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Abstract

Coresets have emerged as a powerful tool to
summarize data by selecting a small subset of
the original observations while retaining most
of its information. This approach has led to
significant computational speedups but the
performance of statistical procedures run on
coresets is largely unexplored. In this work,
we develop a statistical framework to study
coresets and focus on the canonical task of
nonparameteric density estimation. Our con-
tributions are twofold. First, we establish
the minimax rate of estimation achievable by
coreset-based estimators. Second, we show
that the practical coreset kernel density esti-
mators are near-minimax optimal over a large
class of Hölder-smooth densities.

1 Introduction

The ever-growing size of datasets that are routinely
collected has led practitioners across many fields to
contemplate e↵ective data summarization techniques
that aim at reducing the size of the data while pre-
serving the information that it contains. While there
are many ways to achieve this goal, including standard
data compression algorithms, they often prevent direct
manipulation of data for learning purposes. Coresets
have emerged as a flexible and e�cient set of tech-
niques that permit direct data manipulation. Core-
sets are well-studied in machine learning (Har-Peled
& Kushal, 2007; Feldman et al., 2013; Bachem et al.,
2017, 2018; Karnin & Liberty, 2019), statistics (Feld-
man et al., 2011; Zheng & Phillips, 2017; Munteanu
et al., 2018; Huggins et al., 2016; Phillips & Tai,
2018a,b), and computational geometry (Agarwal et al.,
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2005; Clarkson, 2010; Frahling & Sohler, 2005; Gärtner
& Jaggi, 2009; Claici et al., 2020).

Given a dataset D = {X1, . . . , Xn} ⇢ Rd and task
(density estimation, logistic regression, etc.) a coreset
C is given by C = {Xi : i 2 S} for some subset S

of {1, . . . , n} of size |S| ⌧ n. A good coreset should
su�ce to perform the task at hand with the same ac-
curacy as with the whole dataset D.

In this work we study the canonical task of density esti-
mation. Given i.i.d random variables X1, . . . , Xn ⇠ Pf

that admit a common density f with respect to the
Lebesgue measure over Rd, the goal of density esti-
mation is to estimate f . It is well known that the
minimax rate of estimation over the L-Hölder smooth
densities PH(�, L) of order � is given by

inf
f̂

sup
f2PH(�,L)

Ef kf̂ � fk2 = ⇥�,d,L(n
�

�
2�+d ) , (1)

where the infimum is taken over all estimators based
on the dataset D. Moreover the minimax rate above
is achieved by a kernel density estimator

f̂n(x) :=
1

nhd

nX

j=1

k

✓
Xi � x

h

◆
(2)

for suitable choices of kernel k : Rd
! R and band-

width h > 0 (see e.g. Tsybakov, 2009, Theorem 1.2).

The main goal of this paper is to extend this under-
standing of rates for density estimation to estimators
based on coresets. Specifically we would like to charac-
terize the statistical performance of coresets in terms of
their cardinality. To do so, we investigate two families
of estimators built on coresets: one that is quite flexi-
ble and allows arbitrary estimators to be used on the
coreset and another that is more structured and driven
by practical considerations; it consists of weighted ker-
nel density estimators built on coresets.

1.1 Two statistical frameworks for coreset
density estimation

We formally define a coreset as follows. Throughout
this work m = o(n) denotes the cardinality of the core-
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set. Given x 2 Rd⇥n, let S = S(y|x) denote a condi-
tional probability measure on the set

�[n]
m

�
of subsets

of [n] = {1, 2, . . . , n} of cardinality m. In information
theoretic language, S is a channel from Rd⇥n to sub-
sets of cardinality m. We refer to the channel S as
a coreset scheme because it designates a data-driven
method of choosing a subset of data points. In what
follows, we abuse notation and let S = S(x) denote
an instantiation of a sample from the measure S(y|x)
for x 2 Rd⇥n. A coreset XS is then defined to be the
projection of the dataset X = (X1, . . . , Xn) onto the
subset indicated by S(X): XS := {Xi}i2S(X).

