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Abstract—We investigate the problem of semantic private
information retrieval (semantic PIR). In semantic PIR, a user
retrieves a message out of K independent messages stored in
N replicated and non-colluding databases without revealing the
identity of the desired message to any individual database. The
messages come with different semantics, i.e., the messages are
allowed to have non-uniform a priori probabilities denoted by
(pi > 0, i ∈ [K]), which are a proxy for their respective popular-
ity of retrieval, and arbitrary message sizes (Li, i ∈ [K]). This is a
generalization of the classical private information retrieval (PIR)
problem, where messages are assumed to have equal message
sizes. We derive the semantic PIR capacity for general K, N .
The results show that the semantic PIR capacity depends on the
number of databases N , the number of messages K, the a priori
probability distribution of messages pi, and the message sizes Li.
We present two achievable semantic PIR schemes: The first one
is a deterministic scheme which is based on message asymmetry.
This scheme employs non-uniform subpacketization. The second
scheme is probabilistic and is based on choosing one query set out
of multiple options at random to retrieve the required message
without the need for exponential subpacketization. We derive
necessary and sufficient conditions for the semantic PIR capacity
to exceed the classical PIR capacity with equal priors and sizes.
Our results show that the semantic PIR capacity can be larger
than the classical PIR capacity when longer messages have higher
popularities. However, when messages are equal-length, the non-
uniform priors cannot be exploited to improve the retrieval rate
over the classical PIR capacity. We provide two extensions of the
semantic PIR problem, namely, the semantic PIR from MDS-
coded databases and the semantic PIR from colluding databases.
For both extensions, we derive the exact PIR capacity in addition
to providing a corresponding optimal scheme.

I. INTRODUCTION

Private information retrieval (PIR) describes an elemental
privacy setting. In the classical PIR problem, introduced in the
seminal paper [1], a user needs to retrieve a message (file),
out of several messages, from multiple replicated databases,
without revealing any information about the identity of the
desired message. This problem has attracted significant recent
interest in information theory where the fundamental limits
of the problem based on absolute guarantees (in contrast to
computational guarantees as in [2]) have been investigated. In
[3], the notion of PIR capacity is introduced as the maximum
ratio of the desired message size to the total download size.
Reference [3] has characterized the classical PIR capacity
using a greedy algorithm which is based on message and
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database symmetry. Using this performance metric, further
practical variants of the problem have been investigated in
different settings, such as, colluding databases [4]–[8], coded
storage [9]–[11], coded and colluding databases [12]–[15],
Byzantine databases [16]–[18], storage constrained databases
and other storage related settings [19]–[26], multiple message
PIR [27], [28], symmetric PIR [29]–[32], PIR with side
information [33]–[40], cache-aided PIR [41]–[45], information
leakage in PIR [46]–[48], private computation [49]–[51], se-
curity constraints and effects of adversaries and eavesdroppers
on PIR [52]–[57], studies of optimal costs in PIR [58]–[61]
and PIR under different channel configurations [62]–[64].

In all these works, two assumptions are made: All messages
have the same size1, L, and all messages are requested
uniformly by the users. These assumptions are highly idealistic
from a practical point of view. Take a streaming application
for instance. The storage database has a catalog of different
movies and TV shows. These media files cannot be assumed
to have the same level of popularity, i.e., it is unlikely that
all files are equally probable to be downloaded by a user.
The streaming service, in this case, has an a priori probability
distribution over all the files, for example, from box office
revenues and online rating systems. In addition, the media files
cannot be assumed to be equal in size; some movies are longer,
some are shorter. Consequently, each message stored in the
databases exhibits different semantics, in the sense that each
message has a different size and a different prior probability of
retrieval. With this backdrop, in this paper, we investigate how
a PIR scheme should be implemented over databases holding
messages with different semantics.

In this paper, we introduce the semantic PIR problem. We
extend the notion of the PIR capacity to deal with the hetero-
geneity of message sizes and prior probabilities. We define the
retrieval rate to be the ratio of the expected message size to
the expected download cost. Due to the privacy constraint, the
download cost needs to be the same for all messages; thus,
the expected download cost is equal to the download cost for
each individual message. Hence, the retrieval rate achieved
by a given scheme is equal to the weighted average of all
individual message retrieval rates. We investigate the semantic
PIR capacity as a function of the system parameters: number
of databases N , number of messages K, message priors pi,
and message lengths Li. We ask how semantic PIR capacity
compares to classical PIR capacity, and whether there is a PIR

1With the exception of [29], which characterizes the capacity of the sym-
metric PIR (SPIR) problem for heterogeneous file sizes (without considering
a priori probabilities of retrieval) to be Rk = Lk

maxi Li

(
1− 1

N

)
, where

Rk is the rate of retrieving message k. The achievable scheme follows by
dividing the files into partitions of length N − 1 and repeating the original
SPIR scheme in each partition. This scheme zero-pads shorter messages so
that their lengths are equal to that of the longest message.
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capacity gain from exploiting the message semantics.
In this paper, we characterize the exact semantic PIR

capacity for arbitrary parameters. To that end, we present two
achievable schemes; the first scheme is deterministic, in the
sense that the query structure is fixed, and the second scheme
is stochastic, in the sense that the user picks a query structure
randomly from a list of possible structures. For the determin-
istic scheme, we present a systematic method to determine
the subpacketization level for each message. Note that this
is crucial in our semantic problem due to the heterogeneous
message sizes, unlike the majority of the literature that utilizes
uniform subpacketization within their schemes [61]. This
scheme uses non-uniform subpacketization where the block
size considered in each download differs from one message
to another. The query structure of the deterministic scheme
resembles the query structure of [3], in that, our scheme uses
the same k-sums idea of [3]. The second achievable scheme
is comprised of several query options that the user may use
with equal probability to retrieve any message. In this scheme,
the messages are divided into several blocks depending on the
number of databases. The message is retrieved using a single
set of queries, which is chosen uniformly randomly from the
query options to ensure privacy. This is similar to the scheme
presented in [47] with an extension to more than two databases
(see also [60]). We provide a matching converse that takes
into account the heterogeneity of message sizes, resulting in
settling the semantic PIR capacity. Additionally, we provide
two extensions of the semantic PIR problem, namely, the
semantic PIR from MDS-coded databases and the semantic
PIR from colluding databases. For both extensions, we derive
the exact PIR capacity in addition to providing a corresponding
optimal scheme.

The semantic PIR capacity is a function of the message
sizes and the a priori probability distribution. The expression
implies that for certain message sizes and priors, the classical
PIR capacity may be exceeded by exploiting the semantics
of the messages even if the zero-padding needed in classical
PIR to equalize the message sizes is ignored. Concretely,
our results imply: 1) When message lengths are the same,
semantic PIR capacity is equal to the classical PIR capacity
no matter what the message priors are, i.e., priors cannot be
exploited to increase the PIR capacity if the message lengths
are the same. 2) For certain cases, such as when the prior
probability distribution favors longer files (i.e., longer files
are more popular), the semantic PIR capacity exceeds the
classical PIR capacity which depends only on the number of
databases and the number of messages. Note that, by classical
PIR capacity, we mean the classical PIR capacity expression,
which may not be attainable for heterogeneous file sizes. 3)
For all priors and lengths, our scheme achieves a larger PIR
rate than the PIR rate the classical approach would achieve by
simply zero-padding the messages to bring them to the same
length, as it assumes.

II. PROBLEM FORMULATION

We consider a setting, where N non-colluding databases
store K independent messages (files), W1, . . . ,WK , in a

replicated fashion. The messages exhibit different semantics,
i.e., the messages have different sizes and different a priori
probabilities of retrieval. The a priori probability of Wi is
denoted by2 pi, such that pi > 0 for i = 1, . . . ,K. The a priori
probability distribution is globally known at the databases and
the user. We assume that all message symbols are picked from
a finite field3 Fs. The message size of the ith message is
denoted by Li. Without loss of generality, we assume that the
messages are ordered with respect to their sizes4, such that
L1 ≥ L2 ≥ · · · ≥ LK . We assume that the messages stored
in databases are mutually independent (which in turn implies
pairwise independence). Hence, assuming that the message
sizes are expressed in s-ary symbols,

H(Wi) = Li, i = 1, . . . ,K (1)

H(W1, . . . ,WK) =

K∑
i=1

H(Wi) =

K∑
i=1

Li (2)

In semantic PIR, a user needs to retrieve a message Wi

without revealing the index i to any individual database. To
that end, the user sends a query to each database. The query
sent to the nth database to retrieve Wi is denoted by Q[i]

n for
n = 1, . . . , N . Prior to retrieval, the user does not have any
information about the message contents. Hence, queries sent
to the databases to retrieve messages are independent of the
messages, i.e., the mutual information between messages and
queries is zero,

I(W1, . . . ,WK ;Q
[i]
1 , . . . , Q

[i]
N ) = 0, i = 1, . . . ,K (3)

Once the databases receive the queries, they generate answer
strings to send back to the user. Specifically, the nth database
prepares an answer string A[i]

n which is a deterministic function
of the stored messages W1, . . . ,WK and the received query
Q

[i]
n . Therefore,

H(A[i]
n |Q[i]

n ,W1, . . . ,WK) = 0, i = 1, . . . ,K, n = 1, . . . , N
(4)

For a feasible PIR scheme, two conditions need to be
satisfied, namely, the correctness and the privacy constraints.
These are formally described as follows.

Correctness: The user should be able to perfectly retrieve
the desired message as soon as the answer strings to the queries
are received from the respective databases. Therefore,

H(Wi|A[i]
1 , . . . , A

[i]
N , Q

[i]
1 , . . . , Q

[i]
N ) = 0, i = 1, . . . ,K (5)

Privacy: To protect the privacy of the desired message
index i, the queries should not leak any information about i.
Formally, for the nth database, the a posteriori probability of
the message index i given a query Q[i]

n should be equal to the
a priori probability of the message index i. That is, the random

2We assume that pi > 0 for all i ∈ [K] without loss of generality, as
pj = 0 for some j implies that this message, Wj , is either non-existent or
never requested by the user. Hence, the setting can be reduced to a semantic
PIR problem with K − 1 messages, each with pi > 0.

3In this work, it suffices to work with the binary field, hence, symbols can
be interpreted as bits.

