin{aligned} 440 \quad \Omega_j &= \text{cost}_1(D_1(j), R_1) \\ 441 \quad \Delta_j &= \text{cost}_2(D \setminus D_1(j), S_1 \cup \{o_1, \dots, o_j\}) \\ 442 \quad \beta_j &= \text{cost}_1(D_1(j), R_1) + \max_{S \in \{S_1, S_2\}} \text{cost}_2(D \setminus D_1(j), S) \end{aligned}$$

443 Recall that f the objective function of TSRMB. In particular,

$$f(D_1(j)) = \text{cost}_1(D_1(j), R_1) + \max_{S \in \mathcal{S}} \text{cost}_2(D \setminus D_1(j), S)$$

444 Our proof is based on the following two claims. Claim 10 establishes a bound on the cost
 445 of $D_1(j^*)$ when evaluated on the proxy scenarios S_1 and S_2 and on all the scenarios in \mathcal{S} .

12:14 Matching Drivers to Riders: A Two-stage Robust Approach

446 Recall that j^* is the threshold index for the outliers as defined earlier in our construction.
447 Claim 11 bounds the cost of $f(D_1(j))$ for any j .

448 \triangleright Claim 10. $\Omega_{j^*} + \Delta_{j^*} \leq OPT_1 + OPT_2$. and $f(D_1(j^*)) \leq OPT_1 + 5OPT_2$.

449 **Proof of Claim 10.**

- 450 1. In the optimal solution of the original problem, R_1 is matched to a subset D_1^* of drivers.
451 The scenario S_1 is matched to a set of drivers D_{S_1} where $D_1^* \cap D_{S_1} = \emptyset$. Let D_o be the
452 set of drivers that are matched to o_1, \dots, o_j^* in a scenario that contains o_1, \dots, o_j^* . It is
453 clear that $D_1^* \cap D_o = \emptyset$. We claim that $D_o \cap D_{S_1} = \emptyset$. In fact, suppose there is a driver
454 $\rho \in D_o \cap D_{S_1}$. This implies the existence of some o_j with $j \leq j^*$ and some rider $r \in S_1$ such
455 that $d(\rho, o_j) \leq OPT_2$ and $d(\rho, r) \leq OPT_2$. But then $d(\delta, o_j) \leq d(\delta, r) + d(\rho, r) + d(\rho, o_j) \leq$
456 $3OPT_2$ which contradicts the fact the o_j is an outlier. Therefore $D_o \cap D_{S_1} = \emptyset$. We show
457 that D_1^* is a feasible first stage solution to the single scenario problem of $S_1 \cup \{o_1, \dots, o_j^*\}$
458 with a cost less than $OPT_1 + OPT_2$. In fact, D_1^* can be matched to R_1 with a cost less
459 than OPT_1 , D_{S_1} to S_1 and D_o to $\{o_1, \dots, o_j^*\}$ with a cost less than OPT_2 . Therefore
460 $\Omega_{j^*} + \Delta_{j^*} \leq OPT_1 + OPT_2$.
- 461 2. Recall that $cost_1(D_1(j^*), R_1) = \Omega_{j^*}$. Consider a scenario S and a rider $r \in S$. Let \mathcal{B}' be
462 the set of the $n - \ell$ closest second stage riders to δ . Let $D_{S_1}(j^*)$ be set of second stage
463 drivers matched to S_1 in the single scenario problem for scenario $S_1 \cup \{o_1, \dots, o_j^*\}$. Let
464 $D_o(j^*)$ be the set of second stage drivers matched to $\{o_1, \dots, o_j^*\}$ in the single scenario
465 problem for scenario $S_1 \cup \{o_1, \dots, o_j^*\}$. Recall that the second stage cost for this single
466 scenario problem is Δ_{j^*} . We distinguish three cases:
 - 467 a. If $r \in \mathcal{B}'$, then by Lemma 8, r is connected to every driver in $D_{S_1}(j^*)$ within a distance
468 less than $\Delta_{j^*} + 4OPT_2$.
 - 469 b. If $r \in \{o_{j^*+1}, \dots, o_\ell\}$, then r is connected to every driver in $D_{S_1}(j^*)$ within a distance
470 less than $3OPT_2 + OPT_2 + \Delta_{j^*}$.
 - 471 c. If $r \in \{o_1, \dots, o_{j^*}\}$ (i.e., r an outlier), then r can be matched to a different driver in
472 $D_o(j^*)$ within a distance less than OPT_2 .

