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Abstract
We consider the problem of estimating sparse discrete distributions under local differential privacy
(LDP) and communication constraints. We characterize the sample complexity for sparse estima-
tion under LDP constraints up to a constant factor, and the sample complexity under communication
constraints up to a logarithmic factor. Our upper bounds under LDP are based on the Hadamard
Response, a private coin scheme that requires only one bit of communication per user. Under com-
munication constraints we propose public coin schemes based on random hashing functions. Our
tight lower bounds are based on recently proposed method of chi squared contractions.
Keywords: sparse distribution estimation, local differential privacy, communication constraint

1. Introduction

Estimating distributions from data samples is a central task in statistical inference. In modern learn-
ing systems such as federated learning (Kairouz et al., 2019), data is generated from distributed
sources including cell phones, wireless sensors, and smart healthcare devices. Access to such data
is subject to severe “local information constraints”, such as communication and energy constraints,
privacy concerns. For several statistical inference tasks, including distribution estimation, privacy
and communication constraints lead to significant degradation in utility (see Section 1.3 for a de-
tailed discussion). Moreover, in some applications, such as web-browsing, genomics, and language
modeling, the distribution is often supported over a small unknown subset of the domain. Motivated
by the utility gain in high dimensional statistics under sparsity assumptions (Wainwright, 2019),
we study the problem of estimating sparse discrete distributions under privacy and communication
constraints.
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ESTIMATING SPARSE DISCRETE DISTRIBUTIONS UNDER PRIVACY AND COMMUNICATION CONSTRAINTS

1.1. Notations and problem set-up

Let [k] := {1, 2, ..., k} and 4k := {p ∈ [0, 1]k :
∑

x∈[k] p(x) = 1} be the set of all distributions
over [k]. For p ∈ ∆k and S ⊂ [k], let pS be the vector restricted on indices in S. Independent
samples X1, . . . , Xn from an unknown p ∈ 4k are observed by n users, where user i observes Xi.
User i sends a message Yi = Wi(Xi) to a central server, where Wi : [k] → Y is a randomized
mapping (channel) with

Wi(y | x) = Pr (Yi = y | Xi = x) .

We consider privacy and communication constrained messages in this paper, which can be enforced
by restricting Wis to belong to a classW of allowed channels.

Local Differential Privacy (LDP). A channel W : [k]→ Y = {0, 1}∗ is ε-LDP if

sup
y∈Y

sup
x,x′∈X

W (y | x)

W (y | x′)
≤ eε. (1)

Wε = {W : W is ε-LDP} is the set of all ε-LDP channels.

Communication constraints. Let ` < log k, andW` = {W : [k] → Y = {0, 1}`} be the set of
channels that output `-bit messages, and thus characterize communication constraints.

X1 X2 . . . Xn−1 Xn

W1 W2 . . . Wn−1 Wn

Y1 Y2 . . . Yn−1 Yn

p

Server

output

Figure 1: Distributed inference with simultaneous message passing (SMP) protocol.

Distribution estimation. Let d : 4k ×4k → R+ be a distance measure. A distribution estimation
protocol under constraintsW is a set of channels Wn := (W1,W2, . . . ,Wn) ∈ Wn and an estima-
tor p̂ : Yn →4k. Upon observing the n output messges Y n := (Y1, Y2, . . . , Yn), the central server
outputs an estimate p̂(Y n) of the underlying unknown distribution p. Let α > 0 be an accuracy
parameter. The minimax sample complexity for estimation is

SC(α,4k,W, d) := arg min
n

{
min
p̂

min
Wn∈Wn

max
p∈4k

Pr (d(p, p̂(Y n)) ≤ α) ≥ 0.9

}
,
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the fewest number of samples for which we can estimate every p ∈ 4k up to α accuracy with
probability at least 0.9. We will use the total variation distance, dTV(p̂, p) := supS⊆[k] |p̂(S) −
p(S)| = 1

2 ‖p− p̂‖1 as the distance measure.

Sparse distribution estimation. Let s ≤ k/1001 and

4k,s := {p ∈ 4k : ‖p‖0 ≤ s}

be the distributions in4k with support size at most s. Let

SC(α,4k,s,W, dTV):= arg min
n

{
min
p̂

min
Wn∈Wn

max
p∈4k,s

Pr (dTV(p, p̂(Y n))) ≤ α) ≥ 0.9

}
denote the sample complexity of estimating s-sparse distributions to total variation distance α.

In this paper, we consider simultaneous message passing (SMP) protocols (non-interactive
schemes) where all the messages from users are sent simultaneously (see Figure 1). SMP proto-
cols are broadly classified as private-coin and public-coin protocols. In private-coin schemes the
channels Wi are independent. In the more general public-coin schemes, the channels are chosen
based on a function of a public randomness U observed by all the users and the server. Private-coin
protocols are a strict subset of public-coin protocols. We refer the readers to Acharya et al. (2020b)
for detailed definitions of these protocols.

1.2. Previous results and our contribution

Discrete distribution estimation under communication (Han et al., 2018b,a; Acharya et al., 2019b,
2020b) and LDP (Duchi et al., 2013; Erlingsson et al., 2014; Kairouz et al., 2016; Ye and Barg,
2018; Acharya et al., 2018; Acharya and Sun, 2019) constraints is well studied, and it is now known
that for `-bit channelsW`, and ε-LDP channelsWε (for ε = O(1)),

SC(α,4k,W`, dTV) = Θ

(
k2

α2 min{k, 2`}

)
, SC(α,4k,Wε, dTV) = Θ

(
k2

α2ε2

)
. (2)

Plugging ` = log k in the first equation gives the centralized sample complexity of Θ
(
k/α2

)
. Note

that for ε = O(1) and ` = O(1), the sample complexity increases by a factor k from the centralized
setting.