4This is for ease of expression of the capacity formula in (9). The largest
length should have the largest coefficient in the expression in (9) in order to
have the largest achievable rate and the tightest converse.
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variable representing the desired message index, θ, should be
independent of the received set of queries. Therefore,

P (θ = i|Q[i]
n ) = P (θ = i), i = 1, . . . ,K, n = 1, . . . , N

(6)

The privacy constraint (6) along with the independence of
messages and queries (3) implies,

(Q[i]
n , A

[i]
n ,W1, . . . ,WK) ∼ (Q[j]

n , A
[j]
n ,W1, . . . ,WK),

n = 1, . . . , N, i, j = 1, . . . ,K, i 6= j (7)

An achievable semantic PIR scheme π is a scheme that sat-
isfies the correctness constraint (5) and the privacy constraint
(6). Due to the heterogeneity of message sizes and a priori
probabilities, in this work, we define the performance metric,
the expected retrieval rate R(π) for any scheme π ∈ Π, where
Π is the set of all PIR schemes satisfying the correctness and
privacy constraints given in (5) and (6), as the ratio of the
expected retrieved message size to the expected download size,
i.e.,

R(π) =
E[L]

E[D]
, π ∈ Π (8)

where E[L] is the expected number of useful bits downloaded
and E[D] is the expected number of total bits downloaded.
The expectation E[·] in E[L] is with respect to the a priori
probability distribution. Note that E[L] is fixed for any scheme
as it is completely determined by the set of message lengths
and prior probabilities which are given in the semantic PIR
setting. The expectation E[·] in E[D] is with respect to the
distribution of the queries. Note that E[D] does not depend
on the prior distribution as for any desired message, the
download cost must remain the same to preserve privacy.
Therefore, E[D] of a given scheme is completely determined
by the structure of the scheme. The semantic PIR capacity is
defined as the supremum of the expected retrieval rates over
all achievable PIR schemes in Π, i.e., C = supπ∈Π R(π).
Moreover, the optimal semantic PIR scheme π∗ ∈ Π is an
achievable scheme that minimizes the expected download cost,
i.e., π∗ = arg minπ∈Π E[D].

III. MAIN RESULTS AND DISCUSSIONS

In this section, we present the main results of the paper. Our
first result is a complete characterization of the semantic PIR
capacity. The semantic PIR capacity depends on the message
sizes and prior probability distribution.

Theorem 1 The semantic PIR capacity with N databases, K
messages, message sizes Li (arranged in decreasing order as
L1 ≥ L2 ≥ · · · ≥ LK), and prior probabilities pi, is

C =

(
L1

E[L]
+

1

N

L2

E[L]
+ · · ·+ 1

NK−1

LK
E[L]

)−1

(9)

=

(
L1∑K

i=1 piLi
+

1

N

L2∑K
i=1 piLi

+ . . .

+
1

NK−1

LK∑K
i=1 piLi

)−1

(10)

where E[L] =
∑K
i=1 piLi.

The achievability proof of Theorem 1 is presented in Sec-
tion IV and the converse proof is presented in Section V. Next,
we have a few corollaries and remarks.

The following corollary gives a necessary and sufficient
condition for the cases at which the semantic capacity exceeds
the classical PIR capacity.

Corollary 1 (A Necessary and Sufficient Condition for Semantic Capacity Gain)
The semantic PIR capacity is strictly larger than the classical
PIR capacity (with uniform priors and message sizes) if and
only if,

K∑
i=1

1

N i−1
(Li − E[L]) < 0 (11)

which is further equivalent to,
K∑
i=1

K∑
j=1

pj
N i−1

(Li − Lj) < 0 (12)

Proof: The proof follows from comparing the semantic PIR
capacity expression in (9) and the classical PIR capacity,
CPIR, in [3],

CPIR =

(
1 +

1

N
+ · · ·+ 1

NK−1

)−1

(13)

Hence, C > CPIR implies

L1

E[L]
+

1

N

L2

E[L]
+ · · ·+ 1

NK−1

LK
E[L]

< 1 +
1

N
+ · · ·+ 1

NK−1
(14)

Ordering the terms leads to,
K∑
i=1

1

N i−1
(Li − E[L]) < 0 (15)

Noting Li =
∑K
j=1 pjLi, since pj sum to 1, and E[L] =∑K

j=1 pjLj by definition of expectation,

K∑
i=1

K∑
j=1

pj
N i−1

(Li − Lj) < 0 (16)

�

Remark 1 The condition in (11) is a statement about the sum
weighted (by 1

Ni−1 ) deviation of message size from its expected
value. Note that the expected value of the message size E[L]
is a function of the message sizes Li and the prior distribution
pi for i = 1, . . . ,K.

Remark 2 The intuition behind the condition in Corollary 1 is
as follows. The set of message lengths and prior probabilities
need to result in a large enough expected message length,
which further implies that the longer messages need to be more
popular, in order for the semantic PIR rate to outperform the
classical PIR rate.
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Remark 3 More explicit conditions can be derived for spe-
cific cases. For example, consider the case K = 2, N = 2, and
assume that L1 > L2 (strictly larger). Then, (11) simplifies to,

(L1 − (p1L1 + p2L2)) +
1

2
(L2 − (p1L1 + p2L2)) <0 (17)

p2(L1 − L2) +
1

2
p1(L2 − L1) <0 (18)

p2 −
1

2
p1 <0 (19)

p1 >
2

3
(20)

where (19) follows from L1 > L2. This means that for N = 2
and K = 2, the capacity of semantic PIR is greater than the
capacity of classical PIR when the a priori probability of the
longer message is greater than 2

3 irrespective of the values of
L1 and L2.

As a further explicit example, if the more likely message
is 4 times more likely and 4 times longer than the less likely
message, i.e., if p1 = 4p2 and L1 = 4L2, then the semantic
PIR capacity is C = 34

45 while the classical PIR capacity is
CPIR = 2

3 = 30
45 . That is, for this case, CPIR = 2

3 < C = 34
45 .

Remark 4 We further expand on Remark 3 above by noting
the following fact. The classical PIR capacity is a formula, as
given in (13), that depends only on the number of databases
N and the number of messages K, and is not necessarily
achievable by the classical PIR scheme for any given message
priors and lengths. To see this, we note that the classical
PIR scheme requires equal message sizes. In the example in
Remark 3 where p1 = 4p2 and L1 = 4L2, if we zero-pad
the shorter message to make the message lengths the same,
we achieve Rach = p1

L1

D + p2
L2

D = 17
30 by noting D = 3

2L1

as the length of the longer message is the common message
length now, and the classical PIR capacity for this case is 2

3 .
Thus, we observe Rach = 17

30 < CPIR = 2
3 < C = 34

45 for this
case.

As a follow up to Remark 4, we note that the achievable
scheme proposed in this paper always outperforms zero-
padding shorter messages and applying the classical PIR
scheme for so-constructed equal-length messages. This is
proved in the following corollary.

Corollary 2 Semantic PIR capacity outperforms classical
PIR rate with zero-padding.

Proof: We first calculate the general achievable rate for the
classical PIR scheme with zero-padding, Rach. Noting L1 ≥
L2 ≥ · · · ≥ LK , we zero-pad messages 2, . . . ,K until the
message sizes are all equal to L1. Next, we apply the classical
PIR scheme with the common message size L1. Then, the
download cost (and the expected download cost) becomes,

E[D] = D =
L1

CPIR
(21)

Now, using CPIR in (13) in equation (21) above, we obtain,

Rach =
E[L]

E[D]
(22)

=

(
L1

E[L]
+

1

N

L1

E[L]
+ · · ·+ 1

NK−1

L1

E[L]

)−1

(23)

Note repeated L1 in the expression in (23). Comparing Rach
in (23) with the semantic PIR capacity in (9), we deduce that
Rach ≤ C as L1 ≥ L2 ≥ · · · ≥ LK . �

Remark 5 If all messages have equal lengths, irrespective of
the prior probabilities, the capacity of semantic PIR becomes
equal to that of classical PIR. Note, in this case, Li = E[L]
and the capacity expression in (9) reduces to the classical PIR
capacity expression in (13). Thus, in order to exploit variability
in priors to achieve a PIR capacity higher than the classical
PIR capacity, we need variability in message lengths.5

Remark 6 Similar to classical PIR, the semantic PIR capac-
ity increases with the number of databases, N . As the number
of databases approaches infinity, the capacity approaches E[L]

L1
.

The reason why this asymptotic capacity is less than 1 is
that the download cost must remain constant at L1 (as the
longest message achieves a rate of 1) irrespective of the
desired message. The semantic PIR capacity decreases as the
number of messages, K, increases. As K approaches infinity,
the semantic PIR capacity is lower bounded by

C >
E[L]

L1

(
1− 1

N

)
(24)

IV. ACHIEVABILITY PROOF

In this section, we present two PIR schemes that achieve
the semantic PIR capacity given in Theorem 1. For each
scheme, we first formally present the scheme, then we verify
its correctness and privacy, calculate its achievable rate, and
give explicit examples for illustration.

A. Achievable Semantic PIR Scheme 1
The scheme is based on the iterative structure of the

achievable scheme in [3]. In this scheme, the user downloads
k-sums from the messages for k = 1, . . . ,K. The novel
component in our scheme is the calculation of the number
of stages needed to be downloaded from each message based
on the message sizes.

This achievable scheme is parameterized by
(K,N, {Li}Ki=1). Based on these parameters, the user
prepares queries to retrieve the desired message privately.
The basic structure of our achievable scheme is as follows.

1) Message indexing: Order the messages in the descending
order of message sizes. That is, index 1 is assigned to the
longest message and index K is assigned to the shortest
message (L1 ≥ L2 ≥ · · · ≥ LK). Calculate retrieval pa-
rameters6 υ1, υ2, . . . , υK corresponding to each message

5It is worth noting that classical PIR schemes need to be designed to satisfy
the privacy constraint irrespective of the prior distribution. Nevertheless, the
performance of the classical PIR schemes does not depend on the prior
distribution as they consider uniform message sizes. This is in contrast to
the semantic PIR problem, where the heterogeneity of the message sizes can
be exploited to enhance the retrieval rate based on the properties of the prior
distribution.

