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Abstract

We study the problem of space and time
e�cient evaluation of a nonparametric esti-
mator that approximates an unknown den-
sity. In the regime where consistent estima-
tion is possible, we use a piecewise multivari-
ate polynomial interpolation scheme to give
a computationally e�cient construction that
converts the original estimator to a new es-
timator that can be queried e�ciently and
has low space requirements, all without ad-
versely deteriorating the original approxima-
tion quality. Our result gives a new statistical
perspective on the problem of fast evaluation
of kernel density estimators in the presence
of underlying smoothness. As a corollary, we
give a succinct derivation of a classical re-
sult of Kolmogorov—Tikhomirov on the met-
ric entropy of Hölder classes of smooth func-
tions.

1 INTRODUCTION

The fast evaluation of kernel density estimators
has been well-studied including approaches based
on the fast Gauss transform (Greengard & Strain,
1991), hierarchical space decompositions (Greengard
& Rokhlin, 1987), locality sensitive hashing (Charikar
& Siminelakis, 2017; Backurs et al., 2018; Siminelakis
et al., 2019; Backurs et al., 2019), and binning (Scott &
Sheather, 1985), as well as interpolation (Jones, 1989;
Kogure, 1998), our main technique in this work. Typ-
ically these techniques carefully leverage the structure
of the kernel under consideration, and many of them
operate in a worst-case framework over the dataset. In
this work, we consider the problem of fast evaluation
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of a density estimator f̂ in a statistical setting where f̂
gives a good pointwise approximation to an unknown
density f : [0, 1]d ! R that lies in a Hölder class of
smooth functions. We show that a pointwise approxi-
mation guarantee alone, without assuming any specific
structure of the estimator f̂ , is enough to construct
a new estimator f̃ that can be stored and queried
cheaply, and whose approximation error is similar to
that of the original estimator. Our approach is based
on a multivariate polynomial interpolation scheme of
Nicolaides (1972) (see also Chung & Yao, 1977) and
provides an explicit formula for f̃ in terms of some
judiciously chosen queries of the original estimator.

1.1 Background and related work

Density estimation is the task of estimating an un-
known density f given an i.i.d. sample X1, . . . , Xn ⇠

Pf , where Pf is the probability distribution associated
to f . A popular choice of density estimator is the ker-
nel density estimator (KDE)

f̂(y) :=
1

nhd

nX

j=1

K

✓
Xi � y

h

◆
. (1)

With proper setting of the bandwidth parameter h and
choice of kernel K, the KDE f̂ is a minimax optimal
estimator over the L-Hölder smooth densities PH(�, L)
of order � (see e.g. Tsybakov, 2009, Theorem 1.2):

inf
f̂

sup
f2PH(�,L)

Ef kf̂ � fk2 = ⇥�,d,L(n
�

�
2�+d ) . (2)

Despite its statistical utility, the KDE (1) has the com-
putational drawback that it naively requires ⌦(n) time
to evaluate a query. The problem of improving on
these computational aspects has thus received a lot of
attention.

Motivated by multi-body problems, Greengard &
Strain (1991) developed the fast Gauss transform to
rapidly evaluate sums of the form (1) when K(x) =
exp(� |x|22) is the Gaussian kernel. Their work is posed

a worst-case batch setting where f̂ is to be evaluated at
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m points y1, . . . , ym specified in advance and the loca-
tions X1, . . . , Xn lie in a box. Their techniques use hi-
erarchical space decompositions and series expansions
to show that (1) may be evaluated at y1, . . . , ym with
precision " in time h�d(log 1

"
)d(n+m). These results

apply to any kernel that has a rapidly converging Her-
mite expansion (see also Greengard & Rokhlin, 1987).
There are also follow up works on the improved fast
Gauss transform and tree-based methods that use re-
lated ideas (Yang et al., 2003; Lee et al., 2006).

More recently, several works (Charikar & Siminelakis,
2017; Backurs et al., 2018; Siminelakis et al., 2019;
Backurs et al., 2019; Coleman & Shrivastava, 2020)
are devoted to the problem of fast evaluation of (1)
in high dimension using locality sensitive hashing. In
these works, the dataset is carefully reweighted for im-
portance sampling such that a randomly drawn data-
point Xr’s corresponding kernel value K(Xr�y) gives
a good approximation to f̂(y). This sampling pro-
cedure can be executed e�ciently using hashing-based
methods. For example, Backurs et al. (2019) show that
for the Laplace and Exponential kernels with band-
width h = 1, e.g., the value f̂(y) can be computed
with multiplicative 1 ± " error in time O( d

p
⌧"2

) even

in worst case over the dataset, where ⌧ is a uniform
lower bound on the KDE.

