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Abstract— The ability to quickly synthesize an optimal con-
trol signal for a nonlinear system is critical for practical
implementations. In previous work, we have introduced a
computational procedure to iteratively synthesize an optimal
control signal for a very broad class of nonlinear control
systems. This paper presents an extension of the approach
to allow for different parameterizations of control inputs,
resulting in a substantial reduction in the number of decision
variables and thus computation time. The highlighted efficiency
and effectiveness of the proposed approach are illustrated
and compared against other methods using various control
examples.

I. INTRODUCTION

For challenging control applications, the ability to obtain
a dynamically feasible open-loop control solution which
provides a certain control performance as well as safety
is particularly important. The ability to do so is a critical
element in building an overall sound and reliable feedback
control system, because it would minimize the unnecessary
effort of forcing a system to follow (or track) what was
assumed (by a user) to be a reasonable trajectory which, in
fact, might not be even dynamically feasible, thus potentially
leading to detrimental and obstructing effects.

As a result, a good amount of recent progress has been
made in generating an open-loop control solution for non-
linear complex constrained systems. These methods include
both sample-based approaches such as the Rapidly Exploring
Randomized Trees (RRTs) family [1], and optimization-
based approaches such as the trajectory optimization [2].
However, using the above approaches, one faces significant
challenges in obtaining an optimal control solution that
is strictly dynamically feasible (e.g., see the exponential
computational complexity of nonlinear kinodynamic motion
planning [3], or the effects of transcription errors on the
accuracy of trajectory optimization [4], [5]).

As a new direction, a computationally attractive procedure
to iteratively synthesize an optimal control signal that is
always dynamically feasible for a general nonlinear control
system has been recently established [6], [7], [8]. In this
paper, we present an extension of this framework to allow for
different parameterizations of the control input. In particular,
by parameterizing the control input using suitable basis
functions, we significantly reduce the number of decision
variables and computation time compared to the original
approach with only a minor penalty on the objective cost.
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Piecewise-constant control inputs are among the most
commonly applied control parameterizations because of their
simplicity and versatility across different control problems;
however, it has been shown that different control parameteri-
zations (e.g., basis functions) in practice tend to substantially
reduce the number of decision variables, and thus minimize
computation time [9], [10]. The time complexity can then
be traded-off with the number of basis functions instead
of the number of time steps as in the standard piecewise-
constant control inputs. This advantage provides one with
the ability to quickly compute a reasonable control solution
even for a considerably long control horizon [11], [12].
Therefore, in this paper, we propose a general mechanism to
readily equip the iterative framework with different control
parameterization schemes, making it an attractive and viable
option for practical implementations.

To this end, the content of this paper is organized as
follows. In the next section, we first state the optimal
control problem. In Section III, we give an overview of the
original iterative optimal control synthesis framework with
the standard piecewise-constant control input. In Section IV,
we present the proposed approach to parameterize the control
signal using a linear combination of basis functions. In
Section V, we provide a comparative study of different
control parameterizations for a classical control problem and
investigate the tradeoff between computational complexity
and optimality. In this section, we also present different
implementations to illustrate the computational reduction
and robustness of the proposed approach compared to other
methods such as trajectory optimization.

II. PROBLEM STATEMENT

Consider the minimum energy nonlinear optimal control
problem in the following form

minimize
u

∫ T

0

‖u(t)‖2dt

subject to ẋ(t) = f(x(t), u(t))

x(0) = x0, x(T ) = xtarget

u ∈ L2([0, T ],Rm)

(1)

where ‖.‖ denotes the 2-norm (which will be used through
out in this paper), L2([0, T ],Rm) represents the space of
square integrable functions mapping from [0, T ] to Rm, and
x0, xtarget ∈ Rn are the initial condition and the desired
terminal state, respectively. In the following, we will give
an overview of the computationally iterative procedure to
solve this rather general nonlinear optimal control problem.