6This set of parameters determines the nonuniform subpacketization of a
given semantic PIR setting with arbitrary message lengths. It also controls
the numbers of stages in the next steps of the scheme (numbers of `-sums,
` ∈ {1, . . . ,K}) such that the scheme is private and capacity achieving.
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such that υ1 ≥ υ2 ≥ · · · ≥ υK . The retrieval parameters
denote the number of stages that needs to be downloaded
from each message. The explicit expressions for these
parameters are as follows:
υ1

υ2

υ3

...
υK

=
1

α


1
N −N−1

N2 −N−1
N3 . . . −N−1

NK

0 1
N2 −N−1

N3 . . . −N−1
NK

0 0 1
N3 . . . −N−1

NK

...
...

...
...

...
0 0 0 . . . 1

NK




L1

L2

L3

...
LK


(25)

where α can be chosen as the gcd of the vector elements
resulting from the matrix multiplication in the right
hand side of (25). This choice will become clear in
Section IV-A1.
For the rest of this section, assume that the user wishes
to download Wj .

2) Index preparation: The user permutes the indices of
all messages independently, uniformly, and privately
from the databases. I.e., if the number of elements
in a subpacket of Wi is `i, let Wi be denoted by,
Wi = (Wi(1), . . . ,Wi(`i)) for i ∈ {1, . . . ,K}. For
each message Wi, the user uniformly and randomly
chooses a permutation of the `i indices out of the `i!
options, indicated by (γi(1), γi(2), . . . , γi(`i)), which is
independent of all other message permutations. Then,
the permutation of the elements of Wi is given by,
Γ(Wi(1), . . . ,Wi(`i)) = (Wi(γi(1)), . . . ,Wi(γi(`i))).
This process simply shuffles the elements of message
vectors uniformly and randomly irrespective of the mes-
sage requirement. All queries generated by the user in
the scheme are based on these permuted indices.

3) Singletons: Download υk different bits from message Wk

from the nth database, where n = 1, . . . , N and k =
1, . . . ,K. Table I shows the singletons downloaded from
the required message Wj and any other message Wi, i 6=
j. Note that the permuted elements of Wj and Wi are
denoted by a’s and b’s respectively.

4) Sums of two elements (2-sums): There are two types of
blocks in this step. The first block is the sums involving
bits of the desired message, Wj , and the other block
is the sums that do not have any bits from Wj . In
the first block, download (N − 1) min{υi, υj} bit-wise
sums of Wi and Wj each from the N databases for all
i 6= j. Each sum comprises an already downloaded Wi

bit from another database and a new bit of Wj . I.e.,
if υj > υi user sends queries of the form (aNυj+1 +
bυi+1), . . . ,(aNυj+υi + b2υi), . . . , (aNυj+(N−2)υi+1 +
b(N−1)υi+1), . . . , (aNυj+(N−1)υi + bNυi) to database 1.
Note that each min{υi, υj} = υi side information bit
downloaded from each of the databases 2 to N in the
previous step have been utilized exactly once in the 2-
sums of database 1. Queries of the same form are sent to
all databases, which contain new bits of Wj and all the
already downloaded bits of Wi, i 6= j from the rest of
the databases. Each side information bit from the previous
step if utilized only once in a given database.

If min{υi, υj} = υj user can randomly pick any υj side
information bits out of the υi bits from each database
and follow the same steps as above, ensuring that any
given side information bit from a different database in the
previous step is utilized only once in a given database.
For the second block, for all possible message pairs
(Wi1 ,Wi2) for i1 6= i2 6= j, download (N −
1) min{υi1 , υi2} number of bit-wise sums of Wi1 and
Wi2 each from the N databases. Each sum comprises of
fresh bits from Wi1 and Wi2 .

5) Repeat step 4 for all k-sums where k = 3, 4, . . . ,K. For
each k-sum, download k bit-wise sum from k messages.
If one of these messages is the desired message, the
remaining (k − 1)-sum is derived from the previous
(k − 1)th round from a different database. Otherwise,
download (N −1)k−1 min{υi1 , . . . , υik} sums from new
bits of the undesired messages.

1) Rate of Semantic PIR Scheme 1: In this PIR scheme,
the total number of downloaded bits remains constant for all
message requirements of the user in order to guarantee privacy.
Therefore, E[D] in (8) can be calculated by counting the total
number of bits in the set of queries sent to the databases by
the user to download any message. Within the set of queries,
there are

∑K
i=1Nυi number of singletons and

∑K
i=tN(N −

1)t−1υi
(
i−1
t−1

)
number of sums of t elements. Therefore,

E[D] =

K∑
i=1

Nυi +

K∑
t=2

K∑
i=t

N(N − 1)t−1υi

(
i− 1

t− 1

)
(26)

= N

[
K∑
i=1

υi +

K∑
i=2

i∑
t=2

(N − 1)t−1υi

(
i− 1

t− 1

)]
(27)

= N

[
K∑
i=1

υi +

K∑
i=2

υi

(
i∑
t=0

(N − 1)t
(
i− 1

t

)
− 1

)]
(28)

= N

[
K∑
i=1

υi +

K∑
i=2

υi
(
N i−1 − 1

)]
(29)

=

K∑
i=1

υiN
i (30)

In order to calculate E[L], assume that the desired message
is Wj . There are Nυj number of singletons of Wj in the set of
queries sent to the databases to retrieve Wj . The scheme can
recover N(N−1)t−1υj

(
j−1
t−1

)
+N(N−1)t−1

∑K
i=j+1 υi

(
i−2
t−2

)
number of Wj bits using the tth block of the scheme (sum
of t elements) when t ≤ j, where the first term in the sum
corresponds to t-sums with the shortest message being Wj

and the second term corresponds to t-sums with the shortest
message being some other message (6= Wj). When t > j this
scheme is able to retrieve

∑K
i=tN(N − 1)t−1υi

(
i−2
t−2

)
number

of Wj bits as there should be at least t−j number of messages
in the sum that are shorter than Lj . Therefore, the total number
of useful bits of Wj retrieved, Uj , is given by,

Uj =Nυj +

j∑
t=2

(
N(N − 1)t−1υj

(
j − 1

t− 1

)
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Message Database 1 Database 2 . . . Database N
Wj a1, . . . , aυj aυj+1, . . . , a2υj . . . a(N−1)υj+1, . . . , aNυj

Wi,i 6= j b1, . . . , bυi bυi+1, . . . , b2υi . . . b(N−1)υi+1, . . . , bNυi
TABLE I: Singleton queries.

+

K∑
i=j+1

N(N − 1)t−1υi

(
i− 2

t− 2

))

+

K∑
t=j+1

K∑
i=t

N(N − 1)t−1υi

(
i− 2

t− 2

)
(31)

=Nυj

(
1 +

j∑
t=2

(N − 1)t−1

(
j − 1

t− 1

))

+

j∑
t=2

K∑
i=j+1

N(N − 1)t−1υi

(
i− 2

t− 2

)

+
K∑

t=j+1

K∑
i=t

N(N − 1)t−1υi

(
i− 2

t− 2

)
(32)

=Nυj

(
1 + (N − 1)

(
j − 1

1

)
+ (N − 1)2

(
j − 1

2

)
+ · · ·+ (N − 1)j−1

(
j − 1

j − 1

))
+Nυj+1

(
j∑
t=2

(N − 1)t−1

(
j − 1

t− 2

))

+Nυj+2

(
j∑
t=2

(N − 1)t−1

(
j

t− 2

))
+ . . .

+NυK

(
j∑
t=2

(N − 1)t−1

(
K − 2

t− 2

))

+Nυj+1(N − 1)j
(
j − 1

j − 1

)
+Nυj+2

(
(N − 1)j

(
j

j − 1

)
+ (N − 1)j+1

(
j

j

))
+ · · ·+NυK

(
(N − 1)j

(
K − 2

j − 1

)
+ (N − 1)j+1

(
K − 2

j

)
+ . . .

+(N − 1)K−1

(
K − 2

K − 2

))
(33)

=Nυj(N − 1 + 1)j−1

+Nυj+1

(
(N − 1)

(
j − 1

0

)
+ (N − 1)2

(
j − 1

1

)
+ · · ·+ (N − 1)j

(
j − 1

j − 1

))
+Nυj+2

(
(N − 1)

(
j

0

)
+(N − 1)2

(
j

1

)
+ · · ·+ (N − 1)j+1

(
j

j

))
+ . . .

+Nυk

(
(N − 1)

(
K − 2

0

)
+ (N − 1)2

(
K − 2

1

)
+ · · ·+ (N − 1)K−1

(
K − 2

K − 2

))
(34)

=N jυj +N(N − 1)(N − 1 + 1)j−1υj+1

+N(N − 1)(N − 1 + 1)jυj+2 + . . .

+N(N − 1)(N − 1 + 1)K−2υK (35)

=N jυj + (N − 1)

K∑
i=j+1

N i−1υi (36)

Thus, the scheme retrieves N jυj+(N−1)
∑K
i=j+1N

i−1υi
number of useful bits of the required message at a time. Hence,
we define subpacketization for message Wj as Uj , where

Uj = N jυj + (N − 1)

K∑
i=j+1

N i−1υi, j = 1, . . . ,K (37)

We then need the message sizes to be a common multiple of
their own subpacketizations,

Lj = αUj , j = 1, . . . ,K (38)

We note that α should be the same for all j in (38) to guarantee
privacy.

The requirements in (37) and (38) can be written succinctly
as a matrix equation,
L1

L2

...
LK

=α


N N(N − 1) . . . NK−1(N − 1)
0 N2 . . . NK−1(N − 1)
...

...
...

...
...

0 0 . . . NK



υ1

υ2

...
υK


(39)

Since L1, . . . , LK are parameters (inputs) to the scheme, the
internal parameters υ1, . . . , υK can be calculated by inverting
the matrix as,

υ1

υ2

υ3

...
υK

 =
1

α


1
N −N−1

N2 −N−1
N3 . . . −N−1

NK

0 1
N2 −N−1

N3 . . . −N−1
NK

0 0 1
N3 . . . −N−1

NK

...
...

...
...

...
0 0 0 . . . 1

NK




L1

L2

L3

...
LK


(40)

Here, α should be chosen to be the greatest common divisor
(gcd) of the elements of the vector resulting from multiplying
the matrix and the vector on the right side of (40). This
allows the shortest subpacketization levels for all messages
for increased flexibility.