Another e↵ective approach to this problem in high di-
mensions is through coresets (Agarwal et al., 2005;
Clarkson, 2010; Phillips & Tai, 2018a,b). A coreset
is a representative subset {Xi}i2S of a dataset such
that

f̂(y) ⇡
1

nhd

X

i2S

K

✓
Xi � y

h

◆
.

When h = O(1), for example, the results of Phillips &
Tai (2018b) give a polynomial time algorithm in n, d
such that the coreset KDE yields an additive " ap-

proximation to f̂ using a coreset of size Õ(
p

d

"
). Their

results hold in worst case over the dataset and for a
variety of popular kernels. The methods of Phillips
& Tai (2018b) are powered by state-of-the-art algo-
rithms from discrepancy theory (Bansal et al., 2018)
(see Matoušek, 1999; Chazelle, 2000, for a comprehen-
sive exposition on discrepancy).

Our approach is most closely related to prior work on
the interpolation of kernel density estimators due to
Jones (1989) and Kogure (1998). Motivated by vi-
sualization and computational aspects, Jones (1989)
studies binned and piecewise linearly interpolated uni-
variate kernel density estimators and provides precise
bounds on the mean-integrated squared error. Kogure
(1998) extends this work and constructs higher order
piecewise polynomial interpolants of multivariate ker-
nel density estimators, and shows that for very smooth

densities, this procedure improves the mean-integrated
squared error. In addition, we note the recent work of
Belkin et al. (2019); Liang et al. (2020) demonstrat-
ing the perhaps surprising e↵ectiveness of interpola-
tion in nonparametric regression. We also remark that
nonparametric estimators based on multivariate piece-
wise polynomials are well-studied in statistics (see e.g.
Györfi et al., 2006, Chapter 10), and there is a line of
related literature in computer science on fast estima-
tion of univariate densities that are well-approximated
by piecewise polynomials (Chan et al., 2014; Acharya
et al., 2017; Hao et al., 2020).

Our work di↵ers from Kogure (1998) in a few impor-
tant respects. We do not assume f̂ to be a KDE
in the first place, but rather give a general method
for e↵ectively interpolating a minimax density esti-
mator. Also, our results hold for the entire range
of the smoothness parameter � and dimension d,
while Kogure (1998) requires the density to be at
least qd times di↵erentiable when interpolating KDEs
with kernels of order q (Tsybakov, 2009, Definition
1.3). On the other hand, our method increases the
mean squared by a multiplicative factor Õ(c�,d), while
Kogure’s approach improves the mean squared error
(though our focus here is the L1 norm). Finally, we
use a di↵erent interpolation scheme as detailed in Sec-
tion 2.1.

1.2 Results

We seek to impose minimal requirements on a density
estimator f̂ of an unknown smooth density f so that it
can be converted to a new estimator f̃ that performs
well on the following criteria.

1. (Minimax) f̃ is a minimax estimator for f

2. (Space-e�cient) f̃ can be stored e�ciently

3. (Fast querying) f̃ can be evaluated e�ciently

4. (Fast preprocessing) f̃ can be constructed e�-
ciently

In this work, we focus on near-minimax estimation
in the L1 norm, motivated by the aforementioned
works on e�cient evaluation of kernel density estima-
tors. Since we impose that the unknown density f
is supported on [0, 1]d, such a guarantee also implies
upper bounds on the Lp error for all p � 1.

In the statistical setup where typically �, d = O(1),
by e�cient we mean requiring only polynomial time
or space in the sample size n. In particular for fixed
�, by (2) consistent estimation is only possible when
d ⌧ log n. In what follows we indicate dependencies
on the parameters � and d for clarity.
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The requirement that we place on the estimator f̂ to
be converted is the following assumption.

Assumption 1. For all y 2 [0, 1]d and 1 � t � ", we
have

sup
f2PH(�,L)

Pf

h���f̂(y)� f(y)
��� > t

i
 2 exp

✓
�
t2

"2

◆
,

where " := c⇤ n��/(2�+d) is the minimax rate of esti-
mating L-Hölder smooth densities PH(�, L) of order �
and c⇤ = c�,d,L > 0.

The formal definition of the Hölder class PH(�, L) we
consider is given in Section 1.3. In particular As-
sumption 1 is satisfied if the pointwise error is a sub-
Gaussian random variable with parameter " that cap-
tures the minimax rate of estimation. For the KDE
built from a kernel K of order ` := b�c (Tsybakov,

2009, Definition 1.3) and bandwidth h = n�
1

2�+d ,
this assumption follows from a standard bias-variance
trade-o↵ and an application of Bernstein’s inequality
(see Section 4).

