Semantic Private Information Retrieval

Sajani Vithana, Student Member, IEEE, Karim Banawan, Member, IEEE, and Sennur Ulukus, Fellow, IEEE

Abstract—We investigate the problem of semantic private
information retrieval (semantic PIR). In semantic PIR, a user
retrieves a message out of /K independent messages stored in
N replicated and non-colluding databases without revealing the
identity of the desired message to any individual database. The
messages come with different semantics, i.e., the messages are
allowed to have non-uniform a priori probabilities denoted by
(p: > 0,1 € [K]), which are a proxy for their respective popular-
ity of retrieval, and arbitrary message sizes (L;, i € [K]). This is a
generalization of the classical private information retrieval (PIR)
problem, where messages are assumed to have equal message
sizes. We derive the semantic PIR capacity for general K, N.
The results show that the semantic PIR capacity depends on the
number of databases N, the number of messages K, the a priori
probability distribution of messages p;, and the message sizes L,.
We present two achievable semantic PIR schemes: The first one
is a deterministic scheme which is based on message asymmetry.
This scheme employs non-uniform subpacketization. The second
scheme is probabilistic and is based on choosing one query set out
of multiple options at random to retrieve the required message
without the need for exponential subpacketization. We derive
necessary and sufficient conditions for the semantic PIR capacity
to exceed the classical PIR capacity with equal priors and sizes.
Our results show that the semantic PIR capacity can be larger
than the classical PIR capacity when longer messages have higher
popularities. However, when messages are equal-length, the non-
uniform priors cannot be exploited to improve the retrieval rate
over the classical PIR capacity. We provide two extensions of the
semantic PIR problem, namely, the semantic PIR from MDS-
coded databases and the semantic PIR from colluding databases.
For both extensions, we derive the exact PIR capacity in addition
to providing a corresponding optimal scheme.

I. INTRODUCTION

Private information retrieval (PIR) describes an elemental
privacy setting. In the classical PIR problem, introduced in the
seminal paper [1], a user needs to retrieve a message (file),
out of several messages, from multiple replicated databases,
without revealing any information about the identity of the
desired message. This problem has attracted significant recent
interest in information theory where the fundamental limits
of the problem based on absolute guarantees (in contrast to
computational guarantees as in [2]) have been investigated. In
[3], the notion of PIR capacity is introduced as the maximum
ratio of the desired message size to the total download size.
Reference [3] has characterized the classical PIR capacity
using a greedy algorithm which is based on message and
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database symmetry. Using this performance metric, further
practical variants of the problem have been investigated in
different settings, such as, colluding databases [4]-[8], coded
storage [9]-[11], coded and colluding databases [12]-[15],
Byzantine databases [16]-[18], storage constrained databases
and other storage related settings [19]-[26], multiple message
PIR [27], [28], symmetric PIR [29]-[32], PIR with side
information [33]—-[40], cache-aided PIR [41]-[45], information
leakage in PIR [46]-[48], private computation [49]-[51], se-
curity constraints and effects of adversaries and eavesdroppers
on PIR [52]-[57], studies of optimal costs in PIR [58]-[61]
and PIR under different channel configurations [62]-[64].

In all these works, two assumptions are made: All messages
have the same size', L, and all messages are requested
uniformly by the users. These assumptions are highly idealistic
from a practical point of view. Take a streaming application
for instance. The storage database has a catalog of different
movies and TV shows. These media files cannot be assumed
to have the same level of popularity, i.e., it is unlikely that
all files are equally probable to be downloaded by a user.
The streaming service, in this case, has an a priori probability
distribution over all the files, for example, from box office
revenues and online rating systems. In addition, the media files
cannot be assumed to be equal in size; some movies are longer,
some are shorter. Consequently, each message stored in the
databases exhibits different semantics, in the sense that each
message has a different size and a different prior probability of
retrieval. With this backdrop, in this paper, we investigate how
a PIR scheme should be implemented over databases holding
messages with different semantics.

In this paper, we introduce the semantic PIR problem. We
extend the notion of the PIR capacity to deal with the hetero-
geneity of message sizes and prior probabilities. We define the
retrieval rate to be the ratio of the expected message size to
the expected download cost. Due to the privacy constraint, the
download cost needs to be the same for all messages; thus,
the expected download cost is equal to the download cost for
each individual message. Hence, the retrieval rate achieved
by a given scheme is equal to the weighted average of all
individual message retrieval rates. We investigate the semantic
PIR capacity as a function of the system parameters: number
of databases N, number of messages K, message priors p;,
and message lengths L;. We ask how semantic PIR capacity
compares to classical PIR capacity, and whether there is a PIR

'With the exception of [29], which characterizes the capacity of the sym-
metric PIR (SPIR) problem for heterogeneous file sizes (without considering
a priori probabilities of retrieval) to be Ry = #L’“LL (1 - %), where
Ry, is the rate of retrieving message k. The achievable scheme follows by
dividing the files into partitions of length N — 1 and repeating the original
SPIR scheme in each partition. This scheme zero-pads shorter messages so
that their lengths are equal to that of the longest message.



capacity gain from exploiting the message semantics.

In this paper, we characterize the exact semantic PIR
capacity for arbitrary parameters. To that end, we present two
achievable schemes; the first scheme is deterministic, in the
sense that the query structure is fixed, and the second scheme
is stochastic, in the sense that the user picks a query structure
randomly from a list of possible structures. For the determin-
istic scheme, we present a systematic method to determine
the subpacketization level for each message. Note that this
is crucial in our semantic problem due to the heterogeneous
message sizes, unlike the majority of the literature that utilizes
uniform subpacketization within their schemes [61]. This
scheme uses non-uniform subpacketization where the block
size considered in each download differs from one message
to another. The query structure of the deterministic scheme
resembles the query structure of [3], in that, our scheme uses
the same k-sums idea of [3]. The second achievable scheme
is comprised of several query options that the user may use
with equal probability to retrieve any message. In this scheme,
the messages are divided into several blocks depending on the
number of databases. The message is retrieved using a single
set of queries, which is chosen uniformly randomly from the
query options to ensure privacy. This is similar to the scheme
presented in [47] with an extension to more than two databases
(see also [60]). We provide a matching converse that takes
into account the heterogeneity of message sizes, resulting in
settling the semantic PIR capacity. Additionally, we provide
two extensions of the semantic PIR problem, namely, the
semantic PIR from MDS-coded databases and the semantic
PIR from colluding databases. For both extensions, we derive
the exact PIR capacity in addition to providing a corresponding
optimal scheme.

The semantic PIR capacity is a function of the message
sizes and the a priori probability distribution. The expression
implies that for certain message sizes and priors, the classical
PIR capacity may be exceeded by exploiting the semantics
of the messages even if the zero-padding needed in classical
PIR to equalize the message sizes is ignored. Concretely,
our results imply: 1) When message lengths are the same,
semantic PIR capacity is equal to the classical PIR capacity
no matter what the message priors are, i.e., priors cannot be
exploited to increase the PIR capacity if the message lengths
are the same. 2) For certain cases, such as when the prior
probability distribution favors longer files (i.e., longer files
are more popular), the semantic PIR capacity exceeds the
classical PIR capacity which depends only on the number of
databases and the number of messages. Note that, by classical
PIR capacity, we mean the classical PIR capacity expression,
which may not be attainable for heterogeneous file sizes. 3)
For all priors and lengths, our scheme achieves a larger PIR
rate than the PIR rate the classical approach would achieve by
simply zero-padding the messages to bring them to the same
length, as it assumes.

II. PROBLEM FORMULATION

We consider a setting, where N non-colluding databases
store K independent messages (files), Wi,..., Wk, in a

replicated fashion. The messages exhibit different semantics,

e., the messages have different sizes and different a priori
probabilities of retrieval. The a priori probability of W; is
denoted by? p;, such that p; > 0 fori = 1, ..., K. The a priori
probability distribution is globally known at the databases and
the user. We assume that all message symbols are picked from
a finite field® F,. The message size of the ith message is
denoted by L;. Without loss of generality, we assume that the
messages are ordered with respect to their sizes*, such that
Ly > Ly > --- > Lg. We assume that the messages stored
in databases are mutually independent (which in turn implies
pairwise independence). Hence, assuming that the message
sizes are expressed in s-ary symbols,

HW;))=L;, i=1,....K (1)

K K
=Y HW)=> L )
=1 i=1

In semantic PIR, a user needs to retrieve a message W;
without revealing the index ¢ to any individual database. To
that end, the user sends a query to each database. The query
sent to the nth database to retrieve W; is denoted by Qn for
n = 1,..., N. Prior to retrieval, the user does not have any
information about the message contents. Hence, queries sent
to the databases to retrieve messages are independent of the
messages, i.e., the mutual information between messages and
queries is zero,

I(Wy,. ..,

HWy,...,Wg)

Wi QW Qi =0, i=1,...,K (3)

Once the databases receive the queries, they generate answer
strings to send back to the user. Specifically, the nth database
prepares an answer string A,[f] which is a deterministic function
of the stored messages Wi, ..., Wk and the received query
QE]. Therefore,

4)

For a feasible PIR scheme, two conditions need to be
satisfied, namely, the correctness and the privacy constraints.
These are formally described as follows.