The first family of estimators that we investigate is
quite general and allows the statistician to select a
coreset and then employ an estimator that only ma-
nipulates data points in the coreset to estimate an
unknown density. To study coresets, it is conve-
nient to make the dependence of estimators on ob-
servations more explicit than in the traditional litera-
ture. More specifically, a density estimator f̂ based
on n observations X1, . . . , Xn 2 Rd is a function
f̂ : Rd⇥n

! L
2(Rd) denoted by f̂ [X1, . . . , Xn](·). Sim-

ilarly, a coreset-based estimator f̂S is constructed from
a coreset scheme S of sizem and an estimator (measur-
able function) f̂ : Rd⇥m

! L
2(Rd) on m observations.

We enforce the additional restriction on f̂ that for all
y1, . . . , ym 2 Rd and for all bijections ⇡ : [m] ! [m],
it holds that f̂ [y1, . . . , ym](·) = f̂ [y⇡(1), . . . , y⇡(m)](·).

Given S and f̂ as above, we define the coreset-based
estimator f̂S : Rd⇥n

! L
2(Rd) to be the function

f̂S [X](·) := f̂ [XS ](·) : Rd
! R. We evaluate the

performance of coreset-based estimators in Section 2
by characterizing their rate of estimation over Hölder
classes.1

The symmetry restriction on f̂ prevents the user from
exploiting information about the ordering of data
points to their advantage: the only information that
can be used by the estimator f̂ is contained in the
unordered collection of distinct vectors given by the
coreset XS .

As evident from the results in Section 2, the
information-theoretically optimal coreset estimator
does not resemble coreset estimators employed in prac-
tice. To remedy this limitation, we also study weighted
coreset kernel density estimators (KDEs) in Section 3.
Here the statistician selects a kernel k, bandwidth pa-
rameter h, and a coresetXS of cardinalitym as defined

1Our notion of coreset-based estimators bares concep-
tual similarity to various notions of compression schemes
as studied in the literature, e.g. Littlestone & Warmuth
(1986); Ashtiani et al. (2020); Hanneke et al. (2019).

above and then employs the estimator

f̂S(y) =
X

j2S

�jh
�d

k

✓
Xj � y

h

◆
,

where the weights {�j}j2S are nonnegative, sum to
one and are allowed to depend on the full dataset.

In the case of uniform weights where �j = 1
m for all

j 2 S, coreset KDEs are well-studied (see e.g. Bach
et al., 2012; Harvey & Samadi, 2014; Phillips & Tai,
2018a,b; Karnin & Liberty, 2019). Interestingly, our
results show that allowing flexibility in the weights
gives a definitive advantage for the task of density esti-
mation. By Theorems 2 and 5, the uniformly weighted
coreset KDEs require a much larger coreset than that
of weighted coreset KDEs to attain the minimax rate
of estimation over univariate Lipschitz densities.

1.2 Setup and Notation

We reserve the notation k·k2 for the L
2 norm and |·|p

for the `p-norm. The constants c, c�,d, cL, etc. vary
from line to line and the subscripts indicate parameter
dependences.

Fix an integer d � 1. For any multi-index s =
(s1, . . . , sd) 2 Zd

�0 and x = (x1, . . . , xd) 2 Rd, define
s! = s1! · · · sd!, xs = x

s1
1 · · ·x

sd
d and let Ds denote the

di↵erential operator defined by

D
s =

@
|s|1

@x
s1
1 · · · @x

sd
d

.

We reserve the notation |s| for the coordinate-wise ap-
plication of |·| to the multi-index s.

Fix a positive real number �, and let b�c denote the
maximal integer strictly less than �. Given L > 0 we
let H(�, L) denote the space of Hölder functions f :
Rd

! R that are supported on the cube [�1/2, 1/2]d,
are b�c times di↵erentiable, and satisfy

|D
s
f(x)�D

s
f(y)|  L |x� y|

��b�c
2 ,

for all x, y 2 Rd and for all multi-indices s such that
|s|1 = b�c.

Let PH(�, L) denote the set of probability density
functions contained in H(�, L). For f 2 PH(�, L),
let Pf (resp. Ef ) denote the probability distribution
(resp. expectation) associated to f .

For d � 1 and � 2 Z�0, we also define the Sobolev
functions S(�, L0) that consist of all f : Rd

! R that
are � times di↵erentiable and satisfy

kD
↵
fk2  L

0

for all multi-indices ↵ such that |↵|1 = �.
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Given f 2 L
2, we define the Fourier transform F [f ] :

Rd
! R by

F [f ](!) =

Z

Rd

f(x)e�ihx,!idx.