Under Assumption 1, we have our main result.

Theorem 1. Let f : [0, 1]d ! R denote a probability
density function, and let f̂ denote an estimator satis-
fying Assumption 1 for some � > 0 and d � 1. Let
Q denote the amount of time it takes to query f̂ . Set
` = b�c. Then there exists an estimator f̃ that can be

constructed in time ccon Qn
d

2�+d , that requires at most

csto n
d

2�+d log n bits to store, that can be queried in time
cque log n, and that satisfies

Efkf̃ � fk1 < cerr(log n)
1/2n�

�
2�+d .

In Theorem 1, we may take

ccon =

✓
`+ d

`

◆
,

csto = 5d(`+ 1)(logL)

✓
`+ d

`

◆
,

cque = 14(d+ `)2
✓
`+ d

d

◆
, and

cerr = 8c⇤Ld
3
2 `+2``

✓
`+ d

`

◆s

log 2

✓
`+ d

`

◆
.

In particular, for �, d = O(1), we can evaluate queries
to f̃ in nearly constant time, and the estimator f̃ can
be stored using sublinear space. Moreover, f̃ can be
preprocessed in subquadratic time, assuming that the
evaluation time of the original estimator f̂ is Od(n),
which holds for the KDE (1). We also note that f̃ is
a near-minimax estimator in the sup norm, up to log-
arithmic factors, and thus by our domain assumption

is also near-minimax in the Lp norms, again up to log-
arithmic factors. Finally, our construction in Section
2.1 yields an explicit formula for f̃ in terms of a sub-
linear number of initial queries of f̂ on a judiciously
chosen mesh. Specifically, the estimator f̃ is a piece-
wise multivariate interpolation of the estimator f̂ on
this mesh.

Though our focus is on density estimation, our method
is not limited to this setting. The next result holds un-
der a modified version of Assumption 1 and is derived
by following the proof of Theorem 1. We omit the
argument as it is very similar.

Theorem 2. Let f : [0, 1]d ! R denote an L-smooth
Hölder function of order �, and suppose that one has
query access to a function f̂ where kf̂�fk1  ". Then

by first computing ccon "
�

d
� initial queries of f̂ , one can

construct a new function f̃ that satisfies kf � f̃k1 

cerr ", that can be stored using csto "
�

d
� log "�1 bits, and

that can be queried in time cque log "�1.

Theorem 2 is useful when it is possible to design a
procedure for estimating a smooth function f point-
wise, but that procedure cannot necessarily be carried
out e�ciently per query. For example in nonparamet-
ric regression, Nadaraya–Watson estimators are known
to be accurate pointwise (Tsybakov, 2009) but naively
require evaluation time that is linear in the number of
data points. One can also imagine a numerical or ex-
perimental setting where it is only possible to gather a
limited number of accurate measurements of a smooth
response, and one wants to graph the underlying func-
tion e�ciently and accurately over the entire domain.

1.3 Setup and notation

Fix an integer d � 1. For any multi-index s =
(s1, . . . , sd) 2 Zd

�0, let |s| = s1 + · · · + sd and for

x = (x1, . . . , xd) 2 Rd, define s! = s1! · · · sd! and
xs = xs1

1 · · ·xsd
d
. Let Ds denote the di↵erential op-

erator

Ds =
@|s|

@xs1
1 · · · @xsd

d

.

Fix a positive real number �, and let b�c denote the
maximal integer strictly less than �. We reserve the
notation k·kp for the Lp norm and |·|

p
for the `p norm.

Given L > 0 we let H(�, L) denote the space of Hölder
functions f : Rd

! R that are supported on the cube
[0, 1]d, are b�c times di↵erentiable, and satisfy

|Dsf(x)�Dsf(y)|  L |x� y|��b�c

2 ,

for all x, y 2 Rd and for all multi-indices s such that
|s| = b�c.
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Let PH(�, L) denote the set of probability density
functions contained in H(�, L). For f 2 PH(�, L),
let Pf (resp. Ef ) denote the probability distribution
(resp. expectation) associated to f .

The parameter L will be fixed in what follows, so typ-
ically we write PH(�) := PH(�, L). The constants
c, c�,d, cL, etc. vary from line to line and their sub-
scripts indicate parameter dependences.

2 EFFICIENT INTERPOLATION
OF DENSITY ESTIMATORS

The important implication of Assumption 1 is that we
can query f̂ at a polynomial number of data points
such that for each query y, f̂(y) ⇡ f(y), where f is
the unknown density.