Correctness: The user should be able to perfectly retrieve
the desired message as soon as the answer strings to the queries
are received from the respective databases. Therefore,

Hw; AP Al QL Qi =,

Privacy: To protect the privacy of the desired message
index ¢, the queries should not leak any information about <.
Formally, for the nth database, the a }])osteriori probability of
the message index ¢ given a query Q should be equal to the
a priori probability of the message index . That is, the random

1=1

K (5)

2We assume that p; > O for all 4 € [K] without loss of generality, as
p; = 0 for some j implies that this message, W, is either non-existent or
never requested by the user. Hence, the setting can be reduced to a semantic
PIR problem with K — 1 messages, each with p; > 0.

31n this work, it suffices to work with the binary field, hence, symbols can
be interpreted as bits.

4This is for ease of expression of the capacity formula in (9). The largest
length should have the largest coefficient in the expression in (9) in order to
have the largest achievable rate and the tightest converse.



variable representing the desired message index, 6, should be
independent of the received set of queries. Therefore,

PO=ilQy=P@O=4),i=1,....,K, n=1,...,N

(6)

The privacy constraint (6) along with the independence of
messages and queries (3) implies,

QUL AW Wy . W) ~ (QU, AL Wy W),
n=1,...,N,i,j=1,....K, i #j @)

An achievable semantic PIR scheme 7 is a scheme that sat-
isfies the correctness constraint (5) and the privacy constraint
(6). Due to the heterogeneity of message sizes and a priori
probabilities, in this work, we define the performance metric,
the expected retrieval rate R(w) for any scheme 7 € II, where
II is the set of all PIR schemes satisfying the correctness and
privacy constraints given in (5) and (6), as the ratio of the
expected retrieved message size to the expected download size,
ie.,

R(r) = 51
[D]

where E[L] is the expected number of useful bits downloaded
and E[D] is the expected number of total bits downloaded.
The expectation E[-] in E[L] is with respect to the a priori
probability distribution. Note that E[L] is fixed for any scheme
as it is completely determined by the set of message lengths
and prior probabilities which are given in the semantic PIR
setting. The expectation E[-] in E[D] is with respect to the
distribution of the queries. Note that E[D] does not depend
on the prior distribution as for any desired message, the
download cost must remain the same to preserve privacy.
Therefore, E[D] of a given scheme is completely determined
by the structure of the scheme. The semantic PIR capacity is
defined as the supremum of the expected retrieval rates over
all achievable PIR schemes in II, ie., C' = sup,cq R(7).
Moreover, the optimal semantic PIR scheme 7* € II is an
achievable scheme that minimizes the expected download cost,
ie., 7 = argmingen E[D].

mell ®)

III. MAIN RESULTS AND DISCUSSIONS

In this section, we present the main results of the paper. Our
first result is a complete characterization of the semantic PIR
capacity. The semantic PIR capacity depends on the message
sizes and prior probability distribution.

Theorem 1 The semantic PIR capacity with N databases, K
messages, message sizes L; (arranged in decreasing order as

L1 > Ly > --- > L), and prior probabilities p;, is
Ly 1 Ly 1 L\
c==L 4+~ ST 9
(E[L} TNEL T N E[L]) ®

B Lo 1 Ly
ZiKzl piL; N Zzl{:l piL;
—1
1 Lx
+ — (10)
NEE S pz’Li>

where E[L] = Zfil i L.

The achievability proof of Theorem 1 is presented in Sec-
tion I'V and the converse proof is presented in Section V. Next,
we have a few corollaries and remarks.

The following corollary gives a necessary and sufficient
condition for the cases at which the semantic capacity exceeds
the classical PIR capacity.

Corollary 1 (A Necessary and Sufficient Condition for Semantic Cay

The semantic PIR capacity is strictly larger than the classical
PIR capacity (with uniform priors and message sizes) if and
only fif,

Ko
—(L; —E[L]) <0 (11)
2N

which is further equivalent to,

ZZN”

=1 j=1

—Lj)<0 (12)

Proof: The proof follows from comparing the semantic PIR
capacity expression in (9) and the classical PIR capacity,
Cprg, in [3],

-1
1 1
CPIR:(1+N+"'+]VK1) (13)
Hence, C' > C'p;r implies
L 1 L 1 L
it e T 7_71(
E[L] NE[L] NE-1E[L]
1 1
<I+ o+t R (14)
Ordering the terms leads to,
ZNl ; E[L]) <0 (15)

i=1

Noting L; = Z;iliji, since p; sum to 1, and E[L] =
Z;il p;L; by definition of expectation,

ZZNH

i=1 j=1

~L;j) <0 (16)

Remark 1 The condition in (11) is a statement about the sum
weighted (by ﬁ ) deviation of message size from its expected
value. Note that the expected value of the message size E[L|
is a function of the message sizes L; and the prior distribution
pifori=1,... K.

Remark 2 The intuition behind the condition in Corollary 1 is
as follows. The set of message lengths and prior probabilities
need to result in a large enough expected message length,
which further implies that the longer messages need to be more
popular, in order for the semantic PIR rate to outperform the
classical PIR rate.



Remark 3 More explicit conditions can be derived for spe-
cific cases. For example, consider the case K = 2, N = 2, and
assume that L1 > Lo (strictly larger). Then, (11) simplifies to,

1
(L1 — (p1L1 + paLo)) + §(L2 — (p1L1 +p2L2)) <0 (17)

1
p2(L1 — La) + §p1(L2 — L) <0 (18)

1
P2 = 5P1 <0 (19)
2
D1 >§ (20

where (19) follows from Ly > L. This means that for N = 2
and K = 2, the capacity of semantic PIR is greater than the
capacity of classical PIR when the a priori probability of the
longer message is greater than % irrespective of the values of
L1 and LQ.

As a further explicit example, if the more likely message
is 4 times more likely and 4 times longer than the less likely
message, i.e., if p1 = 4ps and L1 = 4L, then the semantic

3% \while the classical PIR capacity is

PIR capacity is C = iz
2 — 39 That is, for this case, Cprr = % <O = %,

CpiR=7%= 4.

Remark 4 We further expand on Remark 3 above by noting
the following fact. The classical PIR capacity is a formula, as
given in (13), that depends only on the number of databases
N and the number of messages K, and is not necessarily
achievable by the classical PIR scheme for any given message
priors and lengths. To see this, we note that the classical
PIR scheme requires equal message sizes. In the example in
Remark 3 where p1 = 4ps and Ly = 4Lo, if we zero-pad
the shorter message to make the message lengths the same,
we achieve R,.;, = pl% —|—p2% = % by noting D = %Ll
as the length of the longer message is the common message
length now, and the classical PIR capacity for this case is %
Thus, we observe R,.;, = % < Cprr = % <C= Z—gfor this
case.

As a follow up to Remark 4, we note that the achievable
scheme proposed in this paper always outperforms zero-
padding shorter messages and applying the classical PIR
scheme for so-constructed equal-length messages. This is
proved in the following corollary.

Corollary 2 Semantic PIR capacity outperforms classical
PIR rate with zero-padding.

Proof: We first calculate the general achievable rate for the
classical PIR scheme with zero-padding, R,.;. Noting L; >
Ly > --- > Lk, we zero-pad messages 2,..., K until the
message sizes are all equal to L;. Next, we apply the classical
PIR scheme with the common message size L;. Then, the
download cost (and the expected download cost) becomes,

— Ll
Cprr

E[D] = D 1)

Now, using C'prg in (13) in equation (21) above, we obtain,
E[L]

Rach = m

(22)

L, 1 I 1 L\ !
(=t 4, - =t 4, 4L " 23
(&1 o+t e @
Note repeated L; in the expression in (23). Comparing R,
in (23) with the semantic PIR capacity in (9), we deduce that
RachgcaSlelQZ"'ZLK- n

Remark 5 If all messages have equal lengths, irrespective of
the prior probabilities, the capacity of semantic PIR becomes
equal to that of classical PIR. Note, in this case, L; = E[L]
and the capacity expression in (9) reduces to the classical PIR
capacity expression in (13). Thus, in order to exploit variability
in priors to achieve a PIR capacity higher than the classical
PIR capacity, we need variability in message lengths.’