2 Coreset-based estimators

In this section we study the performance of coreset-
based estimators. Recall that coreset-based estimators
are estimators that only depend on the data points in
the coreset.

Define the minimax risk for coreset-based estimators
 n,m(�, L) over PH(�, L) to be

 n,m(�, L) = inf
f̂ ,|S|=m

sup
f2PH(�,L)

Ef kf̂S � fk2, (3)

where the infimum above is over all choices of core-
set scheme S of cardinality m and all estimators f̂ :
Rd⇥m

! L
2(Rd).

Our main result on coreset-based estimators charac-
terizes their minimax risk.

Theorem 1. Fix �, L > 0 and an integer d � 1.
Assume that m = o(n). Then the minimax risk of
coreset-based estimators satisfies

inf
f̂ ,|S|=m

sup
f2PH(�,L)

Ef kf̂S � fk2 =

⇥�,d,L(n
�

�
2�+d + (m log n)�

�
d ).

The above theorem readily yields a characterization
of the minimal size m

⇤(�, d) that a coreset can have

while still enjoying the minimax optimal rate n
�

�
2�+d

from (1). More specifically, let m
⇤ = m

⇤(n) be such
that

(i) if m(n) is a sequence such that m = o(m⇤), then

lim infn!1 n
�

2�+d n,m(�, L) = 1, and

(ii) if m = ⌦(m⇤) then

lim supn!1
 n,m(�, L)n

�
2�+d  C�,d,L for

some constant C�,d,L > 0.

Then it follows readily from from Theorem 1 that

m
⇤ = ⇥�,d,L(n

d
2�+d / log n).

Theorem 1 illustrates two di↵erent curses of dimen-
sionality: the first stems from the original estimation
problem, and the second stems from the compression
problem. As d ! 1, it holds that m⇤

⇠ n/ log n, and
in this regime there is essentially no compression, as
the implicit constant in Theorem 1 grows rapidly with
d.2

2In fact, even for the classical estimation problem (1),
this constant scales as dd (see McDonald, 2017, Theorem
3).

Our proof of the lower bound in Theorem 1 first uses a
standard reduction from estimation to a multiple hy-
pothesis testing problem over a finite function class.
While Fano’s inequality is the workhorse of our sec-
ond step, note that the lower bound must hold only
for coreset-based estimators and not any estimator as
in standard minimax lower bounds. This additional
di�culty is overcome by a careful handling of the in-
formation structure generated by coreset scheme chan-
nels rather than using o↵-the-shelf results for minimax
lower bounds. The full details of the lower bound are
in the Supplement.

The estimator achieving the rate in Theorem 1 relies
on an encoding procedure. It is constructed by build-
ing a dictionary between the subsets in

�[n]
m

�
and an

"-net on the space of Hölder functions. The key idea
is that, for 1 ⌧ m  n/2, the amount of subsets

�n
m

�

grows rapidly with m, so for m large enough, there
is enough information to encode a nearby-neighbor in
L
2(Rd) to the kernel density estimator on the entire

dataset.

2.1 Proof of the upper bound in Theorem 1

Fix " = c
⇤(m log n)�

�
d for c

⇤ to be determined and
let N" denote an "-net of PH(�, L) with respect to
the L

2([� 1
2 ,

1
2 ]

d) norm. It follows from the classical
Kolmogorov-Tikhomorov bound (see, e.g., Theorem
XIV of Tikhomirov, 1993) that there exists a constant
CKT(�, d, L) > 0 such that we can choose N" with
log |N"|  CKT(�, d, L) "�d/� . In particular, there ex-
ists f 2 N" such that kf̂n�fk2  " where f̂n is the min-
imax optimal kernel density estimator defined in (2).

We now develop our encoding procedure for f. To that
end, fix an integer K � m such that

�K
m

�
� |N"| and

let � :
�[K]
m

�
! N" be any surjective map. Our pro-

cedure only looks at the first coordinates of the sam-
ple X = {X1, . . . , Xn}. Denote these coordinates by
x = {x1, . . . , xn} and note that these n numbers are
almost surely distinct. Let A denote a parameter to
be determined, and define the intervals

Bik = [(i� 1)K�1
A+ (k � 1)A,

(i� 1)K�1
A+ (k � 1)A+K

�1
A].