We now present our results on estimating distributions in4k,s, the set of s sparse distributions
in ∆k. Our first result is a complete characterization of the sample complexity under ε-LDP up to
constant factors.

Theorem 1 (Bounds for ε-LDP constraint) For ε = O(1) and α ∈ (0, 1),

SC(α,4k,s,Wε, dTV) = Θ

(
s2 max{log(k/s), 1}

α2ε2

)
.

Moreover, there exists a private-coin protocol with one-bit privatized messages that achieves the
upper bound. The algorithm runs in nearly linear time in n and k.

1. Sparsity larger than k/100 gives same answers as the non-sparse case.
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A few remarks are in order. This result shows that sparsity s is the effective domain size up to
logarithmic factors. While an additional log k factor is slightly simpler to obtain, a more involved
technique in sparse estimation based on a covering set argument is used to establish the upper
bound with the optimal overhead factor of log(k/s). The lower bound is obtained by applying the
recently developed chi-squared contraction techniques (Acharya et al., 2019b) to a new construction
of distributions.

We now present our sample complexity bounds under communication constraints. Unlike LDP,
our bounds are off by logarithmic factors in various parameter regimes. Resolving this gap and
obtaining the tight bounds is an open question.

Theorem 2 (Bounds for `-bit constraint) For α ∈ (0, 1), and channel family W`, the sample
complexity for learning distributions in4k,s satisfies,

SC(α,4k,s,W`, dTV) = O

(
s2 max{log(k/s), 1}

α2 min {2`, s}

)
.

SC(α,4k,s,W`, dTV) = Ω

(
max

{
s2

α2 min{2`, s}
,
s2 max{log(k/s), 1}

α2`

})
.

We briefly discuss the lower bound. Despite the gap, it is optimal for constant α. The first term is
exactly the lower bound when the support is known. The second term dominates when log(k/s) >
1/α, i.e., the support is very sparse.

Organization. The remainder of the paper is organized as follows. We discuss related works in
Section 1.3. We present algorithms and proofs for sparse estimation under LDP and communication
constraints in Section 2 and Section 3 respectively.

1.3. Related work

Distribution estimation has a rich literature (see e.g., Barlow et al. (1972); Silverman (1986); De-
vroye and Györfi (1985); Devroye and Lugosi (2001), and references therein). There has been recent
interest in distributed distribution estimation under communication and privacy constraints. For es-
timating discrete distributions under communication constraints, the optimal sample complexity is
established in Han et al. (2018b); Acharya et al. (2019a); Barnes et al. (2020), and for local pri-
vacy constraints in Duchi et al. (2013); Erlingsson et al. (2014); Kairouz et al. (2016); Ye and Barg
(2018); Bassily (2019); Acharya et al. (2018); Acharya and Sun (2019). Acharya et al. (2019b,
2020b) unify both constraints under the framework of distributed inference under local information
constraints, where optimal bounds are obtained under both non-interactive and interactive proto-
cols. Chen et al. (2020) considers the trade-off between privacy and communication constraints and
provides optimal bounds in all parameter regimes. Murakami and Kawamoto (2019); Acharya et al.
(2020a) study discrete distribution estimation under different privacy constraints on the symbols.

Kairouz et al. (2016) proposed an LDP distribution estimation algorithm for “open alphabets” which
applies to the sparse setting. However, it requires public randomness and to the best of our knowl-
edge, no theoretical guarantee of this method is provided for sparse distribution estimation. In
contrast, the our algorithm is a private-coin algorithm that only requires one bit per user, and its
sample complexity is proven to be optimal up to constant factors.
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A closely related problem is heavy hitter detection under LDP constraints (Bassily and Smith, 2015;
Bassily et al., 2020), where no distributional assumption on the data is made. A modification of their
heavy hitters algorithms provides a sub-optimalO(s2 log k/α2ε2) sample complexity in terms of `1
error for ε-LDP distribution estimation .

Statistical inference with sparsity assumption has been studied extensively for decades. The closest
to our works are the Gaussian sequence model and high dimensional linear regression (Donoho and
Johnstone, 1994; Raskutti et al., 2011; Duchi and Wainwright, 2013). In these applications, it is
assumed that the observations are linear transforms of the underlying parameter plus independent
Gaussian noises on each dimension. In Section 2.1, it can be seen that using Algorithm 1, the his-
togram of observations can also be seen as a linear transform of the parameter of interest, however,
with dependent noises on each dimension. We borrow ideas from these works in proving the upper
bound. However, the lower bound part requires new proofs due to the dependency structure.