Remark 6 Similar to classical PIR, the semantic PIR capac-
ity increases with the number of databases, N. As the number
of databases approaches infinity, the capacity approaches %f].
The reason why this asymptotic capacity is less than 1 is
that the download cost must remain constant at Ly (as the
longest message achieves a rate of 1) irrespective of the
desired message. The semantic PIR capacity decreases as the
number of messages, K, increases. As K approaches infinity,
the semantic PIR capacity is lower bounded by

o)

IV. ACHIEVABILITY PROOF

(24)

In this section, we present two PIR schemes that achieve
the semantic PIR capacity given in Theorem 1. For each
scheme, we first formally present the scheme, then we verify
its correctness and privacy, calculate its achievable rate, and
give explicit examples for illustration.

A. Achievable Semantic PIR Scheme 1

The scheme is based on the iterative structure of the
achievable scheme in [3]. In this scheme, the user downloads
k-sums from the messages for ¥ = 1,..., K. The novel
component in our scheme is the calculation of the number
of stages needed to be downloaded from each message based
on the message sizes.

This  achievable  scheme is  parameterized by
(K,N,{L;}X ). Based on these parameters, the user
prepares queries to retrieve the desired message privately.
The basic structure of our achievable scheme is as follows.

1) Message indexing: Order the messages in the descending

order of message sizes. That is, index 1 is assigned to the
longest message and index K is assigned to the shortest
message (Ly > Lo > --- > Lk). Calculate retrieval pa-
rameters® v, vs, ..., vx corresponding to each message

31t is worth noting that classical PIR schemes need to be designed to satisfy
the privacy constraint irrespective of the prior distribution. Nevertheless, the
performance of the classical PIR schemes does not depend on the prior
distribution as they consider uniform message sizes. This is in contrast to
the semantic PIR problem, where the heterogeneity of the message sizes can
be exploited to enhance the retrieval rate based on the properties of the prior
distribution.

This set of parameters determines the nonuniform subpacketization of a
given semantic PIR setting with arbitrary message lengths. It also controls
the numbers of stages in the next steps of the scheme (numbers of ¢-sums,
£ €{1,...,K}) such that the scheme is private and capacity achieving.



2)

3)

4)

such that vy > v9 > --- > vg. The retrieval parameters
denote the number of stages that needs to be downloaded
from each message. The explicit expressions for these
parameters are as follows:

i
T
i

U1 % T N2 T NS _W Ll
0 L _N-1 _N-1| g

U2 N2 N3 ]{}]K 2
vs|=L]lo 0 i N1 L
. (67 . . .
VK 0 0 0 ﬁ LK

(25)

where « can be chosen as the ged of the vector elements
resulting from the matrix multiplication in the right
hand side of (25). This choice will become clear in
Section IV-Al.

For the rest of this section, assume that the user wishes
to download W;.

Index preparation: The user permutes the indices of
all messages independently, uniformly, and privately
from the databases. l.e., if the number of elements
in a subpacket of W; is ¢;, let W; be denoted by,
W, = (W;(1),...,W;(¢)) for i € {1,...,K}. For
each message W;, the user uniformly and randomly
chooses a permutation of the ¢; indices out of the ¢;!
options, indicated by (v;(1),7i(2),...,7(¢;)), which is
independent of all other message permutations. Then,
the permutation of the elements of W, is given by,
PWi(1),...,Wi(t;)) = (Wi(%(1)), ..., Wi(7i(4))).
This process simply shuffles the elements of message
vectors uniformly and randomly irrespective of the mes-
sage requirement. All queries generated by the user in
the scheme are based on these permuted indices.
Singletons: Download vy, different bits from message W,
from the nth database, where n = 1,...,N and k =
1,..., K. Table I shows the singletons downloaded from
the required message W; and any other message W;, i #
Jj. Note that the permuted elements of W; and W; are
denoted by a’s and b’s respectively.

Sums of two elements (2-sums): There are two types of
blocks in this step. The first block is the sums involving
bits of the desired message, W, and the other block
is the sums that do not have any bits from W;. In
the first block, download (N — 1) min{v;,v;} bit-wise
sums of W; and W; each from the /N databases for all
i # j. Each sum comprises an already downloaded W
bit from another database and a new bit of Wj. Le
if v; > v; user sends queries of the form (an.;+1 +
bUrl-l)’ . ’(aNUj+Ui + bQ’Ui)’ ] (aNUjeF(N*?)UrH +
BN-1)v;41)» + - +» (@Nv, +(N-1)v; T bNw,) to database 1.
Note that each min{v;,v;} = v; side information bit
downloaded from each of the databases 2 to NN in the
previous step have been utilized exactly once in the 2-
sums of database 1. Queries of the same form are sent to
all databases, which contain new bits of W; and all the
already downloaded bits of W;, ¢ # j from the rest of
the databases. Each side information bit from the previous
step if utilized only once in a given database.

If min{v;,v;} = v; user can randomly pick any v; side
information bits out of the wv; bits from each database
and follow the same steps as above, ensuring that any
given side information bit from a different database in the
previous step is utilized only once in a given database.
For the second block, for all possible message pairs
(Wi, Wi,) for i3 # is # j, download (N —
1) min{v;,, v;,} number of bit-wise sums of W;, and
W;, each from the N databases. Each sum comprises of
fresh bits from W;, and W;,.
5) Repeat step 4 for all k-sums where k = 3,4, ..., K. For
each k-sum, download k bit-wise sum from %k messages.
If one of these messages is the desired message, the
remaining (k — 1)-sum is derived from the previous
(k — 1)th round from a different database. Otherwise,
download (N —1)*~'min{v;,, ..., v;, } sums from new
bits of the undesired messages.

1) Rate of Semantic PIR Scheme 1: In this PIR scheme,
the total number of downloaded bits remains constant for all
message requirements of the user in order to guarantee privacy.
Therefore, E[D] in (8) can be calculated by counting the total
number of bits in the set of queries sent to the databases by
the user to download any message. Within the set of queries,
there are S ,—1 Nv; number of singletons and Z N(N —

1)t (z }) number of sums of ¢ elements. Therefore,

ZNvl—ktz;;N (i) oo
- N Zvﬁ—;; (1 )] 27
=N ZUH_ZU1< ( ) >]

_ (28)
=N ivi+§vi (N1 )] (29)
:ivljw (30)

In order to calculate E[L], assume that the desired message
is W;. There are Nv; number of singletons of W in the set of
queries sent to the databases to retrieve ;. The scheme can
recover N(Nfl)tflvj (")) +N(N-1)t- 1Z¢K=]‘+1 v ((72)
number of W; bits using the ¢th block of the scheme (sum
of t elements) when ¢ < j, where the first term in the sum
corresponds to ¢-sums with the shortest message being W;
and the second term corresponds to t-sums with the shortest
message being some other message (# W;). When ¢ > j this
scheme is able to retrieve S 1, N(N — 1) v; (:22) number
of W bits as there should be at least {— j number of messages
in the sum that are shorter than L ;. Therefore, the total number
of useful bits of W¥; retrieved, Uj, is given by,

J .
—1
Uj =Nv; + Y <N(N — 1)ty (i - 1)
t=2



Message | Database 1 Database 2 . Database N
Wj aiy ..., Qy; Ayi41y - -5 Q20 a(N—l)vj+17'~~aanj
Wii #3 | biyeoyby, | bugr,-ooibay, | - bN-1)v;+15 -+, bNw,

TABLE I: Singleton queries.

€29

(32)

(33)

=Niv; + N(N = 1)(N — 1+ 1) 1v; 4,

+N(N—].)(N—1+].)J'U]+2+

+ N(N =1)(N -1+ 1)5 20, (35)
K
=NJv; + (N —1) Z Nl (36)
i=j+1

Thus, the scheme retrieves N7v; + (N —1) Zfijﬂ Ni—ly;
number of useful bits of the required message at a time. Hence,

we define subpacketization for message W; as U;, where
K
Uj=Nuvj+(N=1) Y N7, j=1,...,K 37)
i=j+1
We then need the message sizes to be a common multiple of
their own subpacketizations,

Lj:()éUj, ]217,K (38)
We note that « should be the same for all j in (38) to guarantee
privacy.