For i = 1, . . . ,K, define

Bi =

1/A[

k=1

Bik.

The next lemma, whose proof is in the Supplement,
ensures that with high probability every bin Bi con-
tains the first coordinate xi of at least one data point.
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Lemma 1. Let K
�1 = c(log n)/n for c > 0 a su�-

ciently large absolute constant, and let A = A�,L,K

denote a su�ciently small constant. Then for all

f 2 PH(�, L) and X1, . . . , Xn
iid
⇠ Pf , the event that

for every j = 1, . . . ,K there exists some xi in bin Bj

holds with probability at least 1�O(n�2).

In the high-probability event E that every bin Bi con-
tains the first coordinate of some data point, choose a
unique representative x

�

j 2 x such that x
�

j 2 Bj and
pick any Tf 2 �

�1(f). Then define S = {i : xi =
x
�

j , j 2 Tf}. If there exists a bin with no observation,
then let XS consist of two data points lying in the
same bin and m � 2 random data points. Then set
f̂S ⌘ 0.

Note that f̂S is indeed a coreset-based estimator. The
function f̂ such that f̂S = f̂ [XS ] looks at the m data
points in the coreset, and if their first coordinates lie
in distinct bins, then XS is decoded as above to output
the corresponding element f of the net N". Otherwise,
f̂ ⌘ 0.

Next, it su�ces to show the upper bound of Theorem
1 in the case when m  cn

d/(2�+d) for c a su�ciently
small absolute constant. For c

⇤ = c
⇤

�,d,L su�ciently
large, by Stirling’s formula and our choice ofK it holds
that

log

✓
K

m

◆
� CKT(�, d, L)

✓
1

"

◆ d
�

� log |N"|.

Hence, the surjection � and our encoding estimator f̂S
are well-defined.

Next we have

Efkf̂S � fk2 = Ef

⇥
kf � fk21E

⇤
+ Ef

⇥
k0� fk21Ec

⇤
.

We control the first term as follows using (1) and the
fact that kf � f̂nk2  " on E :

Ef

⇥
kf � fk21E

⇤
 Efkf̂n � fk2 + Efkf � f̂nk2

 c�,d,L

�
n

��
2�+d + (m log n)�

�
d
�
.

By the Cauchy-Schwarz inequality,

Ef

⇥
k0� fk21Ec

⇤

�
Efkfk

2
2 P(Ec)

�1/2

 c�,d,L n
�1

.

Put together, the previous three displays yield the up-
per bound of Theorem 1.

3 Coreset kernel density estimators

In this section, we consider the family of weighted ker-
nel density estimators built on coresets and study its

rate of estimation over the Hölder densities. In this
framework, the statistician first computes a minimax
estimator f̂ using the entire dataset and then approxi-
mates f̂ with a weighted kernel density estimator over
the coreset. Here we allow the weights to be a mea-
surable function of the entire dataset rather than just
the coreset.

As is typical in density estimation, we consider kernels
k : Rd

! R of the form k(x) =
Qd

i=1 (xi) where  is
an even function and

R
(x) dx = 1. Given bandwidth

parameter h, we define kh(x) = h
�d

k(xh ).

3.1 Carathéodory coreset method

Given a KDE with uniform weights and bandwidth h

defined by

f̂(y) =
1

n

nX

j=1

kh(Xj � y),

on a sample X1, . . . , Xn, we define a coreset KDE ĝS

as follows in terms of a cuto↵ frequency T > 0. Define
A = {! 2

⇡
2Z

d : |!|
1

 T}. Consider the complex

vectors (eihXj ,!i)!2A. By Carathéodory’s theorem
(Carathéodory, 1907), there exists a subset S ⇢ [n]
of cardinality at most 2(1 + 4T

⇡ )d +1 and nonnegative
weights {�j}j2S with

P
j2S �j = 1 such that

1

n

nX

j=1

(eihXj ,!i)!2A =
X

j2S

�j(e
ihXj ,!i)!2A. (4)

Then ĝS(y) is defined to be

ĝS(y) =
X

j2S

�jkh(Xj � y).