The total number of bits downloaded calculated in (125) and
the number of useful bits downloaded calculated in (36) are
both within one subpacketization level. This subpacketization
level downloads are repeated α times to download the entire
file; see also (38). Thus, we calculate the achievable rate of
this scheme as,

R =
E[L]

E[D]
(41)
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=

∑K
i=1 piUi∑K
i=1N

iυi
(42)

=
1
α

∑K
i=1 piLi∑K

i=1
1
αN

i(N−iLi −
∑K
j=i+1(N − 1)N−jLj)

(43)

=
E[L]∑K

i=1 Li − (N − 1)
∑K
i=1

∑K
j=i+1N

−jLjN i
(44)

=E[L]/

 K∑
i=1

Li − (N − 1)

 K∑
j=2

N−j+1Lj

+

K∑
j=3

N−j+2Lj + · · ·+N−1LK

 (45)

=E[L]/

(
L1 + L2

(
1− (N − 1)N−1

)
+ . . .

+ LK

(
1− (N − 1)(N−(K−1) + · · ·+N−1)

))
(46)

=
E[L]

L1 + L2

N + L3

N2 + · · ·+ LK

NK−1

(47)

=

(
L1

E[L]
+

1

N

L2

E[L]
+ · · ·+ 1

NK−1

LK
E[L]

)−1

(48)

where (43) follows by applying (38) in the numerator and
writing υi in terms of Lj using (40) in the denominator. This
concludes the derivation of the achievable rate.

Remark 7 We assume that message Li has a length which
is a multiple of N i to aid smooth computation of υ1, . . . , υK .
This is automatically satisfied by the assumption of all message
lengths being multiples of NK in [3].

2) Proof of Privacy: Since L1 ≥ L2 ≥ · · · ≥ LK
we have υ1 ≥ υ2 ≥ · · · ≥ υK . A given database re-
ceives a set of queries for υ1, υ2, . . . , υK numbers of bits
of W1,W2, . . . ,WK , respectively, as singletons and (N −
1)t−1 min{υi1 , . . . , υit} bit-wise t-sums of Wi1 , . . . ,Wit , for
t = 2, . . . ,K. According to the query generation procedure,
no bit of any message is requested from a given database
more than once as a singleton or as an element of a sum.
Any given database receives the exact same set of queries
in type, irrespective of the desired message of the user.
Therefore, two sets of queries corresponding to two dif-
ferent message requirements received by a given database
can only differ from the permutations used in each message
in the index preparation step. Let (w1,w2, . . . ,wK) be a
sample realization of permutations used in the query gener-
ation process when the message requirement θ is Wk, where
wi = Γi(Wi(1),Wi(2), . . . ,Wi(`i)) for i ∈ {1, . . . ,K} with
permutation functions Γi that independently and randomly per-
mute the `i elements of Wi, where `i is the subpacketization
of Wi. Therefore, the probability of sending the set of queries
q for a given message requirement θ = k is equal to the
probability of choosing the corresponding sample realization
of permutations of the message bits when downloading Wk.
This probability is calculated by,

P (Qn = q|θ = k)

=P (permutation = (w1,w2, . . . ,wK)|θ = k) (49)

=

K∏
i=1

P (permutation of Wi = wi|θ = k) (50)

=

K∏
i=1

(
1

`i

)(
1

`i − 1

)
. . .

(
1

`i − `i + 1

)
(51)

for n ∈ {1, . . . , N}, where Qn is the random variable
representing the set of queries sent to database n. This yields,

P (Qn = q|θ = i) = P (Qn = q|θ = j),

∀i, j ∈ {1, . . . ,K}, n ∈ {1, . . . , N} (52)

as P (Qn = q|θ = k) is independent of k by the above
calculation. The a posteriori probability of the user needing
Wi given a realization of the set of queries received by any
given database is given by,

P (θ = i|Q = q) =
P (Q = q|θ = i)P (θ = i)∑K
j=1 P (Q = q|θ = j)P (θ = j)

(53)

Using (52),

P (θ = i|Q = q) =
P (Q = q|θ = i)P (θ = i)∑K
j=1 P (Q = q|θ = i)P (θ = j)

(54)

= P (θ = i) (55)

which ensures that this scheme is private, since it implies that
θ and Q are independent.

B. Examples of Semantic PIR Scheme 1

1) Example 1: N = 2,K = 2, L1 = 1024 bits, L2 =
256 bits: First, the message indices are independently and
uniformly permuted. The first and the second messages after
permutations are denoted by bits ai and bi, respectively.

• Message indexing and calculation of υi: Messages are
indexed such that the first message is the longer one,
and the second message is the shorter one. Below, we
will give query tables for downloading W1 and W2. We
calculate υ1 and υ2 as,[

υ1

υ2

]
=

1

α

[
1
2 − 1

4
0 1

4

] [
L1

L2

]
(56)

where α =gcd{L1

2 −
L2

4 ,
L2

4 }. By direct substitution, we
get, [

υ1

υ2

]
=

1

α

[
448
64

]
(57)

Hence, α =gcd{448, 64} = 64. Therefore, υ1 = 7 and
υ2 = 1. The subpacketization levels of W1 and W2 are
U1 = 1024

64 = 16 and U2 = 256
64 = 4, respectively.

• Singletons: Download υ1 = 7 bits of W1 and υ2 = 1 bit
of W2 each from the two databases.

• Sums of twos: Download (N −1)υ2 = 1 sum of W1 and
W2 bits each from the two databases. Note that if W1 is
the desired message, the singletons of W2 are used as a
side information with new W1 bits in the sum and vice
versa.
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Tables II and III show the queries sent to the databases to
retrieve W1 and W2, respectively.

Database 1 Database 2
a1, . . . , a7 a8, . . . , a14

b1 b2
a15 + b2 a16 + b1

TABLE II: The query table for the retrieval of W1.

Database 1 Database 2
a1, . . . , a7 a8, . . . , a14

b1 b2
a8 + b3 a1 + b4

TABLE III: The query table for the retrieval of W2.

The rate achieved by this scheme when downloading W1

is R1 = 16
18 = 8

9 , and the rate achieved by this scheme when
downloading W2 is R2 = 4

18 = 2
9 . Therefore, the average rate

R achieved by the scheme is,

R =
E[L]

E[D]
=
p1L1 + p2L2

p1D + p2D
= p1

L1

D
+ p2

L2

D
(58)

=p1R1 + p2R2 =
8

9
p1 +

2

9
p2 (59)

This matches the capacity expression in Theorem 1 as,

C =

(
L1

E[L]
+

1

N

L2

E[L]

)−1

(60)

=(1024p1 + 256p2)

(
1024 +

256

2

)−1

(61)

=
8

9
p1 +

2

9
p2 (62)

The classic PIR capacity for this case with equal priors is,

C =

(
1 +

1

N

)−1

=

(
1 +

1

2

)−1

=
2

3
(63)

The semantic PIR capacity in (62) exceeds the classical PIR
capacity in (63) when

8

9
p1 +

2

9
p2 >

2

3
(64)

which is when p1 >
2
3 . Consequently, when p1 >

2
3 , there is a

strict gain from exploiting message semantics for PIR, in this
case.

Remark 8 Although it is apparent in this example that the
rate of semantic PIR is lower than the capacity of classical
PIR for p1 < 2

3 , as discussed in Remark 3 and Remark 4,
there is a subtle aspect that should be addressed for a fair
comparison. To see this, let us take the case of uniform a priori
distribution, i.e., p1 = p2 = 1

2 , i.e., a case where p1 <
2
3 . In

this case, the semantic PIR capacity using (62) is 5
9 . In order

to properly use the classical PIR scheme in [3], messages
need to be of equal size. One way to do this is to zero-pad
the shorter message to be of length 1024 bits as well. In this
case, the actual retrieval rate is not 2

3 as the actual message
size of W2 is much less. Specifically, the total download for

this scheme is D = L
R = 1024

2/3 = 1536. The actual retrieval
rate for the classical PIR problem is,

Rach =
1/2× 1024 + 1/2× 256

1536
=

5

12
<

5

9
<

6

9
(65)

Thus, the actual achievable rate Rach is 5
12 , which is less

than the semantic PIR capacity 5
9 , which is less than the

classical PIR capacity 6
9 . Thus, even though the semantic PIR

capacity is less than the classical PIR capacity, the semantic
PIR capacity (which is achievable) is larger than the classical
PIR rate with zero-padding as proved in Corollary 2.

2) Example 2: N = 4,K = 3, L1 = 8192 bits, L2 = 2048
bits, L3 = 512 bits: First, the message indices are indepen-
dently and uniformly permuted. The first, second, and third
messages after permutations are denoted by bits ai, bi and ci,
respectively.

• Message indexing and calculation of υi: Messages are
indexed such that the first message is the longest one, and
the third message is the shortest one. Below, we will give
the query table for downloading W2, i.e., the medium-
length message. The bits of W2 are represented by bi.
We calculate υ1, υ2 and υ3 as,υ1

υ2

υ3

 =
1

α

 1
4 − 3

16 − 3
64

0 1
16 − 3

64
0 0 1

64

L1

L2

L3

 (66)

where α =gcd{L1

4 −
3L2

16 −
3L3

64 ,
L2

16 −
3L3

64 ,
L3

64 }. By direct
substitution, we get,υ1

υ2

υ3

 =
1

α

1640
104
8

 (67)

Hence, α =gcd{1640, 104, 8} = 8. Therefore, υ1 = 205,
υ2 = 13 and υ3 = 1. The subpacketization levels of W1,
W2 and W3 are U1 = 8192

8 = 1024, U2 = 2048
8 = 256

and U3 = 512
8 = 64, respectively.

• Singletons: Download υ1 = 205 bits of W1, υ2 = 13
bits of W2 and υ3 = 1 bits of W3 each from the four
databases.

• Sums of twos: Download (N − 1)υ2 = 39 sums of W1

and W2 and (N−1)υ3 = 3 sums of W2 and W3 bits each
from the four databases. Use the downloaded singletons
from W1, W3 as side information with new W2 bits.
Download (N − 1)υ3 = 3 bit-wise sums of W1 and W3

each from the four databases using fresh bits of both
messages.