The requirements in (37) and (38) can be written succinctly
as a matrix equation,

Ly N N(N-1) ... NE-L(N-1) U1
Lo 0 N2 ... NE-YN-1) ()
. =« . .
LK 0 0 [N NK VK
(39)
Since Lq,..., Lk are parameters (inputs) to the scheme, the
internal parameters vy, ..., vk can be calculated by inverting
the matrix as,
vl ¥ % I —v= | [L
U2 ) 0 7z -TF - W}l Ly
v3| =~ 10 0 ﬁ —N;Kl Ls
. o . . .
VK 0 0 0 ﬁ LK
(40)

Here, « should be chosen to be the greatest common divisor
(gcd) of the elements of the vector resulting from multiplying
the matrix and the vector on the right side of (40). This
allows the shortest subpacketization levels for all messages
for increased flexibility.

The total number of bits downloaded calculated in (125) and
the number of useful bits downloaded calculated in (36) are
both within one subpacketization level. This subpacketization
level downloads are repeated « times to download the entire
file; see also (38). Thus, we calculate the achievable rate of
this scheme as,

E[L]

“ED] @



_ Zszl piUi

42
ZiK:I N'v; “
1 K
=2 L
e adi=i? — @)
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where (43) follows by applying (38) in the numerator and
writing v; in terms of L; using (40) in the denominator. This
concludes the derivation of the achievable rate.

Remark 7 We assume that message L; has a length which
is a multiple of N to aid smooth computation of vy, ..., V.
This is automatically satisfied by the assumption of all message
lengths being multiples of N* in [3].

2) Proof of Privacy: Since Ly > Lo > > Lk
we have v; > vy > > wvg. A given database re-
ceives a set of queries for vy, vs,...,vx numbers of bits

of Wi, Ws, ..., Wk, respectively, as singletons and (N —
1)t min{v;,,...,v;, } bit-wise t-sums of W;,, ..., W;,, for
t = 2,...,K. According to the query generation procedure,

no bit of any message is requested from a given database
more than once as a singleton or as an element of a sum.
Any given database receives the exact same set of queries
in type, irrespective of the desired message of the user.
Therefore, two sets of queries corresponding to two dif-
ferent message requirements received by a given database
can only differ from the permutations used in each message
in the index preparation step. Let (wi,ws,...,Wg) be a
sample realization of permutations used in the query gener-
ation process when the message requirement 6 is Wj, where
wW; = Fl(Wl(l), WZ(Q), ey Wl(gz)) for ¢ € {1, ey K} with
permutation functions I'; that independently and randomly per-
mute the ¢; elements of W;, where ¢; is the subpacketization
of W;. Therefore, the probability of sending the set of queries
q for a given message requirement § = k is equal to the
probability of choosing the corresponding sample realization
of permutations of the message bits when downloading Wj.
This probability is calculated by,

P(Qn = Q|9 = k)

=P(permutation = (w1, Wwa,...,Wk)|0 =k) (49)
= H P(permutation of W; = w;|0 = k) (50)
=1
K
1
@) () () o

for n € {1,...,N}, where @, is the random variable
representing the set of queries sent to database n. This yields,

P(Qn:qw:i):P(Qn:qw:j)a
Vi,je{l,...,K}, ne{l,...,

as P(Q, = ¢q|0 = k) is independent of k by the above
calculation. The a posteriori probability of the user needing
W; given a realization of the set of queries received by any
given database is given by,

P(Q =ql0 =i)P(6 = i)

N} (52

PO=ilQ=q) = (53)
@=d@=9 S P(Q = ql0 = 5)P(0 = j)
Using (52),
. P(Q=ql0 =1i)P(0 =1)
PO =ilQ=q) = (54)
=== S b =g =P -))
= P(0 =) (55)

which ensures that this scheme is private, since it implies that
f and @ are independent.

B. Examples of Semantic PIR Scheme 1

1) Example 1: N = 2, K = 2, L1 = 1024 bits, L, =
256 bits: First, the message indices are independently and
uniformly permuted. The first and the second messages after
permutations are denoted by bits a; and b;, respectively.

o Message indexing and calculation of v;: Messages are
indexed such that the first message is the longer one,
and the second message is the shorter one. Below, we
will give query tables for downloading W, and W5. We
calculate v; and vy as,

vl _ 1[5 =] [
el Tl e
where a =ged{£t — £2 L2} By direct substitution, we
get,
v] 1 [448
o] =4 L6 o7

Hence, o« =gcd{448,64} = 64. Therefore, v; = 7 and
vo = 1. The subpacketization levels of W; and W5 are
Ui = M =16 and Uy = @ = 4, respectively.

o Slngletons Download v; = 7 bits of W7 and vy = 1 bit
of W5 each from the two databases.

o Sums of twos: Download (N —1)vy = 1 sum of W and
W5 bits each from the two databases. Note that if W is
the desired message, the singletons of W5 are used as a
side information with new W bits in the sum and vice
versa.



Tables II and III show the queries sent to the databases to
retrieve Wy and Ws, respectively.

Database 1 | Database 2
ai,...,ar ag,...,a14
b1 b2
a5 + by a6 + by

TABLE II: The query table for the retrieval of Wj.

Database 1 | Database 2
ai,...,ar ag,...,a14
by bo
ag + b3 a1 + by

TABLE III: The query table for the retrieval of W.

The rate achieved by this scheme when downloading W}
is By = 12 = 3, and the rate achieved by this scheme when
downloading Wy is Ry = 14—8 = %. Therefore, the average rate
R achieved by the scheme is,

E[L]  pili+ple Ly Lo

R= = =p1— —= 58
ED] - pmD+pmD DD TP2p  ©OY

8 2
=p1R1 +p2Ry = g + gP2 (59)

This matches the capacity expression in Theorem 1 as,

Ly 1 Ly \ '
===+ == 60
o~ (g + ver) 0

256 '
=(1024p; +256p2) 1024 + =~ (61)
8 2

=— — 62
oM + P2 (62)

The classic PIR capacity for this case with equal priors is,

1\ ¢ NN 2
o (i) (1))

The semantic PIR capacity in (62) exceeds the classical PIR
capacity in (63) when

(63)

8 n 2 S 2

9p1 9p2 3
which is when p; > 2. Consequently, when p; > Z, there is a
strict gain from exploiting message semantics for PIR, in this
case.

(64)

Remark 8 Although it is apparent in this example that the
rate of semantic PIR is lower than the capacity of classical
PIR for p1 < % as discussed in Remark 3 and Remark 4,
there is a subtle aspect that should be addressed for a fair
comparison. To see this, let us take the case of uniform a priori
distribution, i.e., p1 = p2 = %, i.e., a case where p; < % In
this case, the semantic PIR capacity using (62) is g. In order
to properly use the classical PIR scheme in [3], messages
need to be of equal size. One way to do this is to zero-pad
the shorter message to be of length 1024 bits as well. In this
case, the actual retrieval rate is not % as the actual message
size of Wy is much less. Specifically, the total download for

this scheme is D = % = % = 1536. The actual retrieval

rate for the classical PIR problem is,

1/2><1024+1/2><256_3<§<§
1536 12 79 79

Thus, the actual achievable rate Rg,.j is %, which is less
than the semantic PIR capacity g, which is less than the
classical PIR capacity g. Thus, even though the semantic PIR
capacity is less than the classical PIR capacity, the semantic
PIR capacity (which is achievable) is larger than the classical

PIR rate with zero-padding as proved in Corollary 2.

Rach =

(65)

2) Example 2: N =4, K = 3, L1 = 8192 bits, Lo = 2048
bits, L3 = 512 bits: First, the message indices are indepen-
dently and uniformly permuted. The first, second, and third
messages after permutations are denoted by bits a;, b; and ¢;,
respectively.

e Message indexing and calculation of v;: Messages are
indexed such that the first message is the longest one, and
the third message is the shortest one. Below, we will give
the query table for downloading W5, i.e., the medium-
length message. The bits of W, are represented by b;.
We calculate vy, v9 and v3 as,

1 3 3
U1 117 —36 —al |In
w|==]0 L -2 |L (66)
vs| Yo 0 & | |Ls
where o =ged{Lt — 3Lz _3Ls Lz 3Ls s} By direct
substitution, we get,
U1 1640
v | = = | 104 (67)
«
U3 8

Hence, oo =gcd{1640, 104, 8} = 8. Therefore, v; = 205,
vy = 13 and vs = 1. The subpacketization levels of W7,
W5 and W3 are Uy = 8192 = 1024, U, = 2088 = 256
and Us = % = 64, respectively.

o Singletons: Download v; = 205 bits of Wi, va = 13
bits of W5 and vs = 1 bits of W3 each from the four
databases.

e Sums of twos: Download (N — 1)vy = 39 sums of W3
and W5 and (N —1)vz = 3 sums of W5 and W3 bits each
from the four databases. Use the downloaded singletons
from W5, W3 as side information with new W5 bits.
Download (N — 1)vs = 3 bit-wise sums of W, and W3
each from the four databases using fresh bits of both
messages.

o Sums of threes: Download (N — 1)2v3 = 9 bit-wise
sums involving all three messages from each database
utilizing the downloaded sums of W; and W3 from the

other databases in the previous step as side information.