3.1.1 Algorithmic considerations

For a convex polyhedron P with vertices v1, . . . , vn 2

RD, the proof of Carathéodory’s theorem is construc-
tive and yields a polynomial-time algorithm in n and
D to find a convex combination of D+1 vertices that
represents a given point in P (Carathéodory, 1907)
(see also Hiriart-Urruty & Lemaréchal, 2004, Theorem
1.3.6). For completeness, we describe below this algo-
rithm applied to our problem. Note that, more gener-
ally, for a large class of convex bodies, Carathéodory’s
theorem may be implemented e�ciently using stan-
dard tools from convex optimization (Grötschel et al.,
2012, Chapter 6).

Set D = 2|A|  2(1 + 4T
⇡ )d. For j = 1, . . . , n, let

vj = (Re eihXj ,!i
, Im e

ihXj ,!i)!2A 2 RD
.

Let M denote the matrix with columns
(v1, 1)T , . . . , (vn, 1)T 2 RD+1, and let �n�1 ⇢ Rn
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denote the standard simplex. Assume without loss of
generality that n � D + 2. Next,

1. Find a nonzero vector w 2 ker(M)

2. Find ↵ > 0 so that �1 := 1
n1 + ↵w lies on the

boundary of �n�1

Observe that M�1 = ( 1n
P

vi, 1)T , and since �1 2

@�n�1 the average is now represented using a convex
combination of at most n�1 of the vertices v1, . . . , vn.
As long as at least D+2 vertices remain, we can con-
tinue reducing the number of vertices used to represent
1
n

P
vj by applying steps 1 and 2. Thus after at most

n�D�1 iterations, we obtain a (D+1)-sparse vector
� 2 �n�1 that satisfies

P
�jvj =

1
n

P
vi, as desired.

3.2 Results on Carathéodory coresets

Proposition 1 is key to our results and speci-
fies conditions on the kernel guaranteeing that the
Carathéodory method yields an accurate estimator.

Proposition 1. Let k(x) =
Qd

i=1 (xi) denote a ker-

nel with  2 S(�, L0) such that |(x)|  c�,d |x|
�⌫ for

some ⌫ � � + d and such that the KDE

f̂(y) =
1

n

nX

i=1

kh(Xi � y)

with bandwidth h = n
�

1
2�+d satisfies

sup
f2PH(�,L)

Ekf � f̂k2  c�,d,L n
�

�
2�+d . (5)

Then the Carathéodory coreset estimator ĝS con-

structed from f̂ with T = cd,�,L0 n
d/2+�+�
�(2�+d) satisfies

sup
f2PH(�,L)

EkĝS � fk2  c�,d,L n
�

�
2�+d .

There exists a kernel ks 2 C
1 that satisfies the con-

ditions above for all � and �. We sketch the details
here and postpone the full argument to the Proof of
Theorem 2 in the Supplement. Let  : R ! [0, 1] de-
note a cuto↵ function that has the following properties:
 2 C

1,  
��
[�1,1]

⌘ 1, and  is supported on [�2, 2].

Define s(x) = F [ ](x), and let ks(x) =
Qd

i=1 s(xi)
denote the resulting kernel. Observe that for all � > 0,
the kernel ks satisfies

ess sup! 6=0
|1� F [ks](!)|

|!|
↵  1, 8↵ � �.

Using standard results from Tsybakov (2009), this im-
plies that the resulting KDE f̂s satisfies (5). Since

 = F
�1[ks] 2 C

1, the Riemann–Lebesgue lemma
guarantees that |s(x)|  c�,d |x|

�⌫ is satisfied for
⌫ = d� + de. Since  is compactly supported, an
application of Parseval’s identity yields s 2 S(�, c�).
Applying Proposition 1 to ks, we conclude that for
the task of density estimation, weighted KDEs built
on coresets are nearly as powerful as the coreset-based
estimators studied in Section 2.

Theorem 2. Let " > 0. The Carathéodory coreset
estimator ĝS(y) built using the kernel ks and setting

T = cd,�," n
"
d+

1
2�+d satisfies

sup
f2PH(�,L)

EfkĝS � fk2  c�,d,L n
�

�
2�+d .

The corresponding coreset has cardinality

m = cd,�,"n
d

2�+d+"
.

Theorem 2 shows that the Carathéodory coreset esti-
mator achieves the minimax rate of estimation with
near-optimal coreset size. In fact, a small modifica-
tion yields a near-optimal rate of convergence for any
coreset size as in Theorem 1.