A few recent works study sparse estimation under information constraints. Duchi et al. (2013)
and Wang and Xu (2019) consider the 1-sparse case and study mean estimation and linear regres-
sion under LDP constraints respectively. Duchi and Rogers (2019) provides lower bounds for sparse
Gaussian mean estimation under LDP constraints via communication complexity. Barnes et al.
(2020) considers estimating the mean of product Bernoulli distribution when the mean vector is
sparse, which is different from the k-ary setting considered in this paper. Shamir (2014) considers
the problem of detecting the biased coordinate of product Bernoulli distributions under communi-
cation constraints, which can be viewed as a 1-sparse detection problem. Zhang et al. (2013); Garg
et al. (2014); Braverman et al. (2016); Han et al. (2018b) consider sparse Gaussian mean estimation
under communication constraints (Garg et al. (2014); Braverman et al. (2016) consider interactive
protocols with the goal of bounding the total amount of communication from all users). It was
shown that under a fixed communication budget, the rate still scales linearly with the ambient di-
mension of the problem instead of the logarithmic dependence in the discrete case considered in
this paper.

2. Sparse estimation under LDP constraints

In this section we will establish the sample complexity of sparse distribution estimation under LDP
constraints. In Section 2.1, we analyze a private-coin algorithm where each user sends only one-bit
messages detailed in Algorithm 1. The algorithm has two steps, listed below.

1. Using the private-coin Hadamard Response algorithm in Acharya and Sun (2019), players
send one-bit messages.

2. The server projects a vector obtained from these messages onto 4k,s to obtain the final esti-
mate.

We note that this algorithm is similar to that in Acharya and Sun (2019); Bassily (2019) where
in the projection step they project onto 4k to estimate distributions without sparsity assumptions.
While the algorithm is simple, to obtain the tight upper bounds, our analysis relies on a standard but
involved covering-based techniques in sparse estimation. We also remark that a sample-optimal
scheme can also be obtained using the popular RAPPOR mechanism (Erlingsson et al., 2014;
Kairouz et al., 2016), which has higher communication overhead. We present this algorithm in
the appendix for completeness.
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In Section 2.2, we present a matching lower bound to prove the optimality of the aforemen-
tioned algorithm. The proof relies on applying the recently developed chi-squared contraction
method (Acharya et al., 2019b) and a variant of Fano’s inequality in Duchi and Wainwright (2013).

Algorithm 1 1-bit Hadamard Response with Projection
Input: X1, . . . , Xn i.i.d. from p ∈ 4k,s, the sparsity parameter s.
Output: p̂ ∈ 4k : an estimate of p.

1 Let K = 2dlog2(k+1)e be the smallest power of 2 more than k.
2 For y ∈ [K], let By := {x ∈ [K] : HK(x, y) = 1} be the rows where the yth column has 1.
3 Divide the n users into K sets S1, . . . , SK deterministically by assigning all i ≡ j mod K to Sj

for i ∈ [n].
4 ∀j ∈ [K] and ∀i ∈ Sj , the distribution of the one-bit message Yi is

Pr(Yi = 1) =

{
eε

eε+1 , Xi ∈ Bj ,
1

eε+1 , otherwise,
(3)

namely if HK(Xi, j) = 1, we send 1 with higher probability than 0.
5 Let t̂ := (t̂1, . . . , t̂K) where ∀j ∈ [K], t̂j := 1

|Sj |
∑

i∈Sj Yi is the fraction of messages from Sj that
are 1.

6 Compute intermediate estimates for

p̃K :=
eε + 1

K(eε − 1)
HK(2t̂− 1K).

7 Keep the first k elements of p̃K , i.e., p̃ := p̃
[k]
K and project it onto4k,s.

p̂ := min
p∈4k,s

‖p̃− p‖22 .

2.1. Upper bounds under LDP constraints

We now establish the sample and time complexity of Algorithm 1.
Steps 1–6 of Algorithm 1 are identical to Acharya and Sun (2019), who showed a time complex-

ity of Õ(n+k). For the final step, where we project the vector p̃K on to4k,s, we can use (Kyrillidis
et al., 2013, Algorithm 1), which runs in Õ(k) time, proving the overall time complexity.

Algorithm 1 uses Hadamard matrices. For m that is a power of two, let Hm be the m × m
Hadamard matrix with entries in {−1, 1}. The privacy guarantee of the algorithm follows from (3),
which obeys (1). A key property we use is the following claim from Acharya and Sun (2019), which
shows a relationship between underlying distribution and the message distributions.

Claim 1 (Acharya and Sun (2019)) In (3), let tj := Pr (Yi = 1 | i ∈ Sj) for j ∈ [K]. Let t :=
(t1, . . . , tK). Let pK be the distribution over [K] obtained by appending K − k zeros to p. Then,

pK =
(eε + 1)

K(eε − 1)
HK(2t− 1K). (4)
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By definiton of p̂, we have ‖p̃− p̂‖22 ≤ ‖p̃− p‖
2
2. Hence

‖p̃− p‖22 ≥ ‖p̃− p̂‖
2
2 = ‖p̃− p‖22 + ‖p− p̂‖22 + 2〈p̃− p, p− p̂〉.

Rearranging the terms, we have

‖p̂− p‖22 ≤ 2〈p̃− p, p̂− p〉. (5)

We bound the right hand side by analyzing the projection step (Step 7), and using Claim 1. The
proof of the lemma is from standard covering number arguments from high dimensional sparse
regression (Raskutti et al., 2011), and is provided in Appendix A.

Lemma 3

〈p̃− p, p̂− p〉 ≤ 25(eε + 1)

(eε − 1)

√
s log(2k/s)√

n
‖p̂− p‖2.