III. AN OVERVIEW OF AN ITERATIVE OPTIMAL
CONTROL SYNTHESIS

To discretize the continuous-time dynamics of ẋ(t) =
f(x(t), u(t)), we first employ the commonly adopted zero-
order hold assumption. More specifically, by letting u(t) ≡
ūk for some ūk ∈ Rm, t ∈ [k∆T, (k + 1)∆T ] where
∆T is the step size and k ∈ N is the time index, we
compute x((k + 1)∆T ) from the values of x(k∆T ) and ūk
by considering the autonomous system

d

dt

[
ξ1(t)
ξ2(t)

]
=

[
f(ξ1(t), ξ2(t))

0

]
,

[
ξ1(0)
ξ2(0)

]
=

[
x(k∆T )
ūk

]
for t ∈ [0,∆T ]. Denoting the flow of the above autonomous
system as (Φt)t∈R, we simply have[

x((k + 1)∆T )
ūk

]
= Φ∆T

([
x(k∆T )
ūk

])
.

This representation gives us a constructive formulation
(though not a closed analytic one) for the discrete-time
evolution of the continuous-time system, i.e.,

xk+1 = F (xk, uk) (2)

where F is a part of Φ∆T corresponding to the mapping
to x((k + 1)∆T ). Moreover, if the Jacobian of F could be
calculated (e.g., see [13]), we will also have a constructive
way to compute the linearization of the system at each time
step.

In our practical computations, given an initial state x0

and a nominal control signal U =
[
u>0 , u

>
1 , . . . , u

>
N−1

]>
,

rather than using traditional first-order discretizations and
linearizations, we employ a recently established numerical
approach utilizing high-order Taylor series expansion [13],
to accurately obtain the aforementioned Jacobian of F , and
therefore, the following linearization of the continuous-time
dynamics

δxk+1 = Akδxk +Bkδuk, δx0 = 0 (3)

where Ak := ∂F
∂x (xk, uk), Bk := ∂F

∂u (xk, uk). Iterating (3),
we can unfold the above dynamics into

δx1 = B0δu0

δx2 = A1B0δu0 +B1δu1
...

δxN = AN−1 . . . A1B0δu0 + · · ·+BN−1δuN−1.

Given that δuk is sufficiently small to ensure the appro-
priateness of the above linearizations, our idea under this
approach is to approximate the terminal state of the system
trajectory when applying a slightly perturbed control input
by the following expression

x̃N ≈ xN +
[
AN−1 . . . A1B0 · · · BN−1

]︸ ︷︷ ︸
=: H

 δu0

...
δuN−1


︸ ︷︷ ︸

=: ∆U

where x̃N is the resulting terminal state of the system
trajectory due to the perturbed control signal U + ∆U . The
main advantage of this approximation is that it breaks the
nonlinear “coupled” dynamics and significantly simplifies the
nonlinear control problem. Using this simple yet powerful
idea, we will lay out in the following an iterative procedure to
systematically synthesize a minimal energy steering control
for a board class of nonlinear control systems. The overall
procedure comprises of the two following parts: iteratively
steer the system to the target state, then fine-tune the control
input to ensure the achievement of a minimal control energy.

A. Iterative Steering

Given an (arbitrary) initial control inputs U along with
the corresponding state evolution x0, x1, . . . , xN , we con-
sider the following optimization problem

minimize
∆U

‖xN +H∆U − xtarget‖2 + λ‖∆U‖2 (4)

where λ ≥ 0 is a regularization parameter that enforces
a penalty on the magnitude of ∆U . This penalty helps us
to ensure a sufficiently incremental update of U at each
iteration and thus guarantees the appropriateness of the
aforementioned linearization (approximation) of the system.
For the quadratic program (4), one can immediately obtain
the following explicit solution

∆U∗ = −(H>H + λI)−1H>(xN − xtarget).

From [6], the iterative scheme for steering the system to the
target state is as follows.