Corollary 1. Let " > 0 and m  c�,d," n
d

2�+d+". The
Carathéodory coreset estimator ĝS(y) built using the

kernel ks, setting h = m
�

1
d+

"
� and T = cd m

1/d, sat-
isfies

sup
f2PH(�,L)

EkĝS�fk2  c�,d,",L

⇣
m

�
�
d+" + n

�
�

2�+d+"
⌘
,

and the corresponding coreset has cardinality m.

Next we apply Proposition 1 to the popular Gaussian
kernel �(x) = (2⇡)�d/2 exp(� 1

2 |x|
2
2). This kernel has

rapid decay in the real domain and Fourier space, and
is thus amenable to our techniques. Moreover, � is
a kernel of order ` = 1, (Tsybakov, 2009, Definition
1.3 and Theorem 1.2) and so the standard KDE f̂� on
the full dataset attains the minimax rate of estimation
cd,Ln

1/(2+d) over the Lipschitz densities PH(1, L).

Theorem 3. Let " > 0. The Carathéodory coreset
estimator ĝ�(y) built using the kernel � and setting

T = cd," n
1

2+d+
"
d satisfies

sup
f2PH(1,L)

Ekĝ� � fk2  cd,L n
�

1
2+d .

The corresponding coreset has cardinality

m = cd,"n
d

2+d+"
.

In addition, we have a nearly matching lower bound to
Theorem 2 for coreset KDEs. In fact, our lower bound
applies to a generalization of coreset KDEs where the
vector of weights {�j}j2S is not constrained to be in
the simplex but can range within a hypercube of width
that may grow polynomially with n.
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Theorem 4. Let A,B � 1. Let k denote a kernel with
kkk2  n. Let ĝS denote a weighted coreset KDE with
bandwidth h � n

�A built from k with weights {�j}j2S

satisfying maxj2S |�j |  n
B. Then

sup
f2PH(�,L)

EfkĝS � fk2 �

c�,d,L

h
(A+B)�

�
d (m log n)�

�
d + n

�
�

2�+d

i
.

This result is essentially a consequence of the lower
bound in Theorem 1 because, in an appropriate
sense, coreset KDEs with bounded weights are well-
approximated by coreset-based estimators. Hence, in
the case of bounded weights, allowing these weights to
be measurable functions of the entire dataset rather
than just the coreset, as would be required in Sec-
tion 2, does not make a significant di↵erence for the
purpose of estimation. The full details of Theorem 4
are postponed to the Supplement.

3.3 Proof sketch of Proposition 1

Here we sketch the proof of Proposition 1, our main
tool in constructing e↵ective coreset KDEs. Full de-
tails of the argument may be found in the Supplement.

Let k(x) =
Qd

i=1 (xi) denote a kernel, and suppose

that f̂(y) = 1
n

Pn
i=1 kh(Xi� y) is a good estimator for

an unknown density f in that

kf � f̂k2  " := c�,d n
�

�
2�+d

on setting h = n
�1/(2�+d). Our goal is to find a subset

S ⇢ [n] and weights {�j}j2S such that

1

n

nX

i=1

kh(Xi � y) ⇡
X

j2S

�jkh(Xj � y).

Suppose for simplicity that  is compactly supported
on [�1/2, 1/2]. By hypothesis and Parseval’s the-
orem  2 S(�, L0), and we can further show that
k 2 S(�, cd,L0) and kh 2 S(�, cd,L0h

�d/2��). Let
F̄ [f ] = 4�2d

F [f ] denote the rescaled Fourier trans-
form. Using the Fourier expansion on the interval
[�2, 2]d and fast Fourier decay of kh, we have

kkh(x)�
X

|!|
1

<T

F̄ [kh](!)e
ihx,!i

k2  " (6)

when T = (
cd,�,L0h

�
d
2
��

" )1/� = cd,�,L0 n
d/2+�+�
�(2�+d) . Ob-

serve that this matches the setting of T in Proposi-
tion 1.

The approximation (6) implies that for Xi 2

[�1/2, 1/2]d,

f̂(y) ⇡
X

|!|
1

<T

F̄ [kh](!)

 
1

n

nX

i=1

e
ihXi,!i

!
e
�ihy,!i

.