Table IV shows the queries sent to the databases to retrieve
Wa.
The rate achieved by this scheme when downloading W5 is

Ry = 235 = 54 and the rates achieved when downloading
_ 1024 __ 256 _ 64 __ 16
Wy and W3 are Ry = 1055 = 573 and R3 = 1093 = 375>

respectively. Therefore, the average rate R achieved by this



Database 1 Database 2 Database 3 Database 4
ag,...,0a205 a206; - - -, 4410 a411, - -+, 0a615 ag16; - - - , 4820
b17...,b13 b147.-.,b26 b277.7b39 b407...,b52
C1 C2 C3 Cq
a206 + bs3 a411 + bg2 ag16 + b131 ay + biro
az1g + bes a423 + b1o4 a2 + b1a3 a13 + big2
as11 + bes ag16 + b1os ay + by azo6 + b1g3
423 + brg ag2g + b117 a13 + bise a218 + b1os
ae16 + bro ay + b11g a206 + b157 as11 + bigs
agog + bo1 a13 + b13o a218 + b16y a423 + baog
boog + c2 ba12 + c3 bo1s + ¢4 ba1g + c1
ba1o + c3 ba13 +ca b1 + c1 ba1g + c2
bo11 + ¢4 ba14 + c1 ba17 + co baog + c3
ag21 + ¢s ag24 + Cs aga7 + C11 ag3o + Ci4
ag22 + Co ag2s + Co ag2g + C12 ag31 + C1s
ag23 + C7 ag26 + C10 ag29 + C13 ags2 + Ci6
aga4 + b1 +cg | asar + bago + c11 | agzo + bazg +c14 | asger + basg + ¢
agas + baoa +cg | asgas + baz1 + c12 | agzr +basg +c15 | agae + basg + cs
agae + bao3 + 10 | as2o + baga + c13 | agsa + bag1 +c16 | ases + baso + c7
ago7 + baog +c11 | agso 4 bass 4+ c1a | agor +boaz +c5 | ages 4 basy +cs
agag + baos + c12 | ag3r +baza +c15 | agas + bz +ce | agas + bas2 + cg
agag + baog + 13 | agsz + bazs + c16 | aga3z + bagg +cr | asas + basz + cio
ag3p + baor +c14 | ager +bage +c5 | agos + bass +cg | aser + bass + 11
ag31 + baog + C15 | agee +bagr +cs | agas + basg +cg | asgas + bass + 12
ag32 + bagg + C16 | Gg23 + bazg + C7 | asas + baar + C10 | ag2g + base + C13

TABLE IV: The query table for the retrieval of Wj.

scheme is,

E[L] _ pil1+p2Lo+psls
E[D] p1D + p2D + p3D
Lo

L L
:plfl +p25 +p353 =p1R1 +paRy +p3R3  (69)

R:

(68)

o3Pt T a2 T ot
This matches the capacity expression in Theorem 1 as,
Li 1 L 1 Ly \ !
C = — 2 71
(E[L] TNEL TN ]E[L]) 7
2048 512\ '
= (8192])1 + 2048ps + 512p3) <8192 + a + 42>
(72)
256 64 16
_ 0 il — 73
o7t T a7t T grats 73

The classical PIR capacity for this case with equal priors is,

1 1\7*' 1 1\ ' 16
C=(1+—+—) =(1+-4+=2) ==
(rx+m) -(+1+7) -=:

The semantic PIR capacity in (73) exceeds the classical PIR
capacity in (74) when
256 64 16 16

ars T amPr a7 o

(74)

(75)

which is equivalent to

1 4
p1+<op2 > < (76)

) 5

C. Alternative Description of Semantic PIR Scheme 1

In this section, we present an alternative description to the
semantic PIR scheme presented in Section IV-A. The two
descriptions are identical in terms of the queries generated
considering the retrieval of the entire required message (all
subpackets). However, the two descriptions differ in subpack-
etization and the scheme used within a subpacket.

Consider the general semantic PIR setting with K messages
with arbitrary message lengths Ly > Lo > ... > Lk and
arbitrary probabilities of retrieval p;, ¢ € {1,...,K}. The
alternative description requires the messages to be partitioned
in to K segments, such that the first segment contains the
first Ly bits of all messages, the second segment contains the
next Lx_1 — Ly bits of messages Wi,...,Wx_1 and the
¢th segment for ¢ € {3,..., K} contains Lx_p41 — Lx_¢42
bits of W1, ..., Wk _y1 that follow the bits in the (¢ — 1)st
segment.

Apply the classical PIR scheme in [3] to the 1) first segment
with K messages with a subpacketization of N¥, 2) second
segment with X' — 1 messages with a subpacketization of
NE=1 and 3) (th segment with K — ¢ + 1 messages with a



subpacketization of NX—¢*1 for ¢ € {3,..., K}. The above
three steps need to be followed irrespective of the message
requirement for privacy. Note that the schemes used in each
segment are private [3], and the fact that the K schemes
corresponding to the K segments are always used, even though
the required message may not be within a given segment,
guarantees privacy. The achievable rate of this scheme is
calculated as follows. The fixed download cost is given by,

L
D== 77
7 77
Lk Lig_1— Lk
- 1 1 T 1 1 -1
(1+N+"'+W) (1+N+"'+W)
Lo — L= Ly - L
2 i 1 2 (78)
1\—1 1
1+ %)
1
Therefore, the achievable rate is,
E[L]
= — 80
R==5 (80)
E[L

_LKﬁ+LK—1ﬁ+...+L2%+L1

which is the capacity of semantic PIR in (9). Note that
the description in Section IV-A provides a systematic way
of calculating the nonuniform subpacketization based on the
given set of message lengths. The scheme is then described
on a single subpacket, which is repeatedly applied throughout
the retrieval process in the same way. On the other hand, the
alternative description has different uniform subpacketizations
for different segments. Therefore, the scheme needs to be
specified for each segement separately. This is illustrated in
Fig. 1.

D. Achievable PIR Scheme 2

The scheme is stochastic in the sense that the user has a list
of different possible query structures and the user picks one of
these structures randomly. This is unlike the previous scheme
where the structure is deterministic and the randomness comes
from the random permutations of indices.
This scheme is developed for arbitrary number of databases
and arbitrary message lengths that are multiples of N — 1;
the deterministic scheme in Sections IV-A and IV-B assumed
message lengths that are multiples of NX. The scheme can
be viewed as an extension of the achievable scheme in [47] to
work with arbitrary number of databases and heterogeneous
message sizes. Our scheme shares similarities with [60].
However, our scheme differs in that it introduces database
symmetry to the scheme. The basic structure of the achievable
scheme is as follows.
1) Message indexing: Index all messages such that L; >
Ly > --- > L. Divide all messages into N — 1 blocks.
Let W™ be the mth block of W;.
For the rest of this section, assume that the user requires
to download W;.

2) Single blocks: Use NV — 1 out of the N databases to
download each block of W; and download nothing from

the remaining database. Consider all N cyclic shifts of
the blocks around the databases to obtain /N options for
different queries that can be used to download W;. These
N queries require the user to download L; bits in total,
resulting in no side information.

3) Sums of two blocks/single blocks: Choose one database
to download W' where i # j and download W/ + W
form =1,..., N—1 from the remaining /N —1 databases.
Create N query options in total by considering all N
cyclic shifts of the blocks, around the databases. Repeat
the procedure for Wf where £ = 2,..., N — 1. There are
a total of N(N — 1)(*") query options of this type.

4) Sums of three blocks/sums of two blocks: Choose one
database to download W} + W where i1,i # j and
download W™ + W, + W form =1,...,N —1 from
the remaining N — 1 databases. Create N query options
in total by considering all N cyclic shifts of the blocks
around the databases. Repeat the procedure for Wf;l +
W;2 where £y, € {2,...,N — 1}. There are N(N —

1)2(%,") query options of this type.
5) Repeat step 4 up to sums of K blocks/sums of K — 1

blocks.

The above steps describe all the NX query options, out of
which the user selects one with equal probability to retrieve
the required message. Note that due to the cyclic shifts of all
queries, this scheme has database symmetry, and the exact
same set of queries constitutes the possible set of queries
received by any given database, irrespective of the desired
message of the user.