We can now prove the sample complexity bound as follows.

dTV(p̂, p) =
1

2
‖p̂− p‖1 ≤

1

2

√
2s ‖p̂− p‖2 (6)

≤
40s
√

log(2k/s)√
n

eε + 1

eε − 1
, (7)

where (6) applies Cauchy-Schwarz inequality on the 2s-sparse vector p̂−p, and (7) is from plugging
Lemma 3 in (5). Plugging in dTV(p̂, p) = α, and using eε − 1 = O(ε) for ε = O(1) gives us the
desired sample complexity bound of n = O

(
s2 max{log(k/s), 1}/α2ε2

)
.

2.2. Lower bound under LDP constraints

We now prove the sample complexity lower bound in Theorem 1 using the chi-squared contraction
method in Acharya et al. (2019b) and an extension of Fano’s method from Duchi and Wainwright
(2013).

For simplicity of analysis we add 0 to the underlying domain and consider distributions over
[k] ∪ {0}. Let Zk,s ⊆ {0, 1}k be all k-ary binary strings with s one’s. Then, |Zk,s| =

(
k
s

)
. We will

restrict to Pk,s := {pz : z ∈ Zk,s}, and pz is described below for z ∈ Zk,s:

pz(x) =

{
1− 8α, for x = 0,
8αzx
s , for x = 1, . . . , k,

(8)

where zx is the xth coordinate of z. Since s of the zx’s are one,
∑k

x=1 pz(x) = 8α and pz is a valid
distribution.

Let Z := (Z1, . . . , Zk) be a uniform random variable over Zk,s. Let Y n := (Y1, . . . , Yn) be the
output of an ε-LDP scheme whose input are Xn = (X1, . . . , Xn), drawn i.i.d. from pZ , and p̂ is
such that Pr (dTV(p, p̂(Y n)) ≤ α) ≥ 0.9. In other words, we can estimate distributions in Pk,s to
within α in total variation distance with probability at least 0.9. Let Ẑ ∈ Zk,s be such that pẐ is the
distribution in Pk,s closest to p̂(Y n) in dTV. Then, we have

4α

s
dHam(Z, Ẑ) = dTV(pZ , pẐ) ≤ dTV(p̂, pẐ) + dTV(pZ , p̂) ≤ 2dTV(pZ , p̂).
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Since Pr (dTV(pZ , p̂(Y
n)) ≤ α) ≥ 0.9, we have Pr

(
dHam(Z, Ẑ) ≤ s/2

)
≥ 0.9, which implies

using the estimator p̂, we can estimate the underlying Z to within Hamming distance s/2. We now
state a form of Fano’s inequality from Duchi and Wainwright (2013), adapted to our setting.

Lemma 4 (Corollary 1 Duchi and Wainwright (2013)) Let Zk,s ⊆ {0, 1}k and Z be uniformly
distributed over Zk,s. For t ≥ 0, define the maximum neighborhood size at radius t

Nmax
t := max

z∈Z
{|z′ ∈ Z : dHam(z, z′)| ≤ t},

to be the maximum number of elements of Zk,s in a Hamming ball of radius t. If |Zk,s| ≥ 2Nmax
t ,

then for any Markov chain Z − Y n − Ẑ,

Pr
(
dHam(Ẑ, Z) > t

)
≥ 1− I(Z;Y n) + log 2

log |Zk,s| − logNmax
t

.

Substituting t = s/2, and using Pr
(
dHam(Z, Ẑ) ≤ s/2

)
≥ 0.9 with this lemma gives

I(Z;Y n) + log 2

log |Zk,s| − logNmax
s/2

> 0.9. (9)

Using chi-squared contraction bounds from Acharya et al. (2019b), we upper bound I(Z;Y n)
in the next lemma.

Lemma 5 Let Z be uniformly drawn from Zk,s and Y n be the outputs of n users,

I(Z;Y n) = O

(
nα2(eε − 1)2

s

)
.

Next. we lower bound log |Zk,s| − logNmax
s/2 using standard Gilbert-Varshamov type arguments in

the following lemma.

Lemma 6 Let 1 ≤ s ≤ k/100, then

log |Zk,s| − logNmax
s/2 ≥

s

8
log

(
k

s

)
.

Plugging these two bounds in (9) gives the tight sample complexity lower bound for sparse
distribution estimation under ε-local differential privacy.

We now prove these lemmas.
Proof [Proof of Lemma 5] For a distribution q over [k]∪{0} and a channelW , let qW denote output
distribution of Y when X ∼ q and Y = W (X). Then,

qW (y) =
∑

x∈[k]∪{0}

W (y | x)q(x). (10)

8
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Let p0 be the average of all distributions in Pk,s. Then p0(0) = 1 − 8α, and p0(x) = 8α/k
for x = 1, . . . , k. We will use chi square contraction bound in Acharya et al. (2019b) to bound the
maximum value of I(Z;Y n) in terms of the χ2-divergence between the output distributions induced
by distributions in Pk,s and by p0 and as follows:

I(Z;Y n) ≤ n · max
W∈Wε

EZ
[
χ2
(
pWZ , p

W
0

)]
(11)

= n · max
W∈Wε

∑
y

EZ
[(∑k

x=1(pZ(x)− p0(x))W (y | x)
)2]

EX∼p0 [W (y | X)]
, (12)

where (11) is from the chi-squared contraction bound, and (12) is by using (10) in the definition of
χ2-divergence2.