Lemma 1. Let A > 0 and set N = �nA with � � 1.
Let y1, . . . , yN ⇢ [0, 1]d denote a set of points. Then
with probability at least 1� n�2,

���f̂(yi)� f(yi)
��� 

q
log(2�nA+2) "

for all 1  i  N , where " = c⇤ n��/(2�+d) is the
minimax rate.

Proof. Set t =
p
log(2�nA+2) " � " and apply As-

sumption 1 to yi. Then by the union bound,

P
h
9yi :

���f̂(yi)� f(yi)
��� > t

i
 2�nAe�

t2

"2  n�2.

We now describe our construction of f̃ . Define ` := b�c
and M =

�
`+d

`

�
.

Construction of f̃ (informal):

1. Partition: Divide [0, 1]d into h�d sub-cubes
{I~j} ⇢ [0, 1]d of side-length h = n�1/(2�+d) where
~j 2 Zd

�0 and I~j := [0, h]d + h~j.

2. Mesh: For each ~j, construct a mesh consisting of

M =
�
`+d

`

�
points U

~j

1 , . . . , U
~j

M
2 I~j .

3. Interpolate: In each sub-cube I~j , construct a
multivariate polynomial interpolant q̂~j on the M

points (U
~j

1 , f̂(U
~j

1 )), . . . , (U
~j

M
, f̂(U

~j

M
)).

Return: f̃ : [0, 1]d ! R defined by

f̃(y) =
X

~j

q̂~j(y)1(y 2 I~j).

We first give some intuition for why f̃ is an accu-
rate estimator. On each sub-cube I~j , the true den-
sity f 2 PH(�, L) is approximated up to the minimax
error by a polynomial q~j of degree at most ` by the
properties of Hölder functions. Upon setting � = M
and A = d/(2� + d) in Lemma 1, this guarantees that

for all points U
~j

k
in the mesh, f̂(U

~j

k
) ⇡ f(U

~j

k
) ⇡ q~j(U

~j

k
)

with high probability. By studying the stability of the
resulting polynomial system of equations, we can show
that this construction yields a good approximation to
the ‘true’ interpolation polynomial q~j on the sub-cube
I~j . This argument, carried out formally later in this
section, yields the estimation bound of Theorem 1.

Next, we comment on the remaining guarantees of
Theorem 1. As we show later, there is an explicit for-
mula for q̂~j , so the main preprocessing bottleneck is the

evaluation of f̂ on the Mnd/(2�+d) points in the mesh,
which naively takes QMnd/(2�+d) time. For the space

requirement, it su�ces to store the values {f̂(U
~j

k
)} up

to polynomial precision as well as the elements of the
mesh. Querying f̂ at a point y 2 [0, 1]d requires check-
ing which sub-cube y belongs to by scanning its d coor-
dinates and then evaluating q̂~j(y), which is a d-variate
polynomial of degree b�c. By a careful consideration
of the numerical precision required to perform these
steps in Section 2.2.2, we obtain the computational
guarantees of Theorem 1.

2.1 Interpolation on the principal lattice

To construct our interpolant, we refer to the next defi-
nition and theorem which are classical in finite element
analysis (Nicolaides, 1972; Chung & Yao, 1977). The
lattice P` ⇢ [0, 1]d, dubbed the `-th principal lattice,
has the special property that every function defined on
P` admits a unique polynomial interpolant of degree
at most `. This property is known to be equivalent to
a combinatorial geometric condition referred to as GC
in Chung & Yao (1977). A set of points P is called GC
if every point x 2 P has an associated set Hx consist-
ing of ` a�ne hyperplanes whose union contains P\x
and such that none of these hyperplanes contain x.

Definition 1 (`-th principal lattice of �d). Let �d ⇢

[0, 1]d denote the simplex on the points {0}[{ei}di=1 ⇢

Rd, where ei denotes the i-th standard basis vector in
Rd. Label the vertices of �d to be v0 = 0, vi = ei for
1  i  d. For all x 2 Rd, there exists a unique vector
(�0(x), . . . ,�d(x)) with entries summing to one such
that

x =
dX

i=0

�i(x)vi .

Let ⇤ : Rd
! Rd+1 denote the function such that

⇤(x) = (�0(x), . . . ,�d(x)). For ` � 1, the `-th princi-
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pal lattice P` of �d is defined to be

P` =
n
x 2 �d : `⇤(x) 2 Zd+1

�0

o
. (3)

We also define P0 = 0 2 Rd.

Given a point x 2 P`, the associated set of a�ne hy-
perplanes satisfying the GC condition is

Hx =
d[

t=0
�t(x)>0

`�t(x)�1[

r=0

(
dX

i=0

↵ivi
�� `↵t = r,

dX

i=0

↵i = 1

)
.