• Sums of threes: Download (N − 1)2υ3 = 9 bit-wise
sums involving all three messages from each database
utilizing the downloaded sums of W1 and W3 from the
other databases in the previous step as side information.

Table IV shows the queries sent to the databases to retrieve
W2.

The rate achieved by this scheme when downloading W2 is
R2 = 256

1092 = 64
273 , and the rates achieved when downloading

W1 and W3 are R1 = 1024
1092 = 256

273 and R3 = 64
1092 = 16

273 ,
respectively. Therefore, the average rate R achieved by this
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Database 1 Database 2 Database 3 Database 4
a1, . . . , a205 a206, . . . , a410 a411, . . . , a615 a616, . . . , a820

b1, . . . , b13 b14, . . . , b26 b27, . . . , b39 b40, . . . , b52

c1 c2 c3 c4

a206 + b53 a411 + b92 a616 + b131 a1 + b170

...
...

...
...

a218 + b65 a423 + b104 a628 + b143 a13 + b182

a411 + b66 a616 + b105 a1 + b144 a206 + b183

...
...

...
...

a423 + b78 a628 + b117 a13 + b156 a218 + b195

a616 + b79 a1 + b118 a206 + b157 a411 + b196

...
...

...
...

a628 + b91 a13 + b130 a218 + b169 a423 + b208

b209 + c2 b212 + c3 b215 + c4 b218 + c1
b210 + c3 b213 + c4 b216 + c1 b219 + c2
b211 + c4 b214 + c1 b217 + c2 b220 + c3
a821 + c5 a824 + c8 a827 + c11 a830 + c14

a822 + c6 a825 + c9 a828 + c12 a831 + c15

a823 + c7 a826 + c10 a829 + c13 a832 + c16

a824 + b221 + c8 a827 + b230 + c11 a830 + b239 + c14 a821 + b248 + c5
a825 + b222 + c9 a828 + b231 + c12 a831 + b240 + c15 a822 + b249 + c6
a826 + b223 + c10 a829 + b232 + c13 a832 + b241 + c16 a823 + b250 + c7
a827 + b224 + c11 a830 + b233 + c14 a821 + b242 + c5 a824 + b251 + c8
a828 + b225 + c12 a831 + b234 + c15 a822 + b243 + c6 a825 + b252 + c9
a829 + b226 + c13 a832 + b235 + c16 a823 + b244 + c7 a826 + b253 + c10

a830 + b227 + c14 a821 + b236 + c5 a824 + b245 + c8 a827 + b254 + c11

a831 + b228 + c15 a822 + b237 + c6 a825 + b246 + c9 a828 + b255 + c12

a832 + b229 + c16 a823 + b238 + c7 a826 + b247 + c10 a829 + b256 + c13

TABLE IV: The query table for the retrieval of W2.

scheme is,

R =
E[L]

E[D]
=
p1L1 + p2L2 + p3L3

p1D + p2D + p3D
(68)

=p1
L1

D
+ p2

L2

D
+ p3

L3

D
= p1R1 + p2R2 + p3R3 (69)

=
256

273
p1 +

64

273
p2 +

16

273
p3 (70)

This matches the capacity expression in Theorem 1 as,

C =

(
L1

E[L]
+

1

N

L2

E[L]
+

1

N2

L3

E[L]

)−1

(71)

= (8192p1 + 2048p2 + 512p3)

(
8192 +

2048

4
+

512

42

)−1

(72)

=
256

273
p1 +

64

273
p2 +

16

273
p3 (73)

The classical PIR capacity for this case with equal priors is,

C =

(
1 +

1

N
+

1

N2

)−1

=

(
1 +

1

4
+

1

42

)−1

=
16

21
(74)

The semantic PIR capacity in (73) exceeds the classical PIR
capacity in (74) when

256

273
p1 +

64

273
p2 +

16

273
p3 >

16

21
(75)

which is equivalent to

p1 +
1

5
p2 >

4

5
(76)

C. Alternative Description of Semantic PIR Scheme 1
In this section, we present an alternative description to the

semantic PIR scheme presented in Section IV-A. The two
descriptions are identical in terms of the queries generated
considering the retrieval of the entire required message (all
subpackets). However, the two descriptions differ in subpack-
etization and the scheme used within a subpacket.

Consider the general semantic PIR setting with K messages
with arbitrary message lengths L1 ≥ L2 ≥ . . . ≥ LK and
arbitrary probabilities of retrieval pi, i ∈ {1, . . . ,K}. The
alternative description requires the messages to be partitioned
in to K segments, such that the first segment contains the
first LK bits of all messages, the second segment contains the
next LK−1 − LK bits of messages W1, . . . ,WK−1 and the
`th segment for ` ∈ {3, . . . ,K} contains LK−`+1 − LK−`+2

bits of W1, . . . ,WK−`+1 that follow the bits in the (`− 1)st
segment.

Apply the classical PIR scheme in [3] to the 1) first segment
with K messages with a subpacketization of NK , 2) second
segment with K − 1 messages with a subpacketization of
NK−1 and 3) `th segment with K − ` + 1 messages with a
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subpacketization of NK−`+1, for ` ∈ {3, . . . ,K}. The above
three steps need to be followed irrespective of the message
requirement for privacy. Note that the schemes used in each
segment are private [3], and the fact that the K schemes
corresponding to the K segments are always used, even though
the required message may not be within a given segment,
guarantees privacy. The achievable rate of this scheme is
calculated as follows. The fixed download cost is given by,

D =
L

R
(77)

=
LK(

1 + 1
N + · · ·+ 1

NK−1

)−1 +
LK−1 − LK(

1 + 1
N + · · ·+ 1

NK−2

)−1

+ . . .+
L2 − L3(
1 + 1

N

)−1 +
L1 − L2

1
(78)

=LK
1

NK−1
+ LK−1

1

NK−2
+ . . .+ L2

1

N
+ L1 (79)

Therefore, the achievable rate is,

R =
E[L]

D
(80)

=
E[L]

LK
1

NK−1 + LK−1
1

NK−2 + . . .+ L2
1
N + L1

(81)

which is the capacity of semantic PIR in (9). Note that
the description in Section IV-A provides a systematic way
of calculating the nonuniform subpacketization based on the
given set of message lengths. The scheme is then described
on a single subpacket, which is repeatedly applied throughout
the retrieval process in the same way. On the other hand, the
alternative description has different uniform subpacketizations
for different segments. Therefore, the scheme needs to be
specified for each segement separately. This is illustrated in
Fig. 1.

D. Achievable PIR Scheme 2

The scheme is stochastic in the sense that the user has a list
of different possible query structures and the user picks one of
these structures randomly. This is unlike the previous scheme
where the structure is deterministic and the randomness comes
from the random permutations of indices.

This scheme is developed for arbitrary number of databases
and arbitrary message lengths that are multiples of N − 1;
the deterministic scheme in Sections IV-A and IV-B assumed
message lengths that are multiples of NK . The scheme can
be viewed as an extension of the achievable scheme in [47] to
work with arbitrary number of databases and heterogeneous
message sizes. Our scheme shares similarities with [60].
However, our scheme differs in that it introduces database
symmetry to the scheme. The basic structure of the achievable
scheme is as follows.

1) Message indexing: Index all messages such that L1 ≥
L2 ≥ · · · ≥ LK . Divide all messages into N − 1 blocks.
Let Wm

i be the mth block of Wi.
For the rest of this section, assume that the user requires
to download Wj .

2) Single blocks: Use N − 1 out of the N databases to
download each block of Wj and download nothing from

the remaining database. Consider all N cyclic shifts of
the blocks around the databases to obtain N options for
different queries that can be used to download Wj . These
N queries require the user to download Lj bits in total,
resulting in no side information.

3) Sums of two blocks/single blocks: Choose one database
to download W 1

i where i 6= j and download Wm
j +W 1

i

for m = 1, . . . , N−1 from the remaining N−1 databases.
Create N query options in total by considering all N
cyclic shifts of the blocks, around the databases. Repeat
the procedure for W `

i where ` = 2, . . . , N −1. There are
a total of N(N − 1)

(
K−1

1

)
query options of this type.

4) Sums of three blocks/sums of two blocks: Choose one
database to download W 1

i1
+ W 1

i2
where i1, i2 6= j and

download Wm
j +W 1

i1
+W 1

i2
for m = 1, . . . , N − 1 from

the remaining N − 1 databases. Create N query options
in total by considering all N cyclic shifts of the blocks
around the databases. Repeat the procedure for W `1

i1
+

W `2
i2

where `1, `2 ∈ {2, . . . , N − 1}. There are N(N −
1)2
(
K−1

2

)
query options of this type.

5) Repeat step 4 up to sums of K blocks/sums of K − 1
blocks.

The above steps describe all the NK query options, out of
which the user selects one with equal probability to retrieve
the required message. Note that due to the cyclic shifts of all
queries, this scheme has database symmetry, and the exact
same set of queries constitutes the possible set of queries
received by any given database, irrespective of the desired
message of the user.

Once the user chooses a query to be sent to the N databases,
out of the NK options, each database might have to compute
sums of messages with different lengths. All messages except
the longest in the sum are zero-padded to the left to have
equal-length blocks. Then, bit-wise sums are calculated.

Once the answers are received from the databases, the user
might need to subtract messages of different lengths to recover
the required message. In this case, according to the design
of the scheme, the subtrahend will always be shorter than or
equal to the length of the minuend. Hence, the subtraction
operation in this context will not be any different than the
usual operation.

Remark 9 Each query is chosen with probability 1
NK as there

are
∑K
t=0(N − 1)t

(
K
t

)
= NK number of query options in

total. Each element of the sum corresponds to the number of
t-sums within the set of all possible queries that can be sent
to a given database.