This means that in every case, we can match r to a driver in $D \setminus D_1(j^*)$ with a cost less
than $4OPT_2 + \Delta_{j^*}$. This implies that

$$\max_{S \in \mathcal{S}} cost_2(D \setminus D_1(j^*), S) \leq 4OPT_2 + \Delta_{j^*}$$

and therefore

$$\Omega_{j^*} + \max_{S \in \mathcal{S}} cost_2(D \setminus D_1(j^*), S) \leq \Omega_{j^*} + \Delta_{j^*} + 4OPT_2 \leq OPT_1 + 5OPT_2.$$

473 \blacktriangleleft

474 \triangleright Claim 11. For all $j \in \{0, \dots, l\}$ we have, $\beta_j \leq f(D_1(j)) \leq \max\{\beta_j + 4OPT_2, 3\beta_j + 2OPT_2\}$.

475 **Proof of Claim 11.** Let α_j be the second stage cost of $D_1(j)$ on the TSRBM instance with
476 scenarios S_1 and S_2 . Formally, $\alpha_j = \max_{S \in \{S_1, S_2\}} cost_2(D \setminus D_1(j), S)$. Therefore $\beta_j = \Omega_j + \alpha_j$.
477 Let's consider the two sets

478 $O_1 = \{r \in \{o_1, \dots, o_\ell\} \mid d(r, \delta) > 2\alpha_j + OPT_2\}$.

479 $O_2 = \{o_1, \dots, o_\ell\} \setminus O_1$.

480 481 Consider $D_1(j)$ as a first stage decision to TSRBM with scenarios S_1 and S_2 . Let $\tilde{D}_1 \subset$
482 $D \setminus D_1(j)$ be the set of drivers that are matched to O_1 when the scenario $S_2 = \{o_1, \dots, o_\ell\}$

483 is realized. Similarly, let $\tilde{D}_2 \subset D \setminus D_1(j)$ be the drivers matched to scenario S_1 . We claim
 484 that $\tilde{D}_1 \cap \tilde{D}_2 = \emptyset$. Suppose that there exists some driver $\rho \in \tilde{D}_1 \cap \tilde{D}_2$, this implies the
 485 existence of some $o \in O_1$ and $r \in S_1$ such that $d(\rho, o) \leq \alpha_j$ and $d(\rho, r) \leq \alpha_j$. And since
 486 $d(r, \delta) \leq OPT_2$ by definition of δ we would have

487
$$d(o, \delta) \leq d(\rho, o) + d(\rho, r) + d(r, \delta) \leq 2\alpha_j + OPT_2,$$

488 which contradicts the definition of O_1 . Therefore $\tilde{D}_1 \cap \tilde{D}_2 = \emptyset$.

489

490 Now consider a scenario $S \in \mathcal{S}$. The riders of $S \cap O_1$ can be matched to \tilde{D}_1 with a
 491 bottleneck cost less than α_j . Recall that by Lemma 8, any rider in $R_2 \setminus \{o_1, \dots, o_\ell\}$ is within
 492 a distance less than $4OPT_2$ from any rider in S_1 . The riders $r \in S \setminus \{o_1, \dots, o_\ell\}$ can therefore
 493 be matched to any driver $\rho \in \tilde{D}_2$ within a distance less than

494
$$d(r, \rho) \leq d(r, S_1) + d(S_1, \rho) \leq 4OPT_2 + \alpha_j.$$

495 As for riders $r \in S \cap O_2$, they can also be matched to any driver ρ of \tilde{D}_2 within a distance
 496 less than

497
$$d(r, \rho) \leq d(r, \delta) + d(\delta, S_1) + d(S_1, \rho) \leq 2\alpha_j + OPT_2 + OPT_2 + \alpha_j = 3\alpha_j + 2OPT_2.$$

498 Therefore we can bound the second stage cost

499
$$\max_{S \in \mathcal{S}} \text{cost}_2(D \setminus D_1(j), S) \leq \max\{\alpha_j + 4OPT_2, 3\alpha_j + 2OPT_2\}$$

500 and we get that

501
$$\text{cost}_1(D_1(j), R_1) + \max_{S \in \mathcal{S}} \text{cost}_2(D \setminus D_1(j), S) \leq \max\{\beta_j + 4OPT_2, 3\beta_j + 2OPT_2\}$$

502 The other inequality $\beta_j \leq \text{cost}_1(D_1(j), R_1) + \max_{S \in \mathcal{S}} \text{cost}_2(D \setminus D_1(j))$ is trivial. ◀

503 We are now ready to prove the theorem.

Proof of Theorem 9. Suppose Algorithm 5 returns $D_1(\tilde{j})$ for some \tilde{j} . From Claim 11 and the minimality of $\beta_{\tilde{j}}$:

$$f(D_1(\tilde{j})) \leq \max\{\beta_{\tilde{j}} + 4OPT_2, 3\beta_{\tilde{j}} + 2OPT_2\} \leq \max\{\beta_{j^*} + 4OPT_2, 3\beta_{j^*} + 2OPT_2\}.$$