Algorithm 1 Steering to the target
Require: Desired terminal state xtarget, initial input U .
1: Apply the input U to the system and store all Ak, Bk.
2: Calculate H .
3: Solve for ∆U∗ of the optimization problem (4).
4: Update the control input via U = U + ∆U∗.
5: Repeat step 1-4 until ‖xN − xtarget‖ ≤ ε1,tol.

B. Optimal Steering

The first part of the overall procedure will result in
a steering of the system to a small neighborhood of the
target. The second part is established to ensure that the input
computed in the first step will have a minimal control energy.
More specifically, we consider

minimize
∆U

‖U + ∆U‖2 + γ‖∆U‖2

subject to xN +H∆U = xtarget

(5)

where γ ≥ 0 is the regularization parameter, which has the
same purpose as λ in the first part. The second iterative
scheme to achieve a minimal energy control signal is pre-
sented in Algorithm 2.

In summary, under this framework, we strategically trans-
form the general nonlinear optimal control problem into two
iterative sequences of quadratic programs (4) and (5). Given



Algorithm 2 Minimizing the control energy
Require: Nominal input U steering the system to xtarget.
1: Apply the input U to the system and store all Ak, Bk.
2: Calculate H .
3: Solve for ∆U∗ of the optimization problem (5).
4: Update the control input via U = U + ∆U∗.
5: Repeat step 1-4 until ‖∆U∗‖ ≤ ε2,tol.

an arbitrary initial control input, we first apply Algorithm 1 to
iteratively steer the system to a desired target. Then, using
the input thereof as a nominal control, we employ Algo-
rithm 2 to iteratively minimize the control energy and thus
eventually obtain a minimal energy point-to-point steering
control solution.

Due to the favorable (convex) structure of the approach,
this computationally attractive procedure has been utilized by
the authors in various nonlinear control applications ranging
from motion planning for non-holonomic control systems to
optimal charging control of Lithium-ion batteries in which
complicated nonlinear constraints can be seamlessly included
[7], [14]. To even further reduce the computational load of
this framework for practical applications, in the next section,
we propose an approach to parameterize the control signal
using a linear combination of basis functions.

IV. AN ITERATIVE OPTIMAL CONTROL
SYNTHESIS USING BASIS FUNCTIONS

The most commonly applied numerical approach to opti-
mal control synthesis is to partition the control horizon into
smaller sub-intervals and parameterize the control signal with
piecewise-constant control values. However, for applications
with long control horizons and/or fast sampling rates, this
approach often results in a rather sizable problem with a large
number of decision variables, which significantly increases
the computational complexity [15], [16].

To reduce the number of decision variables and therefore
avoid the above problem, we propose an approach to param-
eterize the control signal by a linear combination of arbitrary
basis functions, i.e.,

u(t) = Im×m ⊗ B(t)α (6)

where Im×m is a m × m identity matrix, ⊗ denotes the
Kronecker product, B(t) := [b1(t), b2(t), . . . , bL(t)] ∈ R1×L

represents the basis in which, without loss of generality,
we assume 〈bi, bj〉 = δij , i.e., the basis functions are
orthonormal, and α ∈ RmL are the coefficients.

With this expression, our goal is to find an appropriate α
such that its linear combination with the basis via the expres-
sion of (6) will best approximate the optimal control signal.
The best approximation here is the orthogonal projection of
the optimal control signal (with respect to the inner prod-
uct defined in L2([0, T ],Rm)) onto the finite dimensional
vector space spanned by the orthonormal basis elements of
b1, . . . , bL. Now, under the zero-order hold assumption of
the time-discretization, the control signal is again assumed
to be constant (but not as decision variables) over each time

step. To achieve that, we consider the following expression
of the control signal

u(t) = Im×m ⊗ B(k∆T )α, for t ∈ [k∆T, (k + 1)∆T ].

To shorten the notation, we denote the above expression as

uk = Im×m ⊗ Bk α

where k denotes the time index. Then, a control input over
the entire control horizon can be described as follows.