Once the user chooses a query to be sent to the N databases,
out of the N¥ options, each database might have to compute
sums of messages with different lengths. All messages except
the longest in the sum are zero-padded to the left to have
equal-length blocks. Then, bit-wise sums are calculated.

Once the answers are received from the databases, the user
might need to subtract messages of different lengths to recover
the required message. In this case, according to the design
of the scheme, the subtrahend will always be shorter than or
equal to the length of the minuend. Hence, the subtraction
operation in this context will not be any different than the
usual operation.

Remark 9 Each query is chosen with probability ﬁ as there
are Zfio(]\/' - 1)t (If) = NX number of query options in
total. Each element of the sum corresponds to the number of
t-sums within the set of all possible queries that can be sent
to a given database.

1) Rate of Semantic PIR Scheme 2: In this PIR scheme,
each query option is utilized by the user with a probability
of NLK to download any desired message. When analyzing all
possible queries that can be sent to all databases, we note that
they have the same entries (in a shuffled way) irrespective
of the desired message. Since all query entries are equally
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Fig. 1: Comparison of the two descriptions of semantic PIR scheme 1.

probable to be sent to the databases, we calculate E[D] by,

K K-—t+1 K—j
D-Ynge (LS mev-0 ()]

t=1 j=1
(32)
K K—j+1 K*‘]
~ NK- 12 Z 1t1<t_1> (83)
1 K—j
=NK_1ZLjZ(N—1)t< . ) (84)
j=1 t=0
1 & .
= a0 LiNe 35)
j=1
L, L L
=L+ + 55+t e (86)

where the second and third sums in (82) correspond to
different ¢-sums and all possible longest messages within the
t-sum, respectively. The p; terms are ignored in (83) as the
expected number of downloads per query set does not depend
on the desired message.

For a given desired message, the number of downloaded
useful bits is the length of the desired message (ignoring
zero-padding, as it is ignored by the user upon receiving the
answer strings). This remains constant regardless of the query

set utilized by the user. Hence,

K
= szLz
=1

Thus, combining (86) and (87), the achievable rate of this
scheme becomes,

(87)

_ ElZ]
- E[D] (88)
E[Z]
— 89
Li+&+8 .+ 545 )
- L1 1 L2 1 LK
(mm*wﬂwﬁ" NKlMM) ©0

This concludes the derivation of the achievable rate.

2) Proof of Privacy: The scheme is constructed in such a
way that any given database always receives a query out of

the set of queries given by, {¢, {Wf,i € {1,...,K},{ €
{L,...,N — 1AW + ..o+ W, for in,....d
(L K}l e {1, N—1}, t e {2... K}}}

with equal probability N—lK irrespective of the message require-
ment. Therefore, from a given database’s perspective, the a
posteriori probability of the user needing message j, upon
receiving a query ¢ from a user can be calculated by,

P(9:2|Q:q): P(Q:q|9:Z)P<9:Z)

1)
SR PQ=ql0 =45)P0 =)




~= P60 =)
Y i PO =)
= P(0 =)

92)

93)

which ensures that this scheme is private, since it implies that
0 and @ are independent.

E. Example of Semantic PIR Scheme 2

1) Example 3: N = 3, K = 3, L1 = 400 bits, L, = 300
bits and Ls = 100 bits: Table V shows the query options
that the user may use with probability % to download W;.
Whenever a set of queries for the three databases is chosen
with probability %, the required message is retrieved by
subtracting the smaller sum from the larger sums, guaranteeing
correctness.

The queries in the first block have zero side information,
and retrieve the NV — 1 = 2 parts of W, using N — 1 different
databases. The second block uses W3 as side information,
and retrieve the two parts of WW; (in terms of a sum of itself
and side information) using the other two databases. The same
procedure is carried out in blocks 3, 4 and 5, with W21 replaced
by W3, W4 and W3. Last four blocks of Table V use Wi+Wj
for j € 1,2 as side information and use sums of three elements
WE+Wi +W{ for k = 1, 2) to retrieve the two parts of Wj.

The rate achieved by this scheme when retrieving W7 is,

Ly
Ry = (94)
CEBLH G 2 ) el <2+ §)
L
= ! (95)
£ (27L1 + 9Ly + 3L3)
400 36 96)

T (27 x400+9 % 300+ 3 x 100) 46

The rate achieved by this scheme when retrieving W is,

Lo
Ry = 97
2T L (BLy+18x3x L4 6x (L + &) o7
L
== : (98)
5-(27Ly + 9Ls + 3L3)
300 _2T g

T (27 400+ 9 x 300 + 3 x 100) _ 46

The rate achieved by this scheme when retrieving Wj is,

Ls
Ry = 100
ST L (BLy+18x3x L +6x3x L2) (10
L
= 3 (101)
57(27L1 + 9Ly + 3L3)
1
= 00 = 9 (102)
57(27 x 400 49 x 300 4 3 x 100) 46
The overall message retrieval rate for this example is,
E[L L L L
:]E[[D]]:plDl +p2py t sy (103)

36 27 9
= = — — — 104
1R 4+ po Ry + p3sR3 46p1 + 46p2 + 46p3 (104)

This matches the semantic PIR capacity expression in Theo-

rem 1,
Li 1 L 1 Ly \ "
= ~ = 105
¢ <E[L] T NEL T M E (105)
1
300 100
—(400p; + 300ps + 100ps) <400 +I o+ 9)
(106)
36 2 9
=TopLt epe s (107)

46 46 46
The classical PIR capacity for this case with equal priors is,

—1 -1
1 1 1 1 9
<+N+N2> (+3+9> 13

The semantic PIR capacity in (107) exceeds the classical PIR

capacity in (108) when
36 27 9 9

(108)

— — — — 10
Wt et ek~ 3 (109)
which is equivalent to
2 11
= — 110
p1+ 32> 33 (110)

Remark 10 We note again that the rate calculation presented
here for the semantic PIR capacity takes into consideration the
zero-padding needed to be added to the shorter message block
in order to perform bit-wise message addition for any query
realization. The classical PIR capacity expression in (108)
assumes that all messages are of equal size and hence the
extra zero-padding is not reflected in that expression. Hence,
the actual rate of classical PIR scheme is indeed less than the
reported PIR capacity if the messages are of unequal size.

Remark 11 The second scheme presented above is an exten-
sion to more than two databases of the path-based scheme
presented in [47]. It is also similar to the scheme provided in
[60], except for the fact that the above scheme has database
symmetry as opposed to the scheme presented in [60].

V. CONVERSE PROOF

In this section, we present the converse proof for Theorem 1.
This proof is a slight modification of the converse proof
presented in [3]. The central intuition of our proof is the fact
that the expected length of the answer string generated by
a given database should remain the same, irrespective of the
identity of the desired message as a consequence of the privacy
constraint. The major difference of our proof compared to [3]
is the handling of the non-equal message sizes.

We begin the proof of Theorem 1 by the definition of
message retrieval rate,

E[L]
R= E[D] 111)
We choose some permutation {i1,...,ix} as an arbitrary
order of the messages. The denominator of (111) can be
expanded as follows,

K
E[D] =Y pi(H(AD) + - + H(AY)) (112)
i=1



Probability Database 1 Database 2 Database 3
T Wl w? :
2
o Wi ¢ wi
o ¢ wi Wi
= Wi+ W) Wi+ W) Wi
= W+ W) W Wi+ Wi
o> Wy Wi+ Wy W2+ Wy
o Wi+ W3 W+ W3 W2
o W2+ W3 W2 Wi+ W3
7 W3 Wi+ W2 W2+ W2
o Wi+ Wy W2+ Wy Wi
= W+ Wy 1473 Wi+ Wi
= Wi Wi+ Wi W24+ Wi
7 Wi+ W3 WE + W3 w2
> W2+ W3 W2 Wi+ W3
> W2 Wi+ w2 W2+ W2
> WL+ Wi+ W1 | W2+ Wy + Wi Wi+ Wi
> WE+ Wi+ Wi Wi+ Wi Wi+ Wi+ Wi
o= Wi+ Wi WL+ Ws+ Wi | W2+ Ws + Wi
> W+ W2+ W1 [ WZ+W3 +W; W2+ Wy
o WE+ W3+ Wi W3+ Wi Wi+ W3+ Wi
> W3+ Wi WL+ W2+ Wl | W2+ W2+ Wi
7 W+ WI+W2 [ W+ Wi + W2 Wi+ W3
> W+ Wy + W2 Wi+ W3 Wi+ Wi+ W2
o+ Wi+ W3 WE4+ Wi+ W2 | W2+ Ws + W2
> WE+W3+W2 | W2+ W3+ W2 W3+ W3
% W2+WE+W2 | WE+WE | Wi+ W3+ W3
P W24 W2 | WA W2 W2 | W2 W2 W2

TABLE V: The query table for the retrieval of W7.