1) Rate of Semantic PIR Scheme 2: In this PIR scheme,
each query option is utilized by the user with a probability
of 1

NK to download any desired message. When analyzing all
possible queries that can be sent to all databases, we note that
they have the same entries (in a shuffled way) irrespective
of the desired message. Since all query entries are equally
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W1

W2

WK

fixed nonuniform
subpacketization

apply

scheme
on each

same

W1

W2

WK

classical PIR
with K files

classical PIR
with two files

classical PIR
with one file

irregular uniform subpacketization

subpacket

semantic PIR scheme 1:

alternative description:

Fig. 1: Comparison of the two descriptions of semantic PIR scheme 1.

probable to be sent to the databases, we calculate E[D] by,

E[D] =

K∑
i=1

pi
1

NK

 K∑
t=1

K−t+1∑
j=1

Lj(N − 1)t−1

(
K − j
t− 1

)N
(82)

=
1

NK−1

K∑
j=1

K−j+1∑
t=1

Lj(N − 1)t−1

(
K − j
t− 1

)
(83)

=
1

NK−1

K∑
j=1

Lj

K−j∑
t=0

(N − 1)t
(
K − j
t

)
(84)

=
1

NK−1

K∑
j=1

LjN
K−j (85)

= L1 +
L2

N
+
L3

N2
+ · · ·+ LK

NK−1
(86)

where the second and third sums in (82) correspond to
different t-sums and all possible longest messages within the
t-sum, respectively. The pi terms are ignored in (83) as the
expected number of downloads per query set does not depend
on the desired message.

For a given desired message, the number of downloaded
useful bits is the length of the desired message (ignoring
zero-padding, as it is ignored by the user upon receiving the
answer strings). This remains constant regardless of the query

set utilized by the user. Hence,

E[L] =

K∑
i=1

piLi (87)

Thus, combining (86) and (87), the achievable rate of this
scheme becomes,

R =
E[L]

E[D]
(88)

=
E[L]

L1 + L2

N + L3

N2 · · ·+ LK

NK−1

(89)

=

(
L1

E[L]
+

1

N

L2

E[L]
+ · · ·+ 1

NK−1

LK
E[L]

)−1

(90)

This concludes the derivation of the achievable rate.

2) Proof of Privacy: The scheme is constructed in such a
way that any given database always receives a query out of
the set of queries given by, {φ, {W `

i , i ∈ {1, . . . ,K}, ` ∈
{1, . . . , N − 1}}, {W `1

i1
+ . . . + W `t

it
, for i1, . . . , it ∈

{1, . . . ,K}, `1, . . . , `t ∈ {1, . . . , N − 1}, t ∈ {2, . . . ,K}}}
with equal probability 1

NK irrespective of the message require-
ment. Therefore, from a given database’s perspective, the a
posteriori probability of the user needing message j, upon
receiving a query q from a user can be calculated by,

P (θ = i|Q = q) =
P (Q = q|θ = i)P (θ = i)∑K
j=1 P (Q = q|θ = j)P (θ = j)

(91)
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=
1
NK P (θ = i)∑K
j=1

1
NK P (θ = j)

(92)

= P (θ = i) (93)

which ensures that this scheme is private, since it implies that
θ and Q are independent.

E. Example of Semantic PIR Scheme 2

1) Example 3: N = 3,K = 3, L1 = 400 bits, L2 = 300
bits and L3 = 100 bits: Table V shows the query options
that the user may use with probability 1

27 , to download W1.
Whenever a set of queries for the three databases is chosen
with probability 1

27 , the required message is retrieved by
subtracting the smaller sum from the larger sums, guaranteeing
correctness.

The queries in the first block have zero side information,
and retrieve the N − 1 = 2 parts of W1 using N − 1 different
databases. The second block uses W 1

2 as side information,
and retrieve the two parts of W1 (in terms of a sum of itself
and side information) using the other two databases. The same
procedure is carried out in blocks 3, 4 and 5, with W 1

2 replaced
by W 2

2 , W 1
3 and W 2

3 . Last four blocks of Table V use W i
2+W j

3

for j ∈ 1, 2 as side information and use sums of three elements
(W k

1 +W i
2 +W j

3 for k = 1, 2) to retrieve the two parts of W1.
The rate achieved by this scheme when retrieving W1 is,

R1 =
L1

1
27

(
3L1 + 18(L1

2 × 2 + L2

2 ) + 6(L1

2 × 2 + L3

2 )
) (94)

=
L1

1
27 (27L1 + 9L2 + 3L3)

(95)

=
400

1
27 (27× 400 + 9× 300 + 3× 100)

=
36

46
(96)

The rate achieved by this scheme when retrieving W2 is,

R2 =
L2

1
27

(
3L2 + 18× 3× L1

2 + 6× (L2 + L3

2 )
) (97)

=
L2

1
27 (27L1 + 9L2 + 3L3)

(98)

=
300

1
27 (27× 400 + 9× 300 + 3× 100)

=
27

46
(99)

The rate achieved by this scheme when retrieving W3 is,

R3 =
L3

1
27

(
3L3 + 18× 3× L1

2 + 6× 3× L2

2

) (100)

=
L3

1
27 (27L1 + 9L2 + 3L3)

(101)

=
100

1
27 (27× 400 + 9× 300 + 3× 100)

=
9

46
(102)

The overall message retrieval rate for this example is,

R =
E[L]

E[D]
= p1

L1

D
+ p2

L2

D
+ p3

L3

D
(103)

=p1R1 + p2R2 + p3R3 =
36

46
p1 +

27

46
p2 +

9

46
p3 (104)

This matches the semantic PIR capacity expression in Theo-
rem 1,

C =

(
L1

E[L]
+

1

N

L2

E[L]
+

1

N2

L3

E[L]

)−1

(105)

=(400p1 + 300p2 + 100p3)

(
400 +

300

3
+

100

9

)−1

(106)

=
36

46
p1 +

27

46
p2 +

9

46
p3 (107)

The classical PIR capacity for this case with equal priors is,

C =

(
1 +

1

N
+

1

N2

)−1

=

(
1 +

1

3
+

1

9

)−1

=
9

13
(108)

The semantic PIR capacity in (107) exceeds the classical PIR
capacity in (108) when

36

46
p1 +

27

46
p2 +

9

46
p3 >

9

13
(109)

which is equivalent to

p1 +
2

3
p2 >

11

13
(110)

Remark 10 We note again that the rate calculation presented
here for the semantic PIR capacity takes into consideration the
zero-padding needed to be added to the shorter message block
in order to perform bit-wise message addition for any query
realization. The classical PIR capacity expression in (108)
assumes that all messages are of equal size and hence the
extra zero-padding is not reflected in that expression. Hence,
the actual rate of classical PIR scheme is indeed less than the
reported PIR capacity if the messages are of unequal size.

Remark 11 The second scheme presented above is an exten-
sion to more than two databases of the path-based scheme
presented in [47]. It is also similar to the scheme provided in
[60], except for the fact that the above scheme has database
symmetry as opposed to the scheme presented in [60].

V. CONVERSE PROOF

In this section, we present the converse proof for Theorem 1.
This proof is a slight modification of the converse proof
presented in [3]. The central intuition of our proof is the fact
that the expected length of the answer string generated by
a given database should remain the same, irrespective of the
identity of the desired message as a consequence of the privacy
constraint. The major difference of our proof compared to [3]
is the handling of the non-equal message sizes.

We begin the proof of Theorem 1 by the definition of
message retrieval rate,

R =
E[L]

E[D]
(111)

We choose some permutation {i1, . . . , iK} as an arbitrary
order of the messages. The denominator of (111) can be
expanded as follows,

E[D] =

K∑
i=1

pi(H(A
[i]
1 ) + · · ·+H(A

[i]
N )) (112)
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Probability Database 1 Database 2 Database 3
1
27 W 1

1 W 2
1 φ

1
27 W 2

1 φ W 1
1

1
27 φ W 1

1 W 2
1

1
27 W 1

1 +W 1
2 W 2

1 +W 1
2 W 1

2
1
27 W 2

1 +W 1
2 W 1

2 W 1
1 +W 1

2
1
27 W 1

2 W 1
1 +W 1

2 W 2
1 +W 1

2
1
27 W 1

1 +W 2
2 W 2

1 +W 2
2 W 2

2
1
27 W 2

1 +W 2
2 W 2

2 W 1
1 +W 2

2
1
27 W 2

2 W 1
1 +W 2

2 W 2
1 +W 2

2
1
27 W 1

1 +W 1
3 W 2

1 +W 1
3 W 1

3
1
27 W 2

1 +W 1
3 W 1

3 W 1
1 +W 1

3
1
27 W 1

3 W 1
1 +W 1

3 W 2
1 +W 1

3
1
27 W 1

1 +W 2
3 W 2

1 +W 2
3 W 2

3
1
27 W 2

1 +W 2
3 W 2

3 W 1
1 +W 2

3
1
27 W 2

3 W 1
1 +W 2

3 W 2
1 +W 2

3
1
27 W 1

1 +W 1
2 +W 1

3 W 2
1 +W 1

2 +W 1
3 W 1

2 +W 1
3

1
27 W 2

1 +W 1
2 +W 1

3 W 1
2 +W 1

3 W 1
1 +W 1

2 +W 1
3

1
27 W 1

2 +W 1
3 W 1

1 +W 1
2 +W 1

3 W 2
1 +W 1

2 +W 1
3

1
27 W 1

1 +W 2
2 +W 1

3 W 2
1 +W 2

2 +W 1
3 W 2

2 +W 1
3

1
27 W 2

1 +W 2
2 +W 1

3 W 2
2 +W 1

3 W 1
1 +W 2

2 +W 1
3

1
27 W 2

2 +W 1
3 W 1

1 +W 2
2 +W 1

3 W 2
1 +W 2

2 +W 1
3

1
27 W 1

1 +W 1
2 +W 2

3 W 2
1 +W 1

2 +W 2
3 W 1

2 +W 2
3

1
27 W 2

1 +W 1
2 +W 2

3 W 1
2 +W 2

3 W 1
1 +W 1

2 +W 2
3

1
27 W 1

2 +W 2
3 W 1

1 +W 1
2 +W 2

3 W 2
1 +W 1

2 +W 2
3

1
27 W 1

1 +W 2
2 +W 2

3 W 2
1 +W 2

2 +W 2
3 W 2

2 +W 2
3

1
27 W 2

1 +W 2
2 +W 2

3 W 2
2 +W 2

3 W 1
1 +W 2

2 +W 2
3

1
27 W 2

2 +W 2
3 W 1

1 +W 2
2 +W 2

3 W 2
1 +W 2

2 +W 2
3

TABLE V: The query table for the retrieval of W1.