Using the Carathéodory coreset and weights {�j}j2S

constructed in Section 3.1, it follows that

X

|!|
1

<T

F̄ [kh](!)

 
1

n

nX

i=1

e
ihXi,!i

!
e
�ihy,!i =

X

|!|
1

<T

F̄ [kh](!)

 
nX

i=1

�je
ihXi,!i

!
e
�ihy,!i

.

Applying (6) again, we see that the right-hand-side is
approximately equal to ĝS(y), the estimator produced
in Section (3.1). By the triangle inequality, we con-
clude that kĝS(y)� fk2  c�,d ", as desired.

4 Lower bounds for coreset KDEs
with uniform weights

In this section we study the performance of univariate
uniformly weighted coreset KDEs

f̂
unif
S (y) =

1

m

X

i2S

kh(Xi � y),

where XS is the coreset and |S| = m. The next results
demonstrate that for a large class of kernels, there is
significant gap between the rate of estimation achieved
by f̂

unif
S (y) and that of coreset KDEs with general

weights. First we focus on the particular case of esti-
mating the class PH(1, L) of univariate Lipschitz den-
sities. For this class, the minimax rate of estimation
(over all estimators) is n�1/3, and this can be achieved
by a weighted coreset KDE of cardinality c"n

1/3+" by
Theorem 2, for all " > 0.

Theorem 5. Let k denote a nonnegative kernel satis-
fying

k(t) = O(|t|�(k+1)), and F [k](!) = O(|!|�`)

for some ` > 0, k > 1. Suppose that 0 < ↵ < 1/3. If

m 
n

2
3�2(↵(1� 2

` )+
2
3` )

log n
,

then

inf
h,S:|S|m

sup
f2PH(1,L)

Ekf̂unif
S �fk2 = ⌦k

⇣
n
�

1
3+↵

log n

⌘
. (7)

The infimum above is over all possible choices of band-
width h and all coreset schemes S of cardinality at
most m.

By this result, if k has lighter than quadratic tails
and fast Fourier decay, the error in (7) is a polyno-
mial factor larger than the minimax rate n

�1/3 when
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m ⌧ n
2/3. Hence, our result covers a wide variety

of kernels typically used for density estimation and
shows that the uniformly weighted coreset KDE per-
forms much worse than the encoding estimator or the
Carathéodory method. In addition, for very smooth
univariate kernels with rapid decay, we have the fol-
lowing lower bound that applies for all � > 0.

Theorem 6. Fix � > 0 and a nonnegative kernel k
on R satisfying the following fast decay and smoothness
conditions:

lim
s!+1

1

s
log

1R
|t|>s k(t)dt

> 0, (8)

lim
!!1

1

|!|
log

1

|F [k](!)|
> 0, (9)

where we recall that F [k] denotes the Fourier trans-
form. Let f̂unif

S be the uniformly weighted coreset KDE.
Then there exists L� > 0 such that for L � L� and
any m and h > 0, we have

inf
h,S:|S|m

sup
f2PH(�,L)

Ekf̂unif
S � fk2 = ⌦�,k

✓
m

�
�

1+�

log�+1
2 m

◆
.

Therefore attaining the minimax rate with f̂
unif
S re-

quires m � n
�+1
2�+1 for such kernels. Next, note that the

Gaussian kernel satisfies the hypotheses of Theorem 5
and 6. As we show in Theorem 7, results of Phillips
& Tai (2018b) imply that our lower bounds are tight
up to logarithmic factors: there exists a uniformly
weighted Gaussian coreset KDE of size m = Õ(n2/3)
that attains the minimax rate n

�1/3 for estimating
univariate Lipschitz densities (� = 1). In general, we

expect a lower bound m = ⌦(n
�+d
2�+d ) to hold for uni-

formly weighted coreset KDEs attaining the minimax
rate. The proofs of Theorems 5 and 6 can be found in
the Supplement.