Given a set of hyperplanes satisfying this combi-
natorial condition, it is straightforward to write
down a Lagrangian-type interpolation formula, as was
first computed for the principal lattice by Nicolaides
(1972).

Theorem 3 (Nicolaides (1972),Chung & Yao (1977)).
Write P` = {U1, . . . , UM} ⇢ �d and let g : P` ! R
denote a function defined on this lattice. For ` � 1,
define the polynomial

pi(x) =
dY

t=0
�t(Ui)>0

`�t(Ui)�1Y

r=0

�t(x)�
r

`

�t(Ui)�
r

`

, (4)

where we recall that �t(x) is from Definition 1. If ` =
0, then M = 1, and we simply define p1(x) ⌘ 1. Then

p(x) :=
MX

i=1

pi(x)g(Ui)

satisfies p(Ui) = g(Ui) for all Ui 2 P`. Moreover, this
is the unique polynomial of degree at most ` with this
property.

Since �t(x) is linear in x 2 Rd, it is easy to see
that pi(x) is a polynomial of degree `, and moreover
pi(Uj) = 1 if i = j and zero otherwise.

We are now ready to give a precise description of the
construction of f̃ . The idea is to generate the mesh
for interpolation using a shifted and rescaled version
of the `-th principal lattice on �d ⇢ [0, 1]d. Recall
that f̂ is a density estimator that satisfies Assumption
1.

Construction of f̃ (formal version):

1. Partition: Divide [0, 1]d into h�d sub-cubes
{I~j} ⇢ [0, 1]d of side-length h = n�1/(2�+d) where
~j 2 Zd

�0 and I~j := [0, h]d + h~j.

2. Mesh: For each ~j, construct a mesh on I~j con-

sisting of M =
�
`+d

`

�
points given by the shifted

and rescaled principal lattice P
~j

`
:= {h(x + ~j) :

x 2 P`} ⇢ I~j . Let U
~j

1 , . . . , U
~j

M
denote the points

in P
~j

`
.

3. Interpolate: In each sub-cube I~j , construct
a multivariate polynomial interpolant q̂~j through

the M points (U
~j

1 , f̂(U
~j

1 ), . . . , (U
~j

M
, f̂(U

~j

M
)) given

by q̂~j(y) = p~j(y/h�
~j), where p is the polynomial

interpolant from Theorem 3 given by

p~j(x) =
MX

k=1

pk(x)f̂(U
~j

k
).

Return: f̃ : [0, 1]d ! R defined by

f̃(y) =
X

~j

q̂~j(y)1(y 2 I~j).

2.2 Proof of Theorem 1

We prove Theorem 1 in two parts, first by studying
the estimation error kf̃ � fk1 in Section 2.2.1 and
second by proving the storage and time complexity
upper bounds in Section 2.2.2.

2.2.1 Estimation error

First, we quantify the error in the approximation of
the values of q~j on the mesh points. Let fz,` denote
the degree ` polynomial given by the Taylor expansion
of f 2 PH(�) at z. Since f 2 PH(�), by a standard
fact (see Lemma 5) it holds that

|f(y)� fz,`(y)| 
Ld`/2

`!
|y � z|�2 ,

where fz,` is the degree-` Taylor expansion of the func-
tion f at z 2 Rd.

For ~j 2 {0, . . . , h�1
� 1}d, define q~j := fz~j ,`, where z~j

is the vertex of I~j closest to the origin. Then for all
y 2 I~j , it holds that

|f(y)� q~j(y)| 

✓
Ld�

`!

◆
h�

=

✓
Ld�

`!

◆
n��/(2�+d)

=: ĉn��/(2�+d) (5)

Note that the right-hand side is the minimax rate of
estimation in (2) up to constant factors.

Next, by Lemma 1 (setting � = M and A = d

2�+d
)

and (5) it holds with probability at least 1� n�2 that
���q~j(U

~j

k
)� f̂(U

~j

k
)
���  (c⇤

p
4 log 2M + ĉ)(log n)

1
2n�

�
2�+d

=: c̆(log n)
1
2n�

�
2�+d (6)
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for all ~j 2 {0, . . . , h�1
� 1}d and k 2 [M ]. Using this

fact, we can show that the polynomial interpolant built

on {(U
~j

k
, f̂(U

~j

k
))}M

k=1 provides a good approximation
for q~j on the interval I~j , which is our next task. The
following lemma establishes stability of the polynomial
approximation.