U =

 u0

...
uN−1

 =

 Im×m ⊗ B0

...
Im×m ⊗ BN−1


︸ ︷︷ ︸

=: K

α. (7)

Under the control parameterization using basis functions, a
slight perturbation of the control signal, i.e., ∆U , is achieved
by a corresponding perturbation of the basis coefficients, i.e.,

∆U = K∆α where ∆α =
[
δα1, δα2, . . . , δαmL

]>
.

This simple expression will later allow us to conveniently
substitute ∆U in the previous construction (as in Section III)
with K∆α. To this end, we are now ready to establish an
iterative procedure to synthesize a minimal coefficient α such
that its linear combination with the basis elements b1, . . . , bL
will best approximate the minimum energy control signal.

A. Iterative Steering

Let H = HK, under the control parameterization using
basis functions, we rewrite (4) as

minimize
∆α

‖xN + H ∆α− xtarget‖2 + λ‖∆α‖2 (8)

where λ is an regularization parameter that enforces a
penalty on the magnitude of ∆α so as to ensure sufficiently
incremental changes of the control signal at each iteration.
Similarly, we have the following explicit solution of (8)

∆α∗ = −(H >H + λI)−1H >(xN − xtarget).

From Algorithm 1, the modified iterative scheme for steering
the system to the target state is as follows.

Algorithm 3 Steering to the target
Require: A desired xtarget, an (arbitrary) initial coefficient
α, and a finite set of orthonormal basis elements b1, . . . , bL
in L2([0, T ],R).
1: Calculate the control input U using equation (7).
2: Apply the input U to the system and store all Ak, Bk.
3: Calculate H .
4: Solve for ∆α∗ of the optimization problem (8).
6: Update the control parameterization via α = α+ ∆α∗.
7: Repeat step 1-6 until ‖xN − xtarget‖ ≤ ε1,tol.



B. Optimal Steering

The previous subsection lays out the first part of the
overall procedure, which iteratively steers the system to a
small neighborhood of the target state. We now establish
a second iteration to ensure that the control input under the
parameterization scheme will have a minimal control energy.
To this end, we consider the following optimization

minimize
∆α

‖α+ ∆α‖2 + γ‖∆α‖2

subject to xN + H ∆α = xtarget

(9)

where γ ≥ 0 is the regularization parameter, which again has
the same purpose as the regularization parameter λ in the
first part. The modified second iterative scheme to achieve
the minimum control energy is as follows.

Algorithm 4 Minimizing the control energy
Require: The finite basis elements b1, . . . , bL and a nominal
coefficient α acquired from the result of Algorithm 3.
1: Calculate the control input U using equation (7).
2: Apply the input U to the system and store all Ak, Bk.
3: Calculate H .
4: Solve for ∆α∗ of the optimization problem (9).
6: Update the control parameterization via α = α+ ∆α∗.
7: Repeat step 1-6 until ‖∆α‖ ≤ ε2,tol.

Let JL := ‖α‖2 =
∑mL

i=1 αi
2, we observe that the

energy of the approximated control signal monotonically
decreases as the number of basis elements increases, i.e.,
JL ≤ JL+1. In fact, given that [α1, . . . , αmL]> are the
optimal coefficients of b1, . . . , bL, we can always choose
[α1, . . . , αm, 0, . . . , αm(L−1)+1, . . . , αmL, 0]> as a feasi-
ble candidate and search for the optimal coefficients of
b1, . . . , bL+1. This property effectively allows us to better
approximate the optimal control signal by increasing the
number of basis functions. In other words, the trade-off
between computational complexity and optimality can be
analyzed and balanced via the number of basis functions.
This advantage allows us to not only reduce the number of
decision variables but also maintain the accuracy and the
favorable (convex) structure of the iterative framework.

V. A COMPARATIVE STUDY WITH
ILLUSTRATIVE EXAMPLES

The previous section presents a general mechanism to
parameterize (or approximate) an optimal control signal
using a finite set of basis functions. In this section, we
demonstrate the effectiveness of the proposed approach under
different control examples and discuss the trade-off between
computational complexity and optimality via a simple com-
parative study.