For an ε-LDP channel W ∈ Wε, let W y
min := minxW (y | x). By (1), we have W (y | x) =

W y
min + ηyx ·W y

min for some 0 ≤ ηyx ≤ eε − 1. Furthermore, for z ∈ Zk,s, by the definition of pz ,
pz(x)− p0(x) = 8α

(
zx
s −

1
k

)
, and

∑
x zx = s, thus giving

∑
x

(pz(x)−p0(x))W (y | x) = 8α
∑
x

(
zx
s
− 1

k

)(
W y

min +W y
minη

y
x

)
= 8αW y

min ·
∑
x

(
zx
s
− 1

k

)
ηyx.

SinceZ is uniformly distributed overZk,s, elementary computations show that E [Zx] = E
[
Z2
x

]
=

s/k, and for x1 6= x2 ∈ [k], E [Zx1Zx2 ] =
(
k−2
s−2
)/(

k
s

)
= s(s−1)

k(k−1) .
Therefore,

EZ

(∑
x

(pZ(x)− p0(x))W (y | x)

)2


= 64α2(W y
min)2 ·

(∑
x1,x2

EZ
[

1

k2
− Zx1 + Zx2

sk
+
Zx1Zx2
s2

]
ηyx1η

y
x2

)

= 64α2(W y
min)2

∑
x

[
1

sk
− 1

k2

]
(ηyx)2 +

∑
x1 6=x2

EZ
[
− 1

k2
+

s− 1

sk(k − 1)

]
ηyx1η

y
x2


≤ 64α2(W y

min)2
(

(maxx η
y
x)2

s

)
,

and

EZ
[
(
∑

x(pZ(x)− p0(x))W (y | x))2
]

EX∼p0 [W (y|X)]
≤ 64α2

(
(maxx η

y
x)2

s

)
·W y

min.

Using
∑

yW
y
min ≤ 1, and ηyx ≤ eε − 1, we obtain

EZ
[
χ2(pWZ , p

W
0 )
]

= O

(
α2(eε − 1)2

s

)
.

2. χ2(p, q) :=
∑
x(p(x)− q(x))2/q(x).
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Combining with (12), this completes the proof.

Proof [Proof of Lemma 6] Let z ∈ Zk,s. A vector in Zk,s that is at most s/2 away from z in
Hamming distance can be obtained as follows: Fix s/2 coordinates in z that are 1, and from the
remaining k− s/2 coordinates, choose s/2 coordinates and make them 1. All other coordinates are
set to zero. Therefore,

Nmax
s/2 ≤

(
s

s/2

)(
k − s/2
s/2

)
.

Recall that |Zk,s| =
(
k
s

)
. Using Stirling’s approximation for binomial coefficients3, we get

log
|Z|
Nmax
s/2

≥ log

(
k
s

)(
s
s/2

)(k−s/2
s/2

)≥ log

(
k
s

)s
(2e)s/2

(
(2k−s)e

s

)s/2 ≥ log

(
k
s

)s
(2e)s/2

(
(2k)e
s

)s/2 =
s

2
log

(
k

4e2s

)
,

which is at least s8 log k
s when s ≤ k/100.

3. Sparse estimation under communication constraints

We now prove guarantees of Theorem 2 and establish upper and lower bounds for communication
constrained sparse discrete distribution estimation. In Section 3.1, we propose an algorithm that
requires public randomness with sample complexity given in Theorem 2. Designing a private-coin
protocol for estimation is an open question. In Section 3.2 we establish the lower bounds.

3.1. Upper bounds under communication constraints

Note that the sample complexity upper bound in Theorem 2 has min
{

2`, s
}

, which equals s when
` ≥ log s. We therefore only consider ` ≤ log s since if ` > log s, we can just use log s bits and get
the same bound.

Our first step is to use public randomness to design hash functions at the users. A randomized
mapping h : [k]→ [2`] is a random hash function if ∀x ∈ [k], y ∈ [2`],

Pr (h(x) = y) =
1

2`
.

The scheme. Let h1, . . . , hn be n independent hash functions, available at the users and at the
server. User i’s ` bit output is Yi = hi(Xi) ∈ [2`]. The probability of x ∈ [k] being in the preimage
of user i’s message Yi is,

Pr (Yi = hi(x)) = p(x) + (1− p(x))
1

2`
= p(x)

(
1− 1

2`

)
+

1

2`
=: b(x). (13)

The estimator. Upon receiving messages Y1, . . . , Yn, the estimator is as follows,
1. The first n/2 messages are used to obtain a set T ⊆ [k] with |T | = O(s) such that with high

probability p(T ) > 1− α/2.
2. With the remaining messages we estimate p(x) for x ∈ T .

3. For 1 ≤ s ≤ k, we have
(
k
s

)s ≤ (k
s

)
≤
(
ke
s

)s.
10
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We now describe and analyze the two steps.
Step 1. Let Y1, . . . , Yn/2 be the first n/2 messages, where Yi = hi(Xi). For x = 1, . . . , k, let

M(x) := |{i : hi(x) = Yi, 1 ≤ i ≤ n/2}|

be the number of these messages in the first half whose preimage x belongs to. Let T ⊆ [k] be
the set of symbols with the largest |T | = 2s values of M(x)’s. If p(x) is large we expect M(x) to
be large. In particular, we show that for sufficiently large n, the probability of symbols not in T is
small.

Lemma 7 There is a constant C1 such that for n = C1 · s2 log(k/s)/(α2 min{2`, s}) with proba-
bility at least 0.95, p(T ) :=

∑
x∈T p(x) ≥ 1− α/2.