Lemma 2. Let q̂~j denote the unique polynomial
of degree at most ` that passes through the points

{(U
~j

k
, f̂(U

~j

k
))}M

k=1. Then with probability at least 1 �

n�2, for all ~j and all x 2 I~j,

���q~j(x)� q̂~j(x)
���  c�,d,L(log n)

1
2n�

�
2�+d . (7)

Proof. Define ĝ~j(x) = q̂~j(h(x + ~j)) and g~j(x) =

q~j(h(x+
~j)) to be polynomials restricted to the domain

[0, 1]d. Recall that ĝ and g are given by formulas as in
Theorem 3. It holds by (6) that for all 1  k  M ,

���ĝ(U
~j

k
)� g(U

~j

k
)
���  c̆(log n)1/2n�

�
2�+d .

Let y 2 [0, 1]d, and observe that by Theorem 3 and
the triangle inequality,

|ĝ(y)� g(y)|  M sup
x2[0,1]d

1kM

���pk(x)
⇣
ĝ(U

~j

k
)� g(U

~j

k
)
⌘���

 M c̆ (log n)1/2n�
�

2�+d sup
x2[0,1]d

1kM

|pk(x)| .

(8)

Observe that for x 2 [0, 1]d, we have |�0(x)| =
|1�

P
xi|  d, and for 1  t  d, we have |�t(x)| =

|xi|  1. Therefore, by the definition of pk and U
~j

k
,

|pk(x)|  ``d.

By this bound, (8), and translation and scale in-
variance of k·k1, Lemma 2 follows with c�,d,L =
c̆Md``.

Define f̃(x) =
P

~j
q̂~j(x)1(x 2 I~j), and observe that

Theorem 1 follows from (5), Lemma 2, and the triangle
inequality. Though we have derived a high probability
bound, the expectation claimed in Theorem 1 follows
using the uniform boundedness of Hölder functions as
stated in Lemma 4. Tracing constants above yields the
expression for cerr.

2.2.2 Time and space requirements

Recall that M =
�
`+d

`

�
where ` = b�c. For the space

requirement, we store the principal lattices and the

values of f̂ on these lattice points, and note that each
query is at most LdO(�+1) in magnitude by Lemma
4. The queries per sub-cube can thus be stored with
M(logLdO(�+1) + log n) bits. The extra log n bits are
required so that the interpolating polynomials can be
queried with su�cient precision. The lattices are com-
posed of rational points in Rd, so we need at most
Md log(� + 1) bits per sub-cube to store them. Since

there are n
d

2�+d sub-cubes, the space requirement of
Theorem 1 follows and is a conservative estimate for
simplicity.

Next we characterize the time complexity. Assume
first that ` � 1. For 1  k  M , it holds that

|pk(y)� pk(y
0)|  (d+ 1)2```+1

|y � y0|
1

because by expanding the product in the formula in
Theorem 3, pi is a sum of at most 2`(d+1) terms, each
having coe�cients of size at most ``, and moreover for
|↵|  `, the monomial y↵ is `-Lipschitz with respect
to |·|

1
over the cube. Therefore, it also holds that

���q̂~j(y)� q̂~j(y
0)
���  MLd

3
2�+

1
2 (d+ 1)2```+1

|y � y0|
1

by the formula in the interpolation step of f̃ , noting

that without loss of generality,
���f̂(U

~j

k
)
��� = LdO(�+1) by

Lemma 4. By the form of cerr, given a query y it su�ces
to round its coordinates to B := `+ log d+ log n bits
to compute q̂~j(y) with the required level of accuracy.

Next, the number of arithmetic operations needed to
evaluate q̂~j(y) is bounded conservatively by 6(d+`)M .
To identify which sub-cube contains y requires time at
most 2d log n. Hence, the total complexity is upper
bounded by

6(d+ `)MB + 2d log n  16(d+ `)2M log n =: cque

This bound also holds conservatively when ` = 0 since
in that case, to evaluate f̂(y), we just need to match
the given query y to the sub-cube I~j containing it and

output f̂(U
~j

1 ).

3 A RESULT OF KOLMOGOROV
AND TIKHOMIROV

Given a function class F , let N(F , �) denote the mini-
mal number of L1 balls of radius � that cover F , and
define H(F , �) = logN(F , �) to be the metric entropy.
Let H(�) = H(�, L) denote the class of Hölder func-
tions supported on [0, 1]d as defined in Section 1.3. A
classical result of Kolmogorov & Tikhomirov (1993)
shows that

H(H(�), �)  c�,d,L ��
d
� . (9)
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Their proof strategy is conceptually similar to
our piecewise multivariate polynomial approximation
scheme in that they subdivide the cube as we do here,
approximate f by its Taylor polynomial in each cube,
and then discretize the coe�cients. We show now that
our techniques imply a slightly weaker version of the
bound (9).