A. Minimum energy swing up control

We consider the problem of swinging up an inverted
pendulum on a cart using a minimum control energy. The

x1

x2

u

g

M

m

l

cart
position

control
(force)

pole
angle

Fig. 1: The model of an inverted pendulum on a cart with the
following parameters: M = 1, m = 0.3, l = 0.5, g = 9.81.

motion of the system is described by the following dynamics

ẋ1 = x3

ẋ2 = x4

ẋ3 =
ml sin(x2)x2

4 +mg cos(x2) sin(x2) + u

M +m(1− cos2(x2))

ẋ4 =
g(M +m) sin(x2) +ml cos(x2) sin(x2)x2

4 + u cos(x2)

−Ml −ml(1− cos2(x2))

where x1, x2, x3, and x4 are the position of the cart, the
angle of the pendulum, the speed of the cart, and the
angular velocity of the pendulum, respectively, as illustrated
in Figure 1.

In our experiment, we consider four different approaches
to the minimum-energy swing-up control problem. First,
we apply the original iterative method as introduced in
Section III. For the second and third cases, we implement
the proposed method, using the first 20 elements of the
Legendre polynomial basis and those of the Fourier basis,
respectively. Finally, we employ a trajectory optimization
technique using a trapezoidal collocation on a standard mesh-
grid. To keep the same parameters for all cases, we set
N = 200, ∆T = 0.01, λ = 0.01, µ = 2, ε1,tol = 10−2,
ε2,tol = 10−4, x0 = [0, 0, 0, 0]>, and xtarget = [1, π, 0, 0]>.

The computational complexities of the four approaches
are presented in Table I. All the computations are done
on a personal laptop with an IntelCore i7-4770HQ (2.50
Ghz) CPU and 16GB RAM using Matlab. One can notice
that the first three approaches using the iterative optimal
control synthesis framework are significantly faster than
the trajectory optimization approach. The reason is that in
order for the solution of the trajectory optimization to be
(dynamically) accurate, a significantly dense grid (of 400

Part1 Part2

Iterations Time Iterations Time

Original iterative 106 4.2s 335 15.1s
Legendre basis 16 0.7s 173 8.0s
Fourier basis 12 0.6s 212 10s
Trajectory optimization - - - 932s

TABLE I: Time complexity of four control approaches.
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Fig. 2: Optimal control signals obtained from the iterative
framework under different control parameterization schemes.

points) is required, which results in a considerably time-
consuming computation. This requirement is necessary for
the accuracy because although the transcription errors (often
calculated as the difference between a candidate trajectory
and the actual system dynamics between each collocation
points) are small, these errors can propagate over time and
eventually lead to a considerably large error at the end
[17]. As a result, we emphasize that due to the inherent
transcription errors, a solution generated by any trajectory
optimization process must be cautiously verified with an
independent test so as to check whether the generated control
signal can actually steer the system to a desired target in open
loop (e.g., see [4], [5], [17], [18] for similar conclusions).

As presented in Table I, the two methods using the
proposed approach converge to their optimal solutions sig-
nificantly faster than the original iterative method. This rapid
convergence agrees with the previous argument that due to a
small number of decision variables, control parameterizations
using basis functions naturally result in more lightweight
computations. However, also due to this property, these
control parameterizations might become less flexible than the
original iterative method. Although the choice of a particular
basis hardly affects the success of the steering task (i.e., the
first part of the framework), it tends to influence the minimal
cost of the final control solution.

From our investigation, we notice that a basis which
shares some similar properties to the system often results
in a better (or lower cost) control solution. In deed, one can
observe from Figure 2 that due to the same intrinsic periodic
property of Fourier basis and the cart-pendulum system, the
solution using Fourier basis is almost identical to that of the
original iterative method, while the control solution using
Legendre polynomial basis is quite different. As a result,
the energy (cost) of the control input using Fourier basis is
57.99 which is very close to (though slightly higher than) the
energy of the original iterative method of 57.97, while the
control energy using Legendre polynomial basis is 63.78.
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Fig. 3: The trade-off between the number of basis elements,
the computational complexity (in seconds) and the control
energy (cost).