From Claim 10 and Claim 11, we have $\beta_{j^*} \leq f(D_1(j^*)) \leq OPT_1 + 5OPT_2$. We conclude that,

$$f(D_1(\tilde{j})) \leq \max\{OPT_1 + 9OPT_2, 3OPT_1 + 17OPT_2\} = 3OPT_1 + 17OPT_2.$$

504 ◀

5 Conclusion

506 In this paper, we present a new two-stage robust optimization framework for matching
 507 problems under both explicit and implicit models of uncertainty. Our problem is motivated
 508 by real-life applications in the ride-hailing industry. We study the Two-Stage Robust Matching
 509 Bottleneck problem, prove its hardness, and design approximation algorithms under different
 510 settings. Our algorithms give a constant approximation if the number of scenarios is fixed,
 511 but require additional assumptions when there are polynomially or exponentially many
 512 scenarios. It is an interesting question if there exists a constant approximation in the general
 513 case that does not depend on the number of scenarios.

514

 References

515 1 Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online vertex-weighted
 516 bipartite matching and single-bid budgeted allocations. In *Proceedings of the twenty-second*
 517 *annual ACM-SIAM symposium on Discrete Algorithms*, pages 1253–1264. SIAM, 2011.

518 2 Nikhil Bansal, Niv Buchbinder, Anupam Gupta, and Joseph Seffi Naor. An $o(\log k^2)$ -
 519 competitive algorithm for metric bipartite matching. In *European Symposium on Algorithms*,
 520 pages 522–533. Springer, 2007.

521 3 Piotr Berman, Bhaskar DasGupta, and Eduardo Sontag. Randomized approximation al-
 522 gorithms for set multicover problems with applications to reverse engineering of protein and
 523 gene networks. *Discrete Applied Mathematics*, 155(6-7):733–749, 2007.

524 4 Niv Buchbinder, Kamal Jain, and Joseph Seffi Naor. Online primal-dual algorithms for
 525 maximizing ad-auctions revenue. In *European Symposium on Algorithms*, pages 253–264.
 526 Springer, 2007.

527 5 Nikhil R Devanur and Thomas P Hayes. The adwords problem: online keyword matching with
 528 budgeted bidders under random permutations. In *Proceedings of the 10th ACM conference on*
 529 *Electronic commerce*, pages 71–78, 2009.

530 6 Nikhil R Devanur, Kamal Jain, and Robert D Kleinberg. Randomized primal-dual analysis of
 531 ranking for online bipartite matching. In *Proceedings of the twenty-fourth annual ACM-SIAM*
 532 *symposium on Discrete algorithms*, pages 101–107. SIAM, 2013.

533 7 Kedar Dhamdhere, Vineet Goyal, R Ravi, and Mohit Singh. How to pay, come what may:
 534 Approximation algorithms for demand-robust covering problems. In *46th Annual IEEE*
 535 *Symposium on Foundations of Computer Science (FOCS’05)*, pages 367–376. IEEE, 2005.

536 8 Omar El Housni and Vineet Goyal. Beyond worst-case: A probabilistic analysis of affine
 537 policies in dynamic optimization. In *Advances in neural information processing systems*, pages
 538 4756–4764, 2017.

539 9 Bruno Escoffier, Laurent Gourvès, Jérôme Monnot, and Olivier Spanjaard. Two-stage stochastic
 540 matching and spanning tree problems: Polynomial instances and approximation. *European*
 541 *Journal of Operational Research*, 205(1):19–30, 2010.

542 10 Uriel Feige. A threshold of $\ln n$ for approximating set cover. *Journal of the ACM (JACM)*,
 543 45(4):634–652, 1998.

544 11 Uriel Feige, Kamal Jain, Mohammad Mahdian, and Vahab Mirrokni. Robust combinatorial
 545 optimization with exponential scenarios. In *International Conference on Integer Programming*
 546 and *Combinatorial Optimization*, pages 439–453. Springer, 2007.

547 12 Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and Shan Muthukrishnan. Online stochastic
 548 matching: Beating $1-1/e$. In *2009 50th Annual IEEE Symposium on Foundations of Computer*
 549 *Science*, pages 117–126. IEEE, 2009.

550 13 Moran Feldman, Ola Svensson, and Rico Zenklusen. Online contention resolution schemes.
 551 In *Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms*,
 552 pages 1014–1033. SIAM, 2016.