= H(A
[i1]
1 ) + · · ·+H(A

[i1]
N ) (113)

Following the same steps in the converse proof of [3] E[D]
can be lower bounded as,

E[D] ≥ Li1 +H(A[i2]
n |Q[i2]

n ,Wi1) n = 1, . . . , N (114)

By summing all N inequalities corresponding to (114) and
repeating the previous steps for Wi2 (with conditioning on
Wi1 ) leads to,

NE[D] ≥ NLi1 + Li2+H(A[i3]
n |Q[i3]

n ,Wi1 ,Wi2) (115)

for n = 1, . . . , N . By summing the corresponding inequalities
and continuing with the same procedure for Wi3 , . . . ,WiK

yields,

NK−1E[D] ≥ NK−1Li1 +NK−2Li2 + · · ·+NLiK−1

+ I(WiK ;A
[iK ]
1 , . . . , A

[iK ]
N |Q[iK ]

1 , . . . , Q
[iK ]
N ,Wi1 , . . . ,WiK−1

)
(116)

and therefore, we have,

E[D] ≥ Li1 +
1

N
Li2 + · · ·+ 1

NK−2
LiK−1

+
1

NK−1
LiK

(117)

which further gives,

R ≤
(
Li1
E[L]

+
1

N

Li2
E[L]

+ · · ·+ 1

NK−1

LiK
E[L]

)−1

(118)

The upper bound in (118) holds for any permutation
{i1, . . . , iK}, hence, the tightest upper bound can be obtained
by minimizing over all permutations7. Consequently,

R ≤ min
{i1,...,iK}

(
Li1
E[L]

+
1

N

Li2
E[L]

+ · · ·+ 1

NK−1

LiK
E[L]

)−1

(119)

Since the messages are ordered such that L1 ≥ L2 ≥ · · · ≥
LK , the minimum upper bound is attained at {i1, . . . , iK} =
{1, . . . ,K} as it gives the largest number to the largest
coefficient in the lower bound on the download cost. Thus,

R ≤
(
L1

E[L]
+

1

N

L2

E[L]
+ · · ·+ 1

NK−1

LK
E[L]

)−1

(120)

completing the converse proof.

VI. EXTENSIONS OF SEMANTIC PIR

A. Semantic PIR from MDS-coded Databases

In this section, we present a complete characterization of the
capacity of semantic PIR from MDS-coded databases, along
with an optimal scheme. The optimal scheme is an extension
of the scheme presented in [9]. We consider an (N,M) MDS
coded distributed storage system containing K independent

7Note that the order does not matter in the case of equal message lengths
in [3].
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messages. The messages are allowed to have different se-
mantics (lengths and prior probabilities). Each message Wi

is represented as a matrix in FLi×M
q , where the elements of

the matrix are uniformly and randomly chosen from Fq . The
generator matrix of the (N,M) code is H = [h1, . . . , hN ],
where hi ∈ FMq , i ∈ [N ]. The MDS property implies that any
combination of up to M columns of H is linearly independent.

Let the jth row of Wi be denoted by W [i]
j . Each database

n, n ∈ [N ] stores W [i]
j hn for j ∈ [Li], i ∈ [K]. The objective

is to download a required message without revealing its index
to any of the databases. In order to retrieve Wi, user sends
query Q

[i]
n to database n, n ∈ [N ] and receives the answer

A
[i]
n which is a deterministic function of the contents of the

database and Q[i]
n . The correctness and privacy conditions are

the same as (5) and (6) respectively, and the rate is calculated
by,

R =
ME[L]

E[D]
(121)

Theorem 2 gives the exact PIR capacity for the semantic
PIR problem.

Theorem 2 The capacity of semantic PIR with (N,M) MDS-
coded databases with N databases, K messages, message
sizes MLi (arranged as L1 ≥ L2 ≥ . . . ≥ LK) and prior
probabilities pi is given by,

C =

(
L1

E[L]
+

(
M

N

)
L2

E[L]
+ · · ·+

(
M

N

)K−1
LK
E[L]

)−1

(122)

where E[L] =
∑K
i=1 piLi.

The achievable scheme is an extension to the first scheme
presented in Section IV-A. The steps of the achievable scheme
are as follows. Assume that the user requires to download Wj .

1) Message indexing: Assign indices to messages in the
descending order message sizes, i.e., L1 ≥ L2 ≥ . . . ≥
LK . Permute the rows of all messages randomly and
independently, privately from the databases.

2) Single blocks: Using (130), download υj different coded
bits of Wj from each database. Download υi coded bits
of Wi, i 6= j from each database such that the coded bits
of M different databases correspond to the same row of
Wi. This is required to decode the rows of Wi that are
used as side information. Therefore, Nυi coded bits of
Wi, i 6= j are downloaded in this step, that belong to
Nυi
M different rows of Wi.

3) Sums of two elements: There are two types of blocks in
this step. The first block is the sums involving bits of the
desired message, Wj , and the other block is the sums
that do not have any bits from Wj . In the first block,
make use of the side information (singles corresponding
to Wi, i 6= j) downloaded in the previous step. Consider
a 2-sum corresponding to coded bits of Wj , Wi, i 6=
j. Download

(
N
M − 1

)
min{υi, υj} 2-sums of the form

(W
[j]
rn + W

[i]
sn)hn from database n, n ∈ [N ] where W [j]

rn

are new rows of Wj and W [i]
sn are already decoded rows of

Wi in the previous step. Note that the set of M databases
that were used to decode W [i]

sn in the previous step does
not include database n. The second block of 2-sums
contains coded bits corresponding to Wi1 and Wi2 , where
i1 6= i2 6= j. Download

(
N
M − 1

)
min{υi, υj} 2-sums of

the form (W
[i1]
tn + W

[i2]
vn )hn from database n, n ∈ [N ]

where W [i1]
tn and W

[i2]
vn are new rows of Wi1 and Wi2 .

Note that coded bits corresponding to the same pair of
rows (tn, vn) needs to be downloaded from M different
databases in order to correctly decode the side infor-
mation W

[i1]
tn + W

[i2]
vn . Thus, the second block contains

N
(
N
M − 1

)
min{i1, i2} coded 2-sums corresponding to

Wi1 and Wi2 belonging to
N( N

M−1)min{i1,i2}
M different

pairs of rows.
4) Sums of ` elements: There are two types of blocks

similar to sums of two. The first block contains queries of
the form (W

[j]
r +W

[i1]
r1 + . . .+W

[i`−1]
r`−1 )hn, i1 6=, . . . , 6=

i`−1 6= j, where W [j]
r is a new row of Wj and W [i1]

r1 +

. . .+W
[i`−1]
r`−1 is an already decoded (`−1)-sum from the

previous step. For a given (` − 1)-tuple (i1, . . . , i`−1),
download

(
N
M − 1

)`−1
υmin{j,i1,...,i`−1} such `-sums from

each database. The second block contains queries of the
form (W

[i1]
t1 + . . .+W

[i`]
t`

)hn, i1 6= · · · 6= i` 6= j, where
W

[i1]
t1 , . . . ,W

[i`]
t`

are new rows of Wi1 , . . . ,Wi` . Down-
load

(
N
M − 1

)`−1
υmin{i1,...,i`} such `-sums from each

database such that the coded bits corresponding to a given
`-tuple of rows (r1, . . . , r`) is downloaded from M dif-
ferent databases. A total of N

(
N
M − 1

)`−1
υmin{i1,...,i`}

coded bits of this form will be downloaded corresponding

to ( N
M−1)

`−1
υmin{i1,...,i`}
M different `-tuples of rows of

Wi1 , . . . ,Wi` .
5) Repeat the process up to sums of K elements.
6) Query repetition: To decode each row of Wj , repeat the

above process M times, while shifting the queries that
contain rows of Wj to its neighboring database and by
choosing new sets of rows of Wi, i ∈ {1, . . . ,K}, i 6= j
in each repetition. The M different linear combinations
of each row of Wj allow us to correctly decode Wj .

The achievable rate of the above scheme is calculated as
follows. First, note that the download cost remains the same
irrespective of the message requirement in order to guarantee
privacy. Therefore, the E[D] term in (121) is calculated by
summing the number of downloads in each step of the scheme.
Within one round of queries, there are

∑K
i=1Nυi singletons

and N
(
N
M − 1

)`−1∑K
i=`

(
i−1
`−1

)
υi sums of `-elements. There-

fore,

E[D]

M
=

K∑
i=1

Nυi+

K∑
`=2

K∑
i=`

N

(
N

M
− 1

)`−1

υi

(
i− 1

`− 1

)
(123)

= N

[
K∑
i=1

υi+

K∑
`=2

υ`
∑̀
i=2

(
N

M
−1

)i−1(
`− 1

i− 1

)]
(124)
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= M

[
N

M
υ1+

K∑
`=2

υ`

(
N

M

)`]
=M

K∑
`=1

(
N

M

)`
υ`

(125)

For the E[L] term in (121), we sum the number of useful
bits downloaded in each step of the scheme. Based on the
scheme described above, Nυj rows of Wj are retrieved
as singletons, N

(
N
M − 1

)`−1 (j−1
`−1

)
υj rows of Wj are re-

trieved as `-sums with Wj being the shortest message and
N
(
N
M − 1

)`−1 (i−2
`−2

)
υi rows of Wj are retrieved as `-sums

with Wi, i 6= j being the shortest message in the sum.
Denoting Uj as the total number of useful bits downloaded,
the number of rows of Wj retrieved is calculated by,

Uj
M

=Nυj +

j∑
`=2

N

(
N

M
− 1

)`−1(
j − 1

`− 1

)
υj

+

j∑
`=2

K∑
i=j+1

N

(
N

M
− 1

)`−1(
i− 2

`− 2

)
υi

+

K∑
`=j+1

K∑
i=`

N

(
N

M
− 1

)`−1(
i− 2

`− 2

)
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=Nυj

j−1∑
`=0

γ`
(
j − 1

`

)
+Nυj+1γ

j−1∑
`=0

γ`
(
j − 1

`

)

+Nυj+2γ

j∑
`=0

γ`
(
j

`

)
+· · ·+NυKγ

K−2∑
`=0

γ`
(
K − 2

`

)
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=M

(N j

M j

)
υj + γ

K∑
i=j+1

(
N

M

)i−1

υi

 (128)

where γ = N
M −1. Thus, the subpacketization of Wj is defined

as Uj

M , which represents the number of rows of Wj , that can
be retrieved by a single use of the scheme. Since the total
number of rows of Wj , j ∈ {1, . . . ,K} have to be a common
multiple of their own subpacketizations,

Lj = α
Uj
M
, j ∈ {1, . . . ,K} (129)

for some α ∈ N. Solving (128) and (129) for υ1, . . . , υK gives,
υ1

υ2

...
υK

 =
1

Mα


M
N −

(
M
N

)2
γ . . . −

(
M
N

)K
γ

0
(
M
N

)2
. . . −

(
M
N

)K
γ

...
...