Define a mesh as in steps 1 and 2 of our formal con-
struction of f̃ as in Section 2.1, but now for a general
parameter h > 0 to be set later. This mesh has Mh�d

points that we denote by {U
~j

k
}~j,k. Let f, g 2 H(�) be

such that for all ~j, k it holds that
���f(U

~j

k
)� g(U

~j

k
)
���  h� .

By the Hölder condition and Lemma 5, there exists a
degree ` = b�c polynomial q~j approximating f in I~j
and a degree ` = b�c polynomial r~j approximating g

in I~j , each with error h� pointwise. We conclude that

���q~j(U
~j

k
)� r~j(U

~j

k
)
���  c�,d,L h�

for all ~j, k. Following the proof of Lemma 2, this im-
plies that for all x 2 I~j ,

���q~j(x)� r~j(x)
���  c�,d,L h� .

Hence we conclude that for all x 2 [0, 1]d,

|f(x)� g(x)|  c�,d,L h� .

The Hölder functions are uniformly bounded by some
constant c�,d,L (see Lemma 4). Hence setting � =
c�,d,L h� and rounding the values of each function at

each point U
~j

k
to multiples of h� , we see that there

exists a �-net of size at most

⇣c�,d,L
�

⌘Mc
0

�,d,L�
�d/�

.

Therefore

H(H(�), �)  c�,d,L ��
d
� log

1

�
,

a mildly weaker bound than (9).

4 KDEs satisfy Assumption 1

In this section, for completeness we verify that for ap-
propriate kernels, the standard KDE satisfies Assump-
tion 1.

Proposition 1. Let K(·) denote a kernel of order b�c
satisfying

kKk1 < 1,

Z
K2(x)dx < 1,

Z
|x↵K(x)| dx < 1

for all multi-indices ↵ 2 Rd

�0 with |↵| = �. Then As-

sumption 1 is satisfied for the KDE f̂ with bandwidth
h = cn�1/(2�+d).

Proof. For brevity, c denotes a constant that varies
from line to line and can depend on �, d, L and K. Fix
y 2 [0, 1]d. It is well-known that under the conditions
of Proposition 1 (see e.g. Tsybakov, 2009),

b = b(y) :=
���Ef(y)� f̂(y)

���  ch� ,

and for a data point Xi ⇠ Pf ,

⌧2 = ⌧2(y) := VarKh(Xi � y) 
c

hd
.

By the triangle inequality and Bernstein’s inequality
for bounded random variables (Vershynin, 2018),

Pr
⇣���f̂(y)� f(y)

��� > t
⌘

 exp

✓
�

n(t� b)2

2⌧2 + 2kKhk1(t� b)/3

◆
. (10)

Let h = cn�1/(2�+d). Note that kKhk1 = h�d
kKk1

and (nhd)�1 = cn��/(2�+d). Then we recover Assump-
tion 1 by setting t � cn��/(2�+d) in (10).

5 PROPERTIES OF HÖLDER
FUNCTIONS

For completeness, we provide proofs of standard facts
about the class of Hölder functions.

Lemma 3 (Inclusion). Let H(�, d, L) denote the class
of Hölder functions supported on [0, 1]d in dimension
d. If � > 1, then it holds that H(b�c, d, L) ⇢ H(b�c �
1, d, d3/2L).

Proof. Let f 2 H(�, d, L). Since f is supported on
[0, 1]d and smooth on Rd, we have that

|Dsf(x)|  L |x|2  L
p

d (11)

for all |s| = b�c.

Fix x, y 2 [0, 1]d, and define for 1  i  d+1 the point
zi 2 [0, 1]d to be

zi
j
=

(
xj if j � i

yj if j < i.

Observe that z1 = x and zd+1 = y.
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Let t denote a multi-index with |t| = b�c � 1. By
the fundamental theorem of calculus and the Hölder
condition,

|Dtf(x)�Dtf(y)| 
dX

i=1

��Dtf(zi)�Dtf(zi+1)
��

=
dX

i=1

����
Z

yi

xi

@

@xi

Dtf(x1, . . . , z, yi+1, ..., yd) dz

���� .

Using (11), the expression in the second line is
bounded above by Ld3/2, which proves the lemma.

Lemma 4 (Uniform boundedness). The class H(�) is
uniformly bounded. In particular,

sup
f2H(�)

kfk1  d3b�c/2+1/2 L.

Proof. Suppose first that f 2 H(�) for � > 1. By
repeated application of Lemma 3, f is (d3b�c/2L)-
Lipschitz. Since f is supported on [0, 1]d,

|f(x)| = |f(x)� f(0)|  d3b�c/2L |x|2  d3b�c/2+1/2L.

If �  1, then arguing as in the previous display, we
see that |f(x)|  L

p
d for all x 2 Rd.