553 14 Yiding Feng and Rad Niazadeh. Batching and optimal multi-stage bipartite allocations. In
 554 *12th Innovations in Theoretical Computer Science Conference (ITCS 2021)*. Schloss Dagstuhl-
 555 Leibniz-Zentrum für Informatik, 2021.

556 15 Yiding Feng, Rad Niazadeh, and Amin Saberi. Two-stage stochastic matching with application
 557 to ride hailing. In *Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms*
 558 (*SODA*), pages 2862–2877. SIAM, 2021.

559 16 Harold N Gabow and Robert E Tarjan. Algorithms for two bottleneck optimization problems.
 560 *Journal of Algorithms*, 9(3):411–417, 1988.

561 17 Robert S Garfinkel and KC Gilbert. The bottleneck traveling salesman problem: Algorithms
 562 and probabilistic analysis. *Journal of the ACM (JACM)*, 25(3):435–448, 1978.

563 18 Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with
 564 applications to adwords. In *SODA*, volume 8, pages 982–991, 2008.

565 19 Anupam Gupta, Viswanath Nagarajan, and Ramamoorthi Ravi. Thresholded covering al-
 566 gorithms for robust and max-min optimization. In *International Colloquium on Automata,*
 567 *Languages, and Programming*, pages 262–274. Springer, 2010.

568 20 Bernhard Haeupler, Vahab S Mirrokni, and Morteza Zadimoghaddam. Online stochastic
 569 weighted matching: Improved approximation algorithms. In *International workshop on internet*
 570 *and network economics*, pages 170–181. Springer, 2011.

571 21 Dorit S Hochbaum and David B Shmoys. A unified approach to approximation algorithms for
 572 bottleneck problems. *Journal of the ACM (JACM)*, 33(3):533–550, 1986.

573 22 Omar El Housni, Vineet Goyal, and David Shmoys. On the power of static assignment policies
 574 for robust facility location problems. *arXiv preprint arXiv:2011.04925*, 2020.

575 23 Patrick Jaillet and Xin Lu. Online stochastic matching: New algorithms with better bounds.
 576 *Mathematics of Operations Research*, 39(3):624–646, 2014.

577 24 Bala Kalyanasundaram and Kirk Pruhs. Online weighted matching. *Journal of Algorithms*,
 578 14(3):478–488, 1993.

579 25 Viggo Kann. Maximum bounded 3-dimensional matching is max SNP-complete. *Information*
 580 *Processing Letters*, 37(1):27–35, 1991.

581 26 Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online bipartite matching with
 582 unknown distributions. In *Proceedings of the forty-third annual ACM symposium on Theory*
 583 *of computing*, pages 587–596, 2011.

584 27 Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal algorithm for on-line
 585 bipartite matching. In *Proceedings of the twenty-second annual ACM symposium on Theory*
 586 *of computing*, pages 352–358, 1990.

587 28 Irit Katriel, Claire Kenyon-Mathieu, and Eli Upfal. Commitment under uncertainty: Two-stage
 588 stochastic matching problems. *Theoretical Computer Science*, 408(2-3):213–223, 2008.

589 29 Samir Khuller, Stephen G Mitchell, and Vijay V Vazirani. On-line algorithms for weighted
 590 bipartite matching and stable marriages. *Theoretical Computer Science*, 127(2):255–267, 1994.

591 30 Nan Kong and Andrew J Schaefer. A factor 12 approximation algorithm for two-stage stochastic
 592 matching problems. *European Journal of Operational Research*, 172(3):740–746, 2006.

593 31 Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and hypergraphs.
 594 In *International Colloquium on Automata, Languages, and Programming*, pages 508–520.
 595 Springer, 2009.

596 32 Euiwoong Lee and Sahil Singla. Maximum matching in the online batch-arrival model. In
 597 *International Conference on Integer Programming and Combinatorial Optimization*, pages
 598 355–367. Springer, 2017.

599 33 Lyft. Matchmaking in lyft line - part 1. <https://eng.lyft.com/matchmaking-in-lyft-line-9c2635fe62c4>, 2016.

600 34 Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: an
 601 approach based on strongly factor-revealing lps. In *Proceedings of the forty-third annual ACM*
 602 *symposium on Theory of computing*, pages 597–606, 2011.

603 35 Vahideh H Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online stochastic matching:
 604 Online actions based on offline statistics. *Mathematics of Operations Research*, 37(4):559–573,
 605 2012.

606 36 Jannik Matuschke, Ulrike Schmidt-Kraepelin, and José Verschae. Maintaining perfect match-
 607 ings at low cost. *arXiv preprint arXiv:1811.10580*, 2018.

608 37 Aranyak Mehta. Online matching and ad allocation. *Theoretical Computer Science*, 8(4):265–
 609 368, 2012.