B. Analyzing the trade-off between the number of basis
elements, time complexity and optimality

Recall from Section IV that our goal under a basis
parameterization is to find a linear combination of finite basis
elements to best approximate the optimal control signal in
which the approximation is the orthogonal projection of the
optimal control signal onto the parametric space (i.e., the
finite dimensional vector space spanned by these orthonormal
basis elements). A natural question that often arises in this
context is that how many bases should we choose so that
we can obtain a good approximation of the optimal control
signal. To study the effects of the number of basis elements,
we repeatedly apply the proposed approach using the Fourier
basis with different numbers of basis elements (varying from
10 to 100).

As the numbers of basis elements increases, the paramet-
ric space (i.e., the space spanned by these orthonormal basis
elements) becomes larger, which naturally leads to a better
approximation of the optimal control signal. As a result, the
control energy (cost) decreases and quickly plateaus at a
certain level as the number of basis elements increases, as
illustrated in Figure 3. However, the increase in number of
basis elements also raises the number of decision variables,
leading to a larger problem thus a longer computation. It is
observed that the decrease in control energy only comes with
a minor cost of increasing computation. In this example, the
proposed approach reaches almost the exact same cost as
the optimal control signal of the original iterative method (at
40 basis elements) and still maintains a faster convergence
(under 11 seconds), as illustrated in Figure 3. This favorable
nature is also observed in the upcoming example.

C. Minimum energy attitude control

We consider the attitude control problem, also known as
the control of rigid-body rotations. The set of attitudes of
a rigid body is represented by the set of 3 × 3 orthogonal



matrices (rotation matrices) whose determinant is 1, which is
often referred to as the special orthogonal group SO(3) [19].
The rotation of a rigid body is described by the following
dynamics

Ṙ = Rω×

Jω̇ = Jω × ω + u

where R(t) ∈ SO(3) is the rotation matrix representing
an attitude of a rigid body, J ∈ R3×3 is the moment of
inertia of the body, ω := [w1, w2, w3]> ∈ R3 are the angular
velocities, and

ω× :=

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 .
The control objective is to design an input u which steers the
rigid-body with J = diag{3, 4, 5} from an initial position of
R0 = I3×3 with ω0 = [0, 0, 0]> to a desired target Rtarget =
[−0.3995, 0.8201, 0.4097, 0.1130,−0.3995, 0.9097, 0.9097,
0.4097, 0.0670]> with ωtarget = [0, 0, 0]>.

To this end, we first rewrite the system in the form of ẋ =
f(x, u), where x := [R11, R12, R13, R21, R22, R23, R31,
R32, R33, ω1, ω2, ω3]> ∈ R12, and u := [u1, u2, u3]> ∈ R3.
Then, using N = 500, ∆T = 0.01, λ = 0.01, µ = 2,
ε1,tol = 10−2, ε2,tol = 10−4, and 10 elements of the
Legendre polynomial basis, we apply the proposed approach
to synthesize a minimal energy steering control, as illustrated
in Figure 4. This maneuver is equivalent to a 150◦ counter-
clockwise rotation around v = [ 1

2 ,
1
2 ,

1√
2
]. In this example,

our computation time of the control parameterization is on
average around 6 seconds with the control energy (cost) of
14.62. On the other hand, it takes approximately 28 seconds
to synthesize an optimal control input with the energy (cost)
of 11.24 using the original iterative method.

VI. SUMMARY AND CONCLUSIONS

It has been shown with the help of different examples
that parameterization of the control input signal using basis
functions has a great potential to significantly reduce the
computation time of nonlinear optimal control syntheses with
only a minor penalty on the objective cost. The overarching
framework presented in this paper thus shows great promise
for the fast generation of optimal steering inputs for a broad
class of nonlinear control systems. In ongoing work, we
are investigating the application of the presented framework
towards the efficient synthesis of (optimal) feedback control
laws for nonlinear control systems.
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