Step 2. For x = 1, . . . , k, let N(x) := |{i : hi(x) = Yi, n/2 < i ≤ n}| be the number of messages
in the second half such that x belongs to the preimage of Yi. Our final estimator is given by

p̂(x) =

{
(2`N(x)/(n/2))−1

2`−1 , if x ∈ T
0, otherwise.

(14)

The following lemma shows that p̂ converges to p over T .

Lemma 8 There is a constant C2 such that for n = C2 · s2/(α2 min{2`, s}) with probability at
least 0.95, ∑

x∈T
|p̂(x)− p(x)| ≤ α

2
.

Combining Lemma 7 and Lemma 8, by the union bound we get that with n samples, with
probability at least 0.9, ‖p̂− p‖1 ≤ α, establishing upper bound of Theorem 2.

3.2. Lower bounds under communication constraints

We now prove the sample complexity lower bound in Theorem 2. The first term of Ω( s2

α2 min{2`,s})

follows from (2) and holds even with the knowledge of the support S.
We prove the second term by considering the construction Pk,s as in Section 2.2, and bound (9).

The lower bound on log(|Z|/Nmax
t ) is the same as from Lemma 6. Analogous to Lemma 5, we

will now bound the mutual information I(Z;Y n) by O(nα2`/s) as follows. As in (12), we have
the following bound

I(Z;Y n) ≤ n · max
W∈W`

∑
y

EZ
[(∑k

x=1(pZ(x)− p0(x))W (y | x)
)2]

EX∼p0 [W (y | X)]
, (15)

11
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and we now bound it for each y ∈ [2`]. Similar to the expansion in proving the LDP lower bounds,
we have

EZ

(∑
x

(pZ(x)− p0(x))W (y | x)

)2


= 64α2EZ

[∑
x1,x2

(
1

k2
− Zx1 + Zx2

sk
+
Zx1Zx2
s2

)
W (y | x1)W (y | x2)

]

= 64α2
k∑
x=1

(
1

sk
− 1

k2

)
W (y | x)2 + 64α2

∑
x1 6=x2

(
− 1

k2
+

s− 1

sk(k − 1)

)
W (y | x1)W (y | x2)

≤ 64α2
k∑
x=1

(
1

sk
− 1

k2

)
W (y | x)2.

Note that EX∼p0 [W (y | X)] = (1− 8α)W (y | 0) +
∑k

x=1
8α
k W (y | x). Hence,

EZ
[
χ2(pWZ , p

W
0 )
]
≤64α2

∑
y

(∑k
x=1

(
1
sk −

1
k2

)
W (y | x)2

)
(1− 8α)W (y | 0) +

∑k
x=1

8α
k W (y | x)

≤ 64α2

(
1

sk
− 1

k2

)∑
y

(∑k
x=1W (y | x)2

)
∑k

x=1
8α
k W (y | x)

≤ 8α

s

∑
y

∑k
x=1W (y | x)2∑k
x=1W (y | x)

≤ 8α

s
2`,

where we used that W (y|x)2 ≤W (y|x), proving the lower bound.

4. Experiments

To verify our bounds, we evaluate our algorithms on sythetic datasets. We fix the support size
k = 5000 and draw the data from distributions uniform over a subset with size s which takes values
in 2i, i = 1, . . . , 12.

For LDP, we set ε = 0.5, 0.9 and draw n = 3 × 106 samples. For communication, we set
` = 1, . . . , 7 and n = 400000. The estimation errors in dTV with respect to sparsity s are shown
in Figure 2. In both experiments, we observe significant increase in accuracy when the sparsity
decreases. And in both experiments, we observe that under the same sparsity, larger ε (LDP) or `
(communication) leads to a better utility, which is consistent with our theoretical analysis.

Moreover, for LDP we compare the Hadamard Response algorithm with sparse projection (exact
procedures in Algorithm 1) and regular projection (projecting onto4k instead of4k,s in Step 7 of
Algorithm 1). The results show that sparse projection, which needs the knowledge of s, leads to a
significant improvement in utility. Straightforward modifications of our proof shows that projecting
onto 4k, which doesn’t need to know s in advance, will lead to a risk bound of O(s

√
log k/

√
n)

12
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Figure 2: Estimation errors of the proposed algorithms under different support sizes. Left: LDP
(comparing regular and sparse projections); Right: communication constraints.

instead of O(s
√

log(k/s)/
√
n) in Theorem 1. Whether this gap is inevitable is an interesting

direction to explore.
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Appendix A. Proof of Lemma 3

We will use the following bound on the covering number of s-sparse vectors.

Claim 2 (Raskutti et al. (2011)) Let S(r, 2s) = {ξ ∈ Rk : ‖ξ‖2 ≤ r, ‖ξ‖0 ≤ 2s}. There exists a
ρr-covering (in `2) Cr ⊂ S(r, 2s) of S(r, 2s) with size

|Cr| = N(S(r, 2s), ρr) ≤
(
k

2s

)(
1

ρ

)2s

.

The bound follows from the fact that
(
k
2s

)
2s-dimensional subspaces are sufficient to cover S(r, 2s),

and each subspace can be covered with (1/ρ)2s `2 balls of radius ρr.
Let C1 be a ρ-covering of S(1, 2s) with size N(S(1, 2r), ρ). Let r = ‖p̂− p‖2, then p̂ − p ∈

S(r, 2s), and one can obtain a covering Cr of S(r, 2s) by multiplying each vector in C1 by r. Since
p̂− p is 2s-sparse, let ξ∗ be the closest point in Cr to p̂− p. Then we can bound the right hand side
of (5).