610 38 Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized
 611 online matching. *Journal of the ACM (JACM)*, 54(5):22–es, 2007.

612 39 Aranyak Mehta, Bo Waggoner, and Morteza Zadimoghaddam. Online stochastic matching
 613 with unequal probabilities. In *Proceedings of the twenty-sixth annual ACM-SIAM symposium*
 614 *on Discrete algorithms*, pages 1388–1404. SIAM, 2014.

12:18 Matching Drivers to Riders: A Two-stage Robust Approach

616 40 Adam Meyerson, Akash Nanavati, and Laura Poplawski. Randomized online algorithms
 617 for minimum metric bipartite matching. In *Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm*, pages 954–959. Society for Industrial and Applied
 618 Mathematics, 2006.

619 41 Sharath Raghvendra. A robust and optimal online algorithm for minimum metric bipartite
 620 matching. In *Approximation, Randomization, and Combinatorial Optimization. Algorithms and*
 621 *Techniques (APPROX/RANDOM 2016)*. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
 622 2016.

623 42 Uber. Uber marketplace and matching. <https://marketplace.uber.com/matching>, 2020.

624 43 Vijay V Vazirani. *Approximation algorithms*. Springer Science & Business Media, 2013.

625 44 Lingyu Zhang, Tao Hu, Yue Min, Guobin Wu, Junying Zhang, Pengcheng Feng, Pinghua
 626 Gong, and Jieping Ye. A taxi order dispatch model based on combinatorial optimization. In
 627 *Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and*
 628 *data mining*, pages 2151–2159, 2017.

630 A NP-Hardness proofs for TSRMB

631 We start by presenting the 3-Dimensional Matching (3-DM) and Set Cover problems, that we
 632 use in our reductions to show Theorem 1. Both problems are known to be strongly NP-hard
 633 [10, 25].

634 **3-Dimensional Matching (3-DM):** Given three sets U , V , and W of equal cardinality n ,
 635 and a subset T of $U \times V \times W$, is there a subset M of T with $|M| = n$ such that whenever
 636 (u, v, w) and (u', v', w') are distinct triples in M , $u \neq u'$, $v \neq v'$, and $w \neq w'$?

637 **Set Cover Problem:** Given a set of elements $\mathcal{U} = \{1, 2, \dots, n\}$ (called the universe), a
 638 collection S_1, \dots, S_m of m sets whose union equals the universe and an integer p .

639 Question: Is there a set $C \subset \{1, \dots, m\}$ such that $|C| \leq p$ and $\bigcup_{i \in C} S_i = \mathcal{U}$?

642 Proof of Theorem 1.

643 **Explicit uncertainty.** Consider an instance of the 3-Dimensional Matching Problem. We
 644 can use it to construct (in polynomial time) an instance of TSRMB with 2 scenarios as
 645 follows:

- 646 ■ Create two scenarios of size n : $S_1 = U$ and $S_2 = V$.
- 647 ■ Set $D = T$, every driver corresponds to a triple in T .
- 648 ■ For every $w \in W$, let $d_T(w)$ be the number of sets in T that contain w . We create
 649 $d_T(w) - 1$ first stage riders, that are all copies of w . The total number of first stage riders
 650 is therefore $|R_1| = |T| - n$.
- 651 ■ For $(w, e) \in R_1 \times D$, $d(w, e) = \begin{cases} 1 & \text{if } w \in e \\ 3 & \text{otherwise.} \end{cases}$
- 652 ■ For $(u, e) \in S_1 \cup S_2 \times D$, $d(u, e) = \begin{cases} 1 & \text{if } u \in e \\ 3 & \text{otherwise.} \end{cases}$
- 653 ■ For $u, v \in R_1 \cup S_1 \cup S_2$, $d(u, v) = \min_{e \in D} d(u, e) + d(v, e)$.
- 654 ■ For $e, f \in D$, $d(e, f) = \min_{u \in R_1 \cup S_1 \cup S_2} d(u, e) + d(u, f)$.

655 This choice of distances induces a metric graph. We claim that there exists a 3-dimensional
 656 matching if and only if there exists a solution to this TSRMB instance with total cost equal
 657 to 2. Suppose that $M = \{e_1, \dots, e_n\} \subset T$ is a 3-Dimensional matching. Let e_1, \dots, e_n
 658 be the drivers that correspond to M in the TSRMB instance. We show that by using
 659 $D_1 = D \setminus \{e_1, \dots, e_n\}$ as a first stage decision, we ensure that the total cost for the TSRMB