= H(AM) AR

(113)

The upper bound in (118) holds for any permutation
{41,...,iK}, hence, the tightest upper bound can be obtained

Following the same steps in the converse proof of [3] E[D]
can be lower bounded as,

E[D] > L;, + H(ARQUL W, ) n=1,....N (114)

By summing all N inequalities corresponding to (114) and
repeating the previous steps for W;, (with conditioning on
W;,) leads to,

NE[D] > NL;, + Li,+H(APQI Wi, Wi,) - (115)

forn =1,..., N. By summing the corresponding inequalities
and continuing with the same procedure for Wi,,...,W;,
yields,

NEED] > Nf-'L; + N¥72L;, + -+ NL;,,
+ I(W; ALl Al Qlis] ol iy W)

(116)
and therefore, we have,
1 1 1
E[D] > L, + NLiz +oo Tt WLiK—l + W[@K
(117)

which further gives,

rRe (Lt Ll 1 L - (118)
=\E[] " NE[L] NE-TE[L]

by minimizing over all permutations’. Consequently,

Li 1 L, 1 L\ "
R < min ( L+ 24 K)

= finrmix} \E[L] = N E[L] NE-1E[L]

(119)
Since the messages are ordered such that Ly > Loy > --- >
L, the minimum upper bound is attained at {iy,...,ix} =
{1,..., K} as it gives the largest number to the largest

coefficient in the lower bound on the download cost. Thus,

L, 1 L, 1 Lg\ "

R< L p K 120
: (E[L] TNEL T VR [L]) (120

completing the converse proof.

VI. EXTENSIONS OF SEMANTIC PIR

A. Semantic PIR from MDS-coded Databases

In this section, we present a complete characterization of the
capacity of semantic PIR from MDS-coded databases, along
with an optimal scheme. The optimal scheme is an extension
of the scheme presented in [9]. We consider an (N, M) MDS
coded distributed storage system containing K independent

"Note that the order does not matter in the case of equal message lengths
in [3].



messages. The messages are allowed to have different se-
mantics (lengths and prior probabilities). Each message W,
is represented as a matrix in FL*™ where the elements of
the matrix are uniformly and randomly chosen from F,. The
generator matrix of the (N, M) code is H = [hy,...,hN],
where h; € F}, i € [N]. The MDS property implies that any
combination of up to M columns of H is linearly independent.
Let the jth row of W; be denoted by W][Z]. Each database
n, n € [N] stores ij hy, for j € [L;], i € [K]. The objective
is to download a required message without revealing its index
to any of the databases. In order to retrieve W;, user sends
query Qw to database n, n € [N] and receives the answer
A%] which is a deterministic function of the contents of the
database and QE]. The correctness and privacy conditions are
the same as (5) and (6) respectively, and the rate is calculated
by,
ME[L]
R= E[D] 121)
Theorem 2 gives the exact PIR capacity for the semantic
PIR problem.

Theorem 2 The capacity of semantic PIR with (N, M) MDS-
coded databases with N databases, K messages, message
sizes M L; (arranged as L1 > Lo > ... > L) and prior
probabilities p; is given by,

o= (s () g (M) )
(122)

where E[L] = Zfil i L.

The achievable scheme is an extension to the first scheme
presented in Section IV-A. The steps of the achievable scheme
are as follows. Assume that the user requires to download W.

1) Message indexing: Assign indices to messages in the
descending order message sizes, i.e., L1 > Lo > ... >
L. Permute the rows of all messages randomly and
independently, privately from the databases.

2) Single blocks: Using (130), download v; different coded
bits of W; from each database. Download v; coded bits
of W;, i # j from each database such that the coded bits
of M different databases correspond to the same row of
W;. This is required to decode the rows of W; that are
used as side information. Therefore, Nv; coded bits of
W, i # j are downloaded in this step, that belong to
]\x; different rows of W;.

3) Sums of two elements: There are two types of blocks in
this step. The first block is the sums involving bits of the
desired message, W, , and the other block is the sums
that do not have any bits from W;. In the first block,
make use of the side information (singles corresponding
to W;, i # j) downloaded in the previous step. Consider
a 2-sum corresponding to coded bits of W, W, i #
j. Download (4 — 1) min{v;,v;} 2-sums of the form
(WT[ZL] + W;ﬂ)hn from database n, n € [N] where W[‘Z}

are new rows of W; and WSM are already decoded rows of

W; in the previous step. Note that the set of M databases
that were used to decode WS[L] in the previous step does
not include database n. The second block of 2-sums
contains coded bits corresponding to W, and W;,, where
i1 # iz # j. Download (£ — 1) min{v;,v;} 2-sums of
the form (Wt[il] + nglf])hn from database n, n € [N]
where Wt[:l] and Wyf] are new rows of W;, and W,,.
Note that coded bits corresponding to the same pair of
rows (tn,v,) needs to be downloaded from M different
databases in order to correctly decode the side infor-
mation Wt[il] + W#f] Thus, the second block contains
N (& — 1) min{iy,i2} coded 2-sums corresponding to
W;, and W,, belonging to W different
pairs of rows.

4) Sums of ¢ elements: There are two types of blocks
similar to sums of two. The first block contains queries of
the form (WY + Wi+ 4 wlehn, i £, #
ig_1 # j, where Wr[j] is a new row of W; and W,Lil] +
ot W,[ff:ll] is an already decoded (¢ — 1)-sum from the
previous step. For a given (¢ — 1)-tuple (i1,...,%¢—1),
download (% — 1)# Umin{ji,...,ig_, } Such £-sums from
each database. The second block contains queries of the
form (Wt[fl] +...+ Wt[zd)hn, i1 # -+ #ig # j, where
wli
load (&% — l)eflvmin{ih_m} such ¢-sums from each
database such that the coded bits corresponding to a given
{-tuple of rows (r1,...,7¢) is downloaded from M dif-

ferent databases. A total of N (% — 1)#1 Umin{iy,....i¢}
coded bits of this form will be downloaded corresponding

t (&-1) 71vmin{7ﬂ1,...,1ﬂ(}
M
Wil,...,Wi[.

5) Repeat the process up to sums of K elements.

6) Query repetition: To decode each row of W, repeat the
above process M times, while shifting the queries that
contain rows of W; to its neighboring database and by
choosing new sets of rows of W;, i € {1,..., K}, i #j
in each repetition. The M different linear combinations
of each row of W; allow us to correctly decode W;.

,Wt[zf] are new rows of W;,,...,W;,. Down-

different ¢-tuples of rows of

The achievable rate of the above scheme is calculated as
follows. First, note that the download cost remains the same
irrespective of the message requirement in order to guarantee
privacy. Therefore, the E[D] term in (121) is calculated by
summing the number of downloads in each step of the scheme.
Within one round of queries, there are Zfil Nw; singletons
and N (% — 1)#1 ZiK:E (Zj)vi sums of /-elements. There-
fore,

(123)

()

(124)



K ¢ K ¢
N N N
(125)
For the E[L] term in (121), we sum the number of useful

bits downloaded in each step of the scheme. Based on the
scheme described above, Nv; rows of W; are retrieved
as singletons, N (4 — 1)2_1 (3-1)v; rows of W; are re-
trieved as {-sums with W being the shortest message and
N (% — l)g_1 (é:g)vi rows of W; are retrieved as f-sums
with W;, i # j being the shortest message in the sum.

Denoting U; as the total number of useful bits downloaded,
the number of rows of W; retrieved is calculated by,

U J N O NTl/i-1
M:ij—i-ZN(M—l) 01 )V
] =1 4.
1—2
-1 .
) ()
K K -1 .
N 1—2
Ly ZN(M—l) (ez)w
(i1 i1
=Nv, v( ’ )+ij+wZv< ’ )
0 =0
J . K2
7 K-2
+ij+ﬂz¢<€)+--~+NvavZ< ' )

=0 £=0
(127)

. K i—1
NI N
=M (MJ) v+ E ) <M) V;
i=j+

where v = % —1. Thus, the subpacketization of W is defined
as % which represents the number of rows of W;, that can
be retrieved by a single use of the scheme. Since the total
number of rows of W, j € {1,..., K} have to be a common
multiple of their own subpacketizations,

(126)

(128)

Lj:aE jed{l,... K}

129
e (129)
for some o € N. Solving (128) and (129) for vy, ..., vk gives,
2 K
v1 ¥ _(%)27 _(%)K'Y Ly
vl 1 [0 () = (F) ] | L
- Ma | : : : :
UK 0 0 ... (" |lx
(130)
In order for the values of v;, ¢ € {1,..., K} to be integers, this

scheme requires each L; to be a multiple of N*. Here, « is the
greatest common divisor (gcd) of the elements of the vector
resulting from multiplying the matrix and the vector on the
right side of (130). This allows the shortest subpacketization
levels for all messages.