〈p̃− p, p̂− p〉 ≤ |〈p̃− p, ξ∗〉|+ |〈p̃− p, p̂− p− ξ∗〉|
≤ max

ξ∈Cr
|〈p̃− p, ξ〉|+ ρr ‖p̃− p‖2

= rmax
ξ∈Cr
|〈p̃− p, ξ/r〉|+ ρr ‖p̃− p‖2

= rmax
ξ∈C1
|〈p̃− p, ξ〉|+ ρr ‖p̃− p‖2 .

p̃− p is the first k entries of p̃K − pK , and by Claim 1, we have

p̃K − pK =
2(eε + 1)

K(eε − 1)
HK(t̂− t).

Note that in Algorithm 1, ∀j ∈ [K], t̂j is the average of |Sj | ≥ K/(2n) i.i.d. Bernoulli random
variables with the mean satisfying E

[
t̂
]

= t. Hence ∀j ∈ [K], t̂j − tj is a zero-mean sub-Gaussian
random variable with variance proxy at most K

2n . Moreover, t̂j’s are independent since Sj’s are
disjoint. Note for all ∀ξ ∈ C1,

〈p̃K − pK , ξ〉 =
2(eε + 1)

K(eε − 1)
ξTHK(t̂− t),

16
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which are linear combinations of (t̂j − tj)’s. Since p̃ − p is the first k entries of p̃K − pK , we
have ∀ξ ∈ C1, 〈p̃− p, ξ〉 is also sub-Gaussian (see Corollary 1.7 in Rigollet and Hütter (2015)) with
variance proxy at most

K

2n

∥∥∥∥ 2(eε + 1)

K(eε − 1)
ξTHK

∥∥∥∥2
2

=
2

nK

(
eε + 1

eε − 1

)2 ∥∥ξTHK

∥∥2
2

=
2

n

(
eε + 1

eε − 1

)2

‖ξ‖22 (16)

≤ 2

n

(
eε + 1

eε − 1

)2

=: σ2,

where (16) follows since HT
mHm = mIk by the orthogonality of Hadamard matrices.

Therefore using maximal inequalties of sub-Gaussian random variables (Rigollet and Hütter,
2015, Theorem 1.14), with probability at least 19/20, we have

max
e∈C1
|〈p̃− p, ξ〉| < σ

√
14 log |C1|. (17)

By the utility guarantee of Hadamard Response (Acharya and Sun, 2019), with probability at least
19/20,

‖p̃− p‖22 ≤ 20E
[
‖p̃− p‖22

]
≤ 40k(eε + 1)2

n(eε − 1)2
=⇒ ‖p̃− p‖2 ≤ 7

eε + 1

eε − 1

√
k

n
. (18)

By union bound, conditioned on (17) and (18), which happens with probability at least 9/10,

〈p̃− p, p̂− p〉 ≤ eε + 1

eε − 1

r√
n

√
56 log |C1|+ 7ρr

eε + 1

eε − 1

√
k

n

≤ eε + 1

eε − 1

r√
n

√
112s log

(
ek

2s

)
+ 112s log

1

ρ
+ 7ρr

eε + 1

eε − 1

√
k

n
.

Taking ρ =
√

s
k ,

〈p̃− p, p̂− p〉 ≤ 25
eε + 1

eε − 1

r
√
s log(2k/s)√

n
= 25

eε + 1

eε − 1

√
s log(2k/s)√

n
‖p̂− p‖2 ,

concluding the proof.

Appendix B. Proof of Lemma 7 and Lemma 8

Proof [Proof of Lemma 7] M(x) is distributed as a Binomial Bin(n/2, b(x)). Hence, E [M(x)] =
n · b(x)/2. By (13) and (14) we have E [p̂(x)] = p(x). Using the variance formula of Binomials,
we know Var (M(x)) = n · b(x) · (1− b(x))/2 ≤ n · b(x)/2.

Set γ = 1 − 1/2` and β = 1/2`, then b(x) = γ · p(x) + β. We will use the following
multiplicative Chernoff bound.
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Lemma 9 (Multiplicative Chernoff bound (Mitzenmacher and Upfal, 2017)) Let Y1, . . . , Yn be
independent random variables with Yi ∈ 0, 1, and Y = Y1 + · · · + Yn, and µ = E [Y ]. Then for
τ > 0,

Pr (Y ≥ (1 + τ)µ) ≤ e−
τ2µ
2+τ , Pr (Y ≥ (1− τ)µ) ≤ e−

τ2µ
2 .

Let S := {x : p(x) > 0}. Therefore, for x ∈ [k] \ S, p(x) = 0. By Lemma 9,

Pr

(
M(x) ≥ n

2
β +

√
3nβ log

k

s

)
≤
( s
k

)2
.