5 Comparison to other methods

Three methods for constructing coreset kernel density
estimators that have previously been explored include
random sampling (Joshi et al., 2011; Lopez-Paz et al.,
2015), the Frank–Wolfe algorithm (Bach et al., 2012;
Harvey & Samadi, 2014; Phillips & Tai, 2018a), and
discrepancy-based approaches (Phillips & Tai, 2018b;
Karnin & Liberty, 2019). These procedures all re-
sult in a uniformly weighted coreset KDE. To compare
these results with ours on the problem of density esti-
mation, for each method under consideration we raise
the question: How large doesm, the size of the coreset,
need to be to guarantee that

sup
f2PH(�,L)

EfkĝS � fk2 = O�,d,L

⇣
n
�

�
2�+d

⌘
? (10)

Here ĝS is the resulting coreset KDE and the right-
hand-side is the minimax rate over all estimators on
the full dataset X1, . . . , Xn.

Uniform random sampling of a subset of cardinality
m yields an i.i.d dataset, so the rate obtained is at
least m

��/(2�+d). Hence, we must take m = ⌦(n) to
achieve the minimax rate.

The Frank–Wolfe algorithm is a greedy method that it-
eratively constructs a sparse approximation to a given
element in a convex set (Frank et al., 1956; Bubeck,
2015). Thus Frank–Wolfe may be applied directly
in the RKHS corresponding to a positive-semidefinite
kernel as shown in Phillips & Tai (2018b) to approx-
imate the KDE on the full dataset. However, due to
the shrinking bandwidth in our problem, this approach
also requiresm = ⌦(n) to guarantee the bound in (10).
Another strategy is to approximately solve the linear
equation (4) using the Frank–Wolfe algorithm. Unfor-
tunately, a direct implementation again usesm = ⌦(n)
data points.

A more e↵ective strategy utilizes discrepancy theory
(Phillips, 2013; Phillips & Tai, 2018b; Karnin & Lib-
erty, 2019) (see Matoušek, 1999; Chazelle, 2000, for a
comprehensive exposition of discrepancy theory). By
the well-known halving algorithm (see e.g. Chazelle &
Matoušek, 1996; Phillips & Tai, 2018b) if for allN  n,
the kernel discrepancy

disck = sup
x1,...,xN

min
�2{�1,+1}n

1T�=0

k

NX

i=1

�ik(xi � y)k1

is at most D, then there exists a coreset XS of size
ÕD("�1) such that

k
1

n

nX

i=1

k(Xi � y)�
1

m

X

j2S

k(Xi � y)k1  ". (11)

The idea of the halving algorithm is to maintain a set
of datapoints C` at each iteration and then set C`+1

to be the set of vectors that receive sign +1 upon
minimizing k

P
x2C`

�xk(x � y)k1. Starting with the
original dataset and repeating this procedure O(log n

m )
times yields the desired coreset XS satisfying (11).

Phillips & Tai (2018b, Theorem 4) use a state-of-the-
art algorithm from Bansal et al. (2018) called the
Gram–Schmidt walk to give strong bounds on the
kernel discrepancy of bounded and Lipschitz kernels
k : Rd

⇥ Rd
! R that are positive definite and decay

rapidly away from the diagonal. With a careful han-
dling of the Lipschitz constant and error in their argu-
ment when the bandwidth is set to be h = n

�1/(2�+d),
their techniques yield the following result applied to
the kernel ks. For completeness we give details of the
argument in the Supplement.
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Theorem 7. Let ks denote the kernel from Section
3.2. The algorithm of Phillips & Tai (2018b) yields in

polynomial time a subset S with |S| = m = Õ(n
�+d
2�+d )

such that the uniformly weighted coreset KDE ĝS sat-
isfies

sup
f2PH(�,L)

Ekf � ĝSk2  c�,d,L n
�

�
2�+d .

This result also applies to more general kernels, for ex-
ample, the Gaussian kernel when � = 1. We suspect
that this is the best result achievable by discrepancy-
based methods. In particular for nonnegative univari-
ate kernels with fast decay in the real and Fourier do-
mains, such as the Gaussian kernel, Theorem 5 implies
that this rate is optimal for estimating Lipschitz den-
sities with uniformly weighted coreset KDEs.

In contrast, the Carathéodory coreset KDE as in The-

orem 2 only needs cardinality m = O"(n
d

2�+d+") to
be a minimax estimator. By Theorem 4, this result is
nearly optimal for coreset KDEs with bounded kernels
and weights. And as with the other three methods de-
scribed, our construction is computationally e�cient.
Hence allowing more general weights results in more
powerful coreset KDEs for the problem of density es-
timation.
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