The total and useful numbers of bits downloaded (in (125)
and (128), respectively) are both within one subpacketization
level. These downloads are repeated « times to download the

entire message. Thus, the achievable rate is given by,

ME[L] _ MY L pLs
= = ! v 131
ED] — a2y K, Moy, (131)
_ E[L]
oMz i 3 (%) = (5 -1) Zien (35) 1]
(132)
E[L]
= — (133)
i, [Li —(F - (%IT) Lt}
EIZ] (134)

T L ()2, - (1- )]

= (EL[EN'(A]\{) EL[EPL"'+<AA{>K‘1 ]EL[E])I
(135)

A given database always receives queries of the same type
(ie., (& - 1)2_1 Umin{iy,..sie}> V401, ..} C [K], £-sums
for ¢ € {1,...,K}) irrespective of the message requirement.
According to the query generation procedure, no bit of any
message is requested from a given database more than once
as a singleton or as an element of a sum. Therefore, a proof
similar to what is presented in Section IV-A2 is used to show
that this scheme is private.

The above scheme can be alternatively described using
the same ideas presented in Section IV-C. The alternative
description is as follows. Database n, n € {1, ..., N} contains
coded bits corresponding to each row of W;, i € {1,..., K}
given by W,[l] hn, r € {1,...,L;}. Therefore, each database
stores L; coded bits of W;, where Ly > Lo > ... > Lg.
Considering the first Lx coded bits of all messages, the
classical MDS-coded PIR scheme in [9] is applied as the
first step of the scheme. Then, apply the classical coded PIR
scheme using the next Ly 1 — Lx coded bits of messages
Wi to Wik _1. In general, in the f(th step, the classical coded
PIR scheme needs to be applied on the Lx_py1 — Lx_¢12
coded bits of W7 to Wx_y11. The complete scheme should
be used irrespective of the message requirement.

The alternative description differs from the main description
in subpacketization, and in the scheme used within a subpacket
as explained in Section IV-C. However, the two descriptions
are equivalent when considering the entire retrieval process
(all subpackets). The rate achieved by the alternative scheme
is given by,

R:E[L]/(LK <1+%+...+Aj\ﬁ{i>

M MK—2
+(LK1—LK)(1+N+...+JVK2)

+...+L1—L2> (136)
which is the same as (135). A converse proof similar to what
is presented in Section V with the ideas of [9] is used to
prove an upper bound on the retrieval rate of semantic PIR



from MDS-coded databases, which is the same as (135). This
proves the capacity expression in (122).

B. Semantic PIR from Colluding Databases

In this section, we present a complete characterization
of the capacity of semantic PIR from colluding databases,
along with an optimal scheme. This is an extension of the
results presented in [4]. We consider K independent messages
Wi, i € {1,...,K}) with arbitrary lengths L; and prior
probabilities p;, stored in NV replicated databases. Out of the N
databases, any subset up to 7" databases are allowed to collude.
The objective here is to download a user-required message
without revealing its index to any T-colluding databases.

Theorem 3 The capacity of semantic PIR from colluding
databases, with K messages, message lengths L; (arranged
as Lhn > Lo > ... > L), prior probabilities p; and N
databases out of which any T are colluding, is given by,

SRS NPT Tl

(137)
where E[L] = Zf{:l i L.

The optimal scheme is an extension of the scheme presented
in Section IV-A. The scheme is as follows. Assume that the
required message is W;. Once the messages are indexed based
on the decreasing order of lengths, the user needs to generate
a set of linear combinations of the message indices given by,

Tj = Sjo (138)

where S; is a random full rank matrix drawn uniformly and
independently from all such matrices in ng “5 where l; is
the subpacketization of W;. For each W,,, m # j, let m,
denote the number of ¢-sums in the scheme involving W,,
but not W;. Let m, ; be the number of ¢-sums in the scheme
involving both W,, and Wj.g Then, the linear combinations
of W, i € [K], i # j are generated by,

first (m1 + mq ;) bits of x;
= MDS(ml—‘rmg,j)Xm] SZK]‘ : ml)? :]W’L
next (mg + mg ;) bits of x;
= MDS(mszmg,j)xmgSi[(ml +1:mq+ mg), }Wl (140)

(139)

last (mgx—_1 + mg ;) bits of z;

= MDS(mK,1+mK1j)><mK,1Si[(ei —MmKg-1+ 1: 61)7 :]Wl
(141)

where S;, i € {1,..., K} are random full rank matrices of
ngxfi and MDS, «; are globally known generator matrices
of (a,b) MDS-codes. The first step of the scheme is to
calculate v;, ¢ € {1,..., K} using (130) with M replaced

8The values of m¢ and my ; for t € {1,..., K} are immediate from the
steps of scheme which are described later. These values do not depend on the
linear combinations.

by T. Then, download v;, i € {1,...,K} bits of each
x,; from each database. Next, from each database, download
(% = 1) Umingiy,...iry t-sums, t € {2,..., K} involving new
bits of x;,,..., 2, V{i1,...,4:} C {1,..., K}. This com-
pletes the scheme.

For a given ¢t-sum of the form z;,(-) + ... + z;,(-) with
i1 > 13 > ... > 1, which does include any bit of W, let
the generator matrix corresponding to each element z;, in

the sum be denoted by G;,. Then, each G;, must satisty,
G

Tk+1

i , k e {1,...,t} where X denotes the set
X
of extra rows in the larger generator matrix. This is required
for interference alignment. The proof of privacy in [4] applies
to this scheme as well. The fact that the required message
is coded differently, in a non redundant manner, ensures the
correctness of the scheme as explained in [4].

The optimal scheme above can be alternatively described as
follows. In each database, segment the set of messages into K
partitions, such that the first segment contains the first Ly bits
of all K messages, the second segment contains the next set
of L, — Lk bits of messages W; to Wi _; and so on. Then,
apply the classical colluded PIR scheme in [4] to the 1) the first
segment with K messages, 2) the second segment with K — 1
messages, 3) the third segment with K — 2 messages, and so
on. Make sure that the complete scheme is used irrespective
of the desired message for privacy. The achievable rate of
the scheme is equal to the capacity in (137). The converse is
proved using similar ideas provided in the converse proofs of
Section V and [4].

Gi, =

VII. CONCLUSION AND DISCUSSION

In this work, we introduced the problem of semantic PIR.
In this problem, the stored messages are allowed to have
non-uniform popularities, which is captured via an a priori
probability distribution (p;, ¢ € [K]), and heterogeneous sizes
(L;, i € [K]). We derived the exact semantic PIR capacity as a
function of {L,;}X | and the expected message size E[L]. The
result implies that the semantic PIR capacity is equal to the
classical PIR capacity if all messages have equal sizes L; = L
for all ¢ € [K]. We derived a necessary and sufficient condition
for the semantic PIR capacity to exceed the classical PIR
capacity. In particular, we showed that if the longer messages
are retrieved more often, there is a strict retrieval rate gain from
exploiting the message semantics.’ Furthermore, we proved
that for all message sizes and priors, the semantic PIR capacity
exceeds the achievable rate of classical PIR with zero-padding,
which zero-pads all messages to equalize their sizes.

To that end, we proposed two achievable schemes for
achieving the semantic PIR capacity. The first one has a
deterministic query structure. We have proposed a systematic
way of calculating the needed subpacketization levels for
the messages. We also provided an alternative description to
this scheme which implements the classical PIR scheme in a
segmented manner. The similarities and differences between

9This does not necessarily mean that p1 > p2 > ... > pg. It essentially
means that the E[L] should be large enough such that (11) is satisfied.



the two descriptions were also discussed. The second scheme
has a stochastic query structure, where the user picks one
query structure at random from an ensemble of structures. The
first scheme has the advantage of having a fixed download
cost for all messages for all query structures unlike the
stochastic scheme, which has the same expected download
cost. Nevertheless, the first scheme suffers from exponential
subpacketization levels in contrast to the linear counterpart
in the stochastic scheme. We derived a matching converse
that extends the converse scheme of [3] to take into ac-
count the heterogeneous message sizes and prior probabilities.
Finally, the extensions of semantic PIR to coded databases
and colluding databases were analyzed separately, where the
complete characterizations of the capacities of the two cases
were presented along with the corresponding optimal schemes.
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