660 instance is equal to 2. For any rider u in scenario S_1 , by definition of M , there exists a unique
 661 edge $e_i \in M$ that covers u . The corresponding driver $e_i \notin D_1$ can be matched to u with
 662 a distance equal to 1. Furthermore, e_i cannot be matched to any other rider in S_1 with a
 663 cost less than 1. Similarly, for any rider v in scenario S_2 , since there exists a unique edge
 664 $e_j \in M$ that covers v , the corresponding driver can be matched to v with a cost of 1. The
 665 second stage cost is therefore equal to 1. As for the first stage cost, we know by definition of
 666 M , that every element $w \in W$ is covered exactly once. Therefore, for every $w \in W$, there
 667 exists $d_T(w) - 1$ edges that contain w in $T \setminus M$. This means that every 1st stage rider can
 668 be matched to a driver in D_1 with a cost equal to 1. Hence the total cost of this two-stage
 669 matching is equal to 2.

670 Suppose now that there exists a solution to the TSRMB instance with a cost equal to 2.
 671 This means that the first and second stage costs are both equal to 1. Let $M = \{e_1, \dots, e_n\}$
 672 be the set of drivers used in the second stage of this solution. We show that M is a 3-
 673 dimensional matching. Let $e_i = (u, v, w)$ and $e_j = (u', v', w')$ be distinct triples in M . Since
 674 the second stage cost is equal to 1, the driver e_i (resp. e_j) must be matched to u (resp.
 675 u') in S_1 . Since we have exactly n second stage drivers and n riders in S_1 , this means
 676 that e_i and e_j have to be matched to different second stage riders in S_1 . Therefore we
 677 get $u' \neq u$. Similarly we see that $v' \neq v$. Assume now that $w = w'$, this means that the
 678 TSRMB solution has used two drivers (triples) e_i and e_j that contain w in the second stage.
 679 It is therefore impossible to match all the $d_T(w) - 1$ copies of w in the first stage with a
 680 cost equal to 1. Therefore $w \neq w'$. The above construction can be performed in poly-
 681 nomial time of the 3-DM input, and therefore shows that TSRMB with two scenarios is NP-hard.
 682

683 Now, to show that TSRMB is hard to approximate within a factor better than 2, we
 684 consider three scenarios. Consider an instance of 3-DM. We can use it to construct an
 685 instance of TSRMB with 3 scenarios as follows:

- 686 ■ Create 3 scenarios of size n : $S_1 = U$, $S_2 = V$ and $S_3 = W$.
- 687 ■ Set $D = T$.
- 688 ■ Create $|R_1| = |T| - n$ first stage riders.
- 689 ■ For $(w, e) \in R_1 \times D$, $d(w, e) = 1$.
- 690 ■ For $(u, e) \in S_1 \cup S_2 \cup S_3 \times D$, $d(u, e) = \begin{cases} 1 & \text{if } u \in e \\ 3 & \text{otherwise.} \end{cases}$
- 691 ■ For $u, v \in R_1 \cup S_1 \cup S_2 \cup S_3$, $d(u, v) = \min_{e \in D} d(u, e) + d(v, e)$.
- 692 ■ For $e, f \in D$, $d(e, f) = \min_{u \in R_1 \cup S_1 \cup S_2 \cup S_3} d(u, e) + d(u, f)$.

693 This choice of distances induces a metric graph. Similarly to the proof of 2 scenarios, we
 694 can show that there exists a 3-dimensional matching if and only if there exists a TSRMB
 695 solution with cost equal to 2. Furthermore, any solution for this TSRMB instance has
 696 either a total cost of 2 or 4 (the first stage cost is always equal to 1). We show that if a
 697 $(2 - \epsilon)$ -approximation (for some $\epsilon > 0$) to the TSRMB exists then 3-Dimensional Matching is
 698 decidable. We know that this instance of TSRMB has a solution with total cost equal to 2
 699 if and only if there is a 3-dimensional matching. Furthermore, if there is no 3-dimensional
 700 matching, the cost of the optimal solution to TSRMB must be 4. Therefore, if an algorithm
 701 guarantees a ratio of $(2 - \epsilon)$ and a 3-dimensional matching exists, the algorithm delivers a
 702 solution with total cost equal to 2. If there is no 3-dimensional matching, then the solution
 703 produced by the algorithm has a total cost of 4.