Let E be the event that at most s symbols in [k] \ S appear at least M∗ := n
2β +

√
3nβ log k

s

times. By Markov’s inequality,

Pr (Ec) = Pr

(∣∣∣∣∣x ∈ [k] \ S : M(x) ≥ n

2
β +

√
3nβ log

k

s

∣∣∣∣∣ > s

)
≤ s

k
≤ 1

100
. (19)

We condition on E in the remainder of the proof. Note that it suffices to show

E [p(T c) | E] :=
∑
x

p(x) Pr (x not selected | E) ≤ α

50
, (20)

since if (20) is true, by Markov inequality,

Pr
(
p(T c) >

α

2

∣∣∣ E) ≤ 1

25
.

which, combined with (19), implies Lemma 7.
Next we prove (20). Conditioned on E, a symbol x is not selected after the first stage only if it

appears at most M∗ times, which implies Pr (x not selected | E) ≤ Pr (M(x) ≤M∗ | E). More-
over, since ∀x1 ∈ S, x2 /∈ S, M(x1) and M(x2) are independent, we have M(x1) is independent
of event E. Thus:

E [p(T c) | E] =
∑
x

p(x) Pr (x not selected | E) ≤
∑
x

p(x) Pr (M(x) ≤M∗).

Next we divide symbols into three sets based on their probability mass: A = {x ∈ [k] : p(x) ≤
α
60s}, B = {x ∈ [k] : α

60s < p(x) ≤ β/γ} and C = {x ∈ [k] : p(x) > β/γ}. For set A, we have:∑
x∈A

p(x) Pr (M(x) ≤M∗) ≤
∑
x∈A

p(x) ≤ α

60
. (21)

Next we bound the sum over set B and C. ∀x ∈ B ∪C, p(x) > α/60s. In the rest of the proof,
we set the constant C1 = 700000. For n = C1 · s2 log(k/s)/(α2 min{2`, s}),

n

4
γp(x)−

√
3nβ log

k

s
≥ 0.
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Hence,

E [M(x)−M∗] =
n

2
γp(x)−

√
3nβ log

k

s
≥ nγp(x)

4
,

Using Lemma 9,

Pr (M(x) ≤M∗) = Pr (M(x) ≤ E [M(x)]− (E [M(x)]−M∗))

≤ exp

(
−
(
γp(x)/2

γp(x) + β

)2 n

2
(γp(x) + β)

)

= exp

(
− γ2p(x)2n

8(γp(x) + β)

)
If x ∈ C, i.e., p(x) > β/γ, we have

Pr (M(x) ≤M∗) ≤ exp

(
−γ

2p(x)2n

16γp(x)

)
= exp

(
−γp(x)n

16

)
≤ 16

γp(x)n
≤ 16

nβ
≤ α

1000
,

where we use nβ > C1s
2 log(k/s)/(α222`) ≥ C1/α

2 when s ≥ 2`. This implies∑
x∈C

p(x) Pr (M(x) < M∗) ≤
∑
x∈A

p(x)
α

1000
≤ α

1000
. (22)

When x ∈ B, i.e, p(x) ≤ β/γ,

Pr (M(x) ≤M∗) ≤ exp

(
−γ

2p(x)2n

16β

)
.

Now let p(x) = (1 + ζx)α/60s where ζx > 0, we have

γ2p(x)2n

16β
≥ 2(1 + ζx)2 log

k

s
.

∑
x∈C

p(x) Pr (M(x) ≤M∗) ≤ α

60s

∑
x∈C

(1 + ζx) exp

(
−2(1 + ζx)2 log

k

s

)
≤ α

500
. (23)

Combining (21), (22) and (23), we get (20), and thus proving the lemma.

Proof [Proof of Lemma 8] Note that N(x) and M(x) are identically distributed, and therefore,
M(x) is distributed Bin(n/2, b(x)), and E [N(x)] = n · b(x)/2, and Var (N(x)) ≤ n · b(x)/2.

E
[
(p̂(x)− p(x))2

]
=

(
2 · 2`

n(2` − 1)

)2

· Var (N(x)) ≤ 2

n

(
2`

2` − 1

)2

b(x). (24)

Now, note that
∑

x∈T b(x) = p(T )(1− 1/2`) + |T |/2`, and therefore,

E
[∥∥p̂T − pT∥∥2

2

]
=
∑
x∈T

E
[
(p̂(x)− p(x))2

]
≤ 2

n

(
2`

2` − 1

)2∑
x∈T

b(x) ≤ 2(|T |+ 2`)2`

n(2` − 1)2
.
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Using Jensen’s inequality and Cauchy-Schwarz,

E
[∥∥p̂T − pT∥∥

1

]
≤
√
E
[
‖p̂T − pT ‖21

]
≤
√
|T | · E

[
‖p̂T − pT ‖22

]
≤

√
4s2`(2` + 2s)

n(2` − 1)2
.

Setting C2 = 6400, the lemma follows by Markov’s inequality.

Appendix C. An LDP estimation scheme using RAPPOR

We first describe the high level idea of the algorithm for LDP estimation. All users send their
privatized data using RAPPOR (Erlingsson et al., 2014; Kairouz et al., 2016). As in Section 3.1, we
use the first half of privatized samples to estimate a subset T ⊆ [k] with size O(s) which contains
most of the probability densities; we then use the remaining samples to estimate the distribution
only on this set T . Details are described in Algorithm 2.

Algorithm 2 Sparse estimation using RAPPOR
Input: n i.i.d. samples from unknown s-sparse p.

8 Each user randomizes its sample using RAPPOR: Each sample Xi is first mapped to a one-hot
vector Zi ∈ {0, 1}k which has a 1 at the Xi’th coordinate and 0’s elsewhere. Then each bit is
flipped independently with probability 1/(eε/2 + 1) to obtain Yi ∈ {0, 1}k

9 Compute M := [M(1), . . . ,M(k)] =
∑n/2

i=1 Yi using the first n