Lemma 5 (Taylor approximation). Given f 2 H(�),
let fx,b�c denote its Taylor polynomial of degree b�c at
a point x 2 Rd,

fx,b�c(y) =
X

|s|b�c

(y � x)s

s!
Dsf(x) , y 2 Rd .

Then it holds that

��f(y)� fx,b�c(y)
��  Ldb�c/2

b�c!
|x� y|�2 , x, y 2 Rd .

Proof. By Taylor’s theorem with remainder (see, eg.,
Folland, 1999)
��f(y)� fx,b�c(y)

�� =
������

X

|s|=b�c

1

s!
[Dsf(x+ c(y � x))�Dsf(x)] (y � x)s

������

for some constant c 2 (0, 1). By the triangle inequality
and the Hölder condition, the expression in the second
line is bounded above by

X

|s|=b�c

L |x� y|��b�c

2

s!
|(y � x)s| =

L |x� y|��b�c

2

b�c!

 
dX

i=1

|xi � yi|

!b�c

,

where the equality is by the multinomial theorem. In
turn, this last expression is bounded above by

Ldb�c/2

b�c!
|x� y|�2

using Cauchy–Schwarz.

Acknowledgments

We thank the anonymous reviewers for their many
helpful comments and suggestions. Philippe Rigol-
let was supported by NSF awards IIS-1838071, DMS-
1712596, DMS-1740751, and DMS-2022448.

References

Acharya, Jayadev, Diakonikolas, Ilias, Li, Jerry, &
Schmidt, Ludwig. 2017. Sample-optimal density es-
timation in nearly-linear time. Pages 1278–1289
of: Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms. SIAM.

Agarwal, Pankaj K, Har-Peled, Sariel, & Varadara-
jan, Kasturi R. 2005. Geometric approximation via
coresets. Combinatorial and computational geome-
try, 52, 1–30.

Backurs, Arturs, Charikar, Moses, Indyk, Piotr, &
Siminelakis, Paris. 2018. E�cient density evalua-
tion for smooth kernels. Pages 615–626 of: 2018
IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS). IEEE.

Backurs, Arturs, Indyk, Piotr, & Wagner, Tal. 2019.
Space and Time E�cient Kernel Density Estimation
in High Dimensions. Pages 15799–15808 of: Ad-
vances in Neural Information Processing Systems.

Bansal, Nikhil, Dadush, Daniel, Garg, Shashwat, &
Lovett, Shachar. 2018. The gram-schmidt walk: a
cure for the Banaszczyk blues. Pages 587–597 of:
Proceedings of the 50th Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018.

Belkin, Mikhail, Rakhlin, Alexander, & Tsybakov,
Alexandre B. 2019. Does data interpolation con-
tradict statistical optimality? Pages 1611–1619 of:
The 22nd International Conference on Artificial In-
telligence and Statistics. PMLR.

Chan, Siu-On, Diakonikolas, Ilias, Servedio, Rocco A,
& Sun, Xiaorui. 2014. E�cient density estima-
tion via piecewise polynomial approximation. Pages
604–613 of: Proceedings of the forty-sixth annual
ACM symposium on Theory of computing.

Charikar, Moses, & Siminelakis, Paris. 2017. Hashing-
based-estimators for kernel density in high dimen-
sions. Pages 1032–1043 of: 2017 IEEE 58th An-
nual Symposium on Foundations of Computer Sci-
ence (FOCS). IEEE.



Paxton Turner, Jingbo Liu, Philippe Rigollet

Chazelle, B. 2000. The Discrepancy Method: Ran-
domness and Complexity. Cambridge: Cambridge
University Press.

Chung, K. C., & Yao, T. H. 1977. On Lattices Admit-
ting Unique Lagrange Interpolations. SIAM Journal
on Numerical Analysis, 14(4), 735–743.

Clarkson, Kenneth L. 2010. Coresets, sparse greedy
approximation, and the Frank-Wolfe algorithm.
ACM Transactions on Algorithms (TALG), 6(4), 1–
30.

Coleman, Benjamin, & Shrivastava, Anshumali. 2020.
Sub-linear race sketches for approximate kernel den-
sity estimation on streaming data. Pages 1739–1749
of: Proceedings of The Web Conference 2020.

Folland, Gerald B. 1999. Real analysis: modern tech-
niques and their applications. Vol. 40. John Wiley
& Sons.

Greengard, Leslie, & Rokhlin, Vladimir. 1987. A fast
algorithm for particle simulations. Journal of com-
putational physics, 73(2), 325–348.

Greengard, Leslie, & Strain, John. 1991. The fast
Gauss transform. SIAM Journal on Scientific and
Statistical Computing, 12(1), 79–94.
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