704 **Implicit uncertainty.** We prove the hardness for $k = 1$. We start from an instance of the
 705 Set Cover problem and construct an instance of the TSRMB problem. Consider an instance

12:20 Matching Drivers to Riders: A Two-stage Robust Approach

706 of the decision problem of set cover. We can use it to construct the following TSRMB
 707 instance:

- 708 ■ Create m drivers $D = \{1, \dots, m\}$. For each $j \in \{1, \dots, m\}$, driver j corresponds to set
 S_j .
- 709 ■ Create $m - p$ first stage riders, $R_1 = \{1, \dots, m - p\}$.
- 710 ■ Create n second stage riders, $R_2 = \{1, \dots, n\}$.
- 711 ■ Set $\mathcal{S} = \{\{1\}, \dots, \{n\}\}$. Every scenario is of size 1.
- 712 ■ As for the distances between riders and drivers, we define them as follows:
- 713 ■ For $(i, j) \in R_1 \times D$, $d(i, j) = 1$.
- 714 ■ For $(i, j) \in R_2 \times D$, $d(i, j) = \begin{cases} 1 & \text{if } i \in S_j \\ 3 & \text{otherwise.} \end{cases}$
- 715 ■ For $i, i' \in R_1 \cup R_2$, $d(i, i') = \min_{j \in D} d(i, j) + d(i', j)$.
- 716 ■ For $j, j' \in D$, $d(j, j') = \min_{i \in R_1 \cup R_2} d(i, j) + d(i, j')$.

717 This choice of distances induces a metric graph. Moreover, every feasible solution to this
 718 TSRMB instance has a first stage cost of exactly 1. We show that a set cover of size $\leq p$
 719 exists if and only if there is a TSRMB solution with total cost equal to 2. Suppose without
 720 loss of generality that S_1, \dots, S_p is a set cover. Then by using the drivers $\{1, \dots, p\}$ in the
 721 second stage, we ensure that every scenario is matched with a cost of 1. This implies the
 722 existence of a solution with total cost equal to 2. Now suppose there is a solution to the
 723 TSRMB problem with cost equal to 2. Let D_2 be the set of second stage drivers of this
 724 solution, then we have $|D_2| = p$. We claim that the sets corresponding to drivers in D_2 form
 725 a set cover. In fact, since the total cost of the TSRMB solution is equal to 2, the second
 726 stage cost is equal to 1. This means that for every scenario $i \in \{1, \dots, n\}$, there is a driver
 727 $j \in D_2$ within a distance 1 from i . Therefore $i \in S_j$ and $\{S_j : j \in D_2\}$ is a set cover.

728 Next we show that if $(2 - \epsilon)$ -approximation (for some $\epsilon > 0$) to the TSRMB exists then
 729 Set Cover is decidable. We know that the TSRMB problem has a solution of cost 2 if and
 730 only if there is a set cover of size less than p . Furthermore, if there is no such set cover, the
 731 cost of the optimal solution must be 4. Therefore, if the algorithm guarantees a ratio of
 732 $(2 - \epsilon)$ and there is a set cover of size less than p , the algorithm delivers a solution with a
 733 total cost of 2. If there is no set cover, then clearly the solution produced by the algorithm
 734 has a cost of 4. ◀

735 ► **Remark 12.** For $k \geq 2$, we can use a generalization of Set Cover to show that the problem
 736 is hard for any k . We use a reduction from the Set MultiCover Problem ([3, 43]) defined
 737 below.

738 **Set MultiCover Problem:** Given a set of elements $\mathcal{U} = \{1, 2, \dots, n\}$ (called the universe)
 739 and a collection S_1, \dots, S_m of m sets whose union equals the universe. A "coverage factor"
 740 (positive integer) k and an integer p . Is there a set $C \subset \{1, \dots, m\}$ such that $|C| \leq p$ and for
 741 each element $x \in \mathcal{U}$, $|j \in C : x \in S_j| \geq k$?

742
 743 We can create an instance of TSRMB from a Set MultiCover instance similarly to Set
 744 Cover with the exception that $\mathcal{S} = \{S \subset R_2 \text{ s.t. } |S| = k\}$. The hardness result follows
 745 similarly.

746 B Implicit scenarios: small surplus

747 **Proof of Lemma 8.** Let δ be the driver given by (3). We claim that the k closest riders
 748 to δ are all within a distance less than OPT_2 from δ . Consider D_2^* to be the $k + \ell$ drivers

left for the second stage in the optimal solution. Every driver in D_2^* can be matched to a set of different second stage riders over different scenarios. Let us rank the drivers in D_2^* according to how many different second stage riders they are matched to over all scenarios, in descending order. Formally, let $D_2^* = \{\delta_1, \delta_2, \dots, \delta_{k+\ell}\}$ and let $R^*(\delta_i)$ be the second stage riders that are matched to δ_i in the optimal solution in some scenario, such that

$$|R^*(\delta_1)| \geq \dots \geq |R^*(\delta_{k+\ell})|.$$

We claim that $|R^*(\delta_1)| \geq k$. In fact, we have $\sum_{i=1}^{k+\ell} |R^*(\delta_i)| \geq n$ because every second stage rider is matched to at least one driver in some scenario. Therefore

$$|R^*(\delta_1)| \geq \frac{n}{k+\ell} \geq \frac{n}{2k} \geq k.$$

We know that all the second stage riders in $R^*(\delta_1)$ are within a distance less than OPT_2 from δ_1 . Therefore $\max_{r \in R_k(\delta_1)} d(\delta_1, r) \leq OPT_2$. But we know that by definition of δ ,

$$\max_{r \in R_k(\delta)} d(\delta, r) \leq \max_{r \in R_k(\delta_1)} d(\delta_1, r) \leq OPT_2$$

This proves that the k closest second stage riders to δ are within a distance less than OPT_2 . Let $R(\delta)$ be the set of all second stage riders that are within a distance less than OPT_2 from δ . Recall that $R_k(\delta)$ is the set of the k closest second stage riders to δ . In the optimal solution, the scenario $R_k(\delta)$ is matched to a set of at least new $k-1$ drivers $\{\delta_{i_1}, \dots, \delta_{i_{k-1}}\} \subset D_2^* \setminus \{\delta\}$. We show a lower bound on the size of $R(\delta)$ and the number of riders matched to $\{\delta_{i_1}, \dots, \delta_{i_{k-1}}\}$ over all scenarios in the optimal solution.

▷ **Claim 13.** $|R(\delta) \bigcup_{j=1}^{k-1} R^*(\delta_{i_j})| \geq n - \ell$

Proof. Suppose the opposite, suppose that at least $\ell+1$ riders from R_2 are not in the union. Let F be the set of these $\ell+1$ riders. Since $\ell+1 \leq k$, we can construct a scenario S that includes F . In the optimal solution, and in particular, in the second stage matching of S , at least one rider from F needs to be matched to a driver from $\{\delta, \delta_{i_1}, \dots, \delta_{i_{k-1}}\}$. Otherwise there are only ℓ second stage drivers left to match all of F . Therefore there exists $r \in F$ such that either $r \in R(\delta)$ or there exists $j \in \{1, \dots, k-1\}$ such that $r \in R^*(\delta_{i_j})$. This shows that $r \in R(\delta) \bigcup_{j=1}^{k-1} R^*(\delta_{i_j})$, which is a contradiction. Therefore, at most ℓ second stage riders are not in the union. ◀

▷ **Claim 14.** For any rider $r \in R(\delta) \bigcup_{j=1}^{k-1} R^*(\delta_{i_j})$, we have $d(r, \delta) \leq 3OPT_2$.

Proof. If $r \in R(\delta)$ then by definition we have $d(r, \delta) \leq OPT_2$. Now suppose $r \in R^*(\delta_{i_j})$ for $j \in [k-1]$. Let r' be the rider from scenario $R_k(\delta)$ that was matched to δ_{i_j} in the optimal solution. Then by the triangular inequality

$$d(r, \delta) \leq d(r, \delta_{i_j}) + d(\delta_{i_j}, r') + d(r', \delta) \leq 3OPT_2.$$

From Claim 14, we see that the ball centered at δ , with radius $3OPT_2$, contains at least $n - \ell$ second stage riders in $R(\delta) \bigcup_{j=1}^{k-1} R^*(\delta_{i_j})$. This proves the first part of the lemma. The second part is proved in the next claim.

12:22 Matching Drivers to Riders: A Two-stage Robust Approach

775 \triangleright Claim 15. For $r_1 \in R_k(\delta)$ and $r_2 \in R(\delta) \bigcup_{j=1}^{k-1} R^*(\delta_{i_j})$, we have $d(r_1, r_2) \leq 4OPT_2$.

776 **Proof.** Let $r_1 \in R_k(\delta)$. If $r_2 \in R(\delta)$ then $d(r_1, r_2) \leq d(r_1, \delta) + d(\delta, r_2) \leq 2OPT_2$. If
777 $r_2 \in R^*(\delta_{i_j})$ for some j , and r' is the rider from scenario $R_k(\delta)$ that was matched to δ_{i_j}

778
$$d(r_1, r_2) \leq d(r_1, \delta) + d(\delta, r') + d(r', \delta_{i_j}) + d(\delta_{i_j}, r_2) \leq 4OPT_2.$$

779 \blacktriangleleft

780 Claim 13 shows that the number of riders included in $R(\delta) \bigcup_{j=1}^{k-1} R^*(\delta_{i_j})$ is at least $n - \ell$. Claim
781 14 shows that each one of this rider has distance less than $3OPT_2$ from δ . Finally, Claim 15
782 shows that the distance between any one of this riders and any rider in $R_k(\delta)$ is less than
783 $3OPT_2$. This concludes the proof of Lemma 8. \blacktriangleleft