...
...

0 0 . . .
(
M
N

)K



L1

L2

...
LK


(130)

In order for the values of υi, i ∈ {1, . . . ,K} to be integers, this
scheme requires each Li to be a multiple of N i. Here, α is the
greatest common divisor (gcd) of the elements of the vector
resulting from multiplying the matrix and the vector on the
right side of (130). This allows the shortest subpacketization
levels for all messages.

The total and useful numbers of bits downloaded (in (125)
and (128), respectively) are both within one subpacketization
level. These downloads are repeated α times to download the

entire message. Thus, the achievable rate is given by,

R =
ME[L]

E[D]
=

M
∑K
i=1 piLi

αM2
∑K
i=1

Ni

Mi υi
(131)

=
E[L]

αM 1
Mα

∑K
i=1

Ni

Mi

[(
Mi

Ni

)
Li−

(
N
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)∑K
t=i+1

(
Mt

Nt

)
Lt

]
(132)

=
E[L]∑K

i=1

[
Li −

(
N
M − 1

)∑K
t=i+1

(
Mt−i
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)
Lt

] (133)

=
E[L]

L1 + L2

(
M
N

)
+
∑K
i=3 Li

[
1−

(
1− Mi−1

Ni−1

)] (134)

=

(
L1

E[L]
+

(
M

N

)
L2

E[L]
+· · ·+

(
M

N

)K−1
LK
E[L]

)−1

(135)

A given database always receives queries of the same type
(i.e.,

(
N
M − 1

)`−1
υmin{i1,...,i`}, ∀{i1, . . . , i`} ⊂ [K], `-sums

for ` ∈ {1, . . . ,K}) irrespective of the message requirement.
According to the query generation procedure, no bit of any
message is requested from a given database more than once
as a singleton or as an element of a sum. Therefore, a proof
similar to what is presented in Section IV-A2 is used to show
that this scheme is private.

The above scheme can be alternatively described using
the same ideas presented in Section IV-C. The alternative
description is as follows. Database n, n ∈ {1, . . . , N} contains
coded bits corresponding to each row of Wi, i ∈ {1, . . . ,K}
given by W

[i]
r hn, r ∈ {1, . . . , Li}. Therefore, each database

stores Li coded bits of Wi, where L1 ≥ L2 ≥ . . . ≥ LK .
Considering the first LK coded bits of all messages, the
classical MDS-coded PIR scheme in [9] is applied as the
first step of the scheme. Then, apply the classical coded PIR
scheme using the next LK−1 − LK coded bits of messages
W1 to WK−1. In general, in the `th step, the classical coded
PIR scheme needs to be applied on the LK−`+1 − LK−`+2

coded bits of W1 to WK−`+1. The complete scheme should
be used irrespective of the message requirement.

The alternative description differs from the main description
in subpacketization, and in the scheme used within a subpacket
as explained in Section IV-C. However, the two descriptions
are equivalent when considering the entire retrieval process
(all subpackets). The rate achieved by the alternative scheme
is given by,

R =E[L]/

(
LK

(
1 +

M

N
+ . . .+

MK−1

NK−1

)
+ (LK−1 − LK)

(
1 +

M

N
+ . . .+

MK−2

NK−2

)
+ . . .+ L1 − L2

)
(136)

which is the same as (135). A converse proof similar to what
is presented in Section V with the ideas of [9] is used to
prove an upper bound on the retrieval rate of semantic PIR
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from MDS-coded databases, which is the same as (135). This
proves the capacity expression in (122).

B. Semantic PIR from Colluding Databases

In this section, we present a complete characterization
of the capacity of semantic PIR from colluding databases,
along with an optimal scheme. This is an extension of the
results presented in [4]. We consider K independent messages
(Wi, i ∈ {1, . . . ,K}) with arbitrary lengths Li and prior
probabilities pi, stored in N replicated databases. Out of the N
databases, any subset up to T databases are allowed to collude.
The objective here is to download a user-required message
without revealing its index to any T -colluding databases.

Theorem 3 The capacity of semantic PIR from colluding
databases, with K messages, message lengths Li (arranged
as L1 ≥ L2 ≥ . . . ≥ LK), prior probabilities pi and N
databases out of which any T are colluding, is given by,

C =

(
L1

E[L]
+

L2

E[L]

(
T

N

)
+ . . .+

LK
E[L]

(
T

N

)K−1
)−1

(137)

where E[L] =
∑K
i=1 piLi.

The optimal scheme is an extension of the scheme presented
in Section IV-A. The scheme is as follows. Assume that the
required message is Wj . Once the messages are indexed based
on the decreasing order of lengths, the user needs to generate
a set of linear combinations of the message indices given by,

xj = SjWj (138)

where Sj is a random full rank matrix drawn uniformly and
independently from all such matrices in F`j×`jq where `i is
the subpacketization of Wj . For each Wm, m 6= j, let mt

denote the number of t-sums in the scheme involving Wm

but not Wj . Let mt,j be the number of t-sums in the scheme
involving both Wm and Wj .8 Then, the linear combinations
of Wi, i ∈ [K], i 6= j are generated by,

first (m1 +m2,j) bits of xi
= MDS(m1+m2,j)×m1

Si[(1 : m1), :]Wi (139)

next (m2 +m3,j) bits of xi
= MDS(m2+m3,j)×m2

Si[(m1 + 1 : m1 +m2), :]Wi (140)
...

last (mK−1 +mK,j) bits of xi
= MDS(mK−1+mK,j)×mK−1

Si[(`i −mK−1 + 1 : `i), :]Wi

(141)

where Si, i ∈ {1, . . . ,K} are random full rank matrices of
F`i×`iq and MDSa×b are globally known generator matrices
of (a, b) MDS-codes. The first step of the scheme is to
calculate υi, i ∈ {1, . . . ,K} using (130) with M replaced

8The values of mt and mt,j for t ∈ {1, . . . ,K} are immediate from the
steps of scheme which are described later. These values do not depend on the
linear combinations.

by T . Then, download υi, i ∈ {1, . . . ,K} bits of each
xi from each database. Next, from each database, download(
N
T − 1

)
υmin{i1,...,it} t-sums, t ∈ {2, . . . ,K} involving new

bits of xi1 , . . . , xit , ∀{i1, . . . , it} ⊂ {1, . . . ,K}. This com-
pletes the scheme.

For a given t-sum of the form xi1(·) + . . . + xit(·) with
i1 ≥ i2 ≥ . . . ≥ it, which does include any bit of Wj , let
the generator matrix corresponding to each element xik in
the sum be denoted by Gik . Then, each Gik must satisfy,

Gik =

Gik+1

. . .
X

, k ∈ {1, . . . , t} where X denotes the set

of extra rows in the larger generator matrix. This is required
for interference alignment. The proof of privacy in [4] applies
to this scheme as well. The fact that the required message
is coded differently, in a non redundant manner, ensures the
correctness of the scheme as explained in [4].

The optimal scheme above can be alternatively described as
follows. In each database, segment the set of messages into K
partitions, such that the first segment contains the first LK bits
of all K messages, the second segment contains the next set
of LK1

−LK bits of messages W1 to WK−1 and so on. Then,
apply the classical colluded PIR scheme in [4] to the 1) the first
segment with K messages, 2) the second segment with K−1
messages, 3) the third segment with K − 2 messages, and so
on. Make sure that the complete scheme is used irrespective
of the desired message for privacy. The achievable rate of
the scheme is equal to the capacity in (137). The converse is
proved using similar ideas provided in the converse proofs of
Section V and [4].

VII. CONCLUSION AND DISCUSSION

In this work, we introduced the problem of semantic PIR.
In this problem, the stored messages are allowed to have
non-uniform popularities, which is captured via an a priori
probability distribution (pi, i ∈ [K]), and heterogeneous sizes
(Li, i ∈ [K]). We derived the exact semantic PIR capacity as a
function of {Li}Ki=1 and the expected message size E[L]. The
result implies that the semantic PIR capacity is equal to the
classical PIR capacity if all messages have equal sizes Li = L
for all i ∈ [K]. We derived a necessary and sufficient condition
for the semantic PIR capacity to exceed the classical PIR
capacity. In particular, we showed that if the longer messages
are retrieved more often, there is a strict retrieval rate gain from
exploiting the message semantics.9 Furthermore, we proved
that for all message sizes and priors, the semantic PIR capacity
exceeds the achievable rate of classical PIR with zero-padding,
which zero-pads all messages to equalize their sizes.

To that end, we proposed two achievable schemes for
achieving the semantic PIR capacity. The first one has a
deterministic query structure. We have proposed a systematic
way of calculating the needed subpacketization levels for
the messages. We also provided an alternative description to
this scheme which implements the classical PIR scheme in a
segmented manner. The similarities and differences between

9This does not necessarily mean that p1 ≥ p2 ≥ . . . ≥ pK . It essentially
means that the E[L] should be large enough such that (11) is satisfied.
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the two descriptions were also discussed. The second scheme
has a stochastic query structure, where the user picks one
query structure at random from an ensemble of structures. The
first scheme has the advantage of having a fixed download
cost for all messages for all query structures unlike the
stochastic scheme, which has the same expected download
cost. Nevertheless, the first scheme suffers from exponential
subpacketization levels in contrast to the linear counterpart
in the stochastic scheme. We derived a matching converse
that extends the converse scheme of [3] to take into ac-
count the heterogeneous message sizes and prior probabilities.
Finally, the extensions of semantic PIR to coded databases
and colluding databases were analyzed separately, where the
complete characterizations of the capacities of the two cases
were presented along with the corresponding optimal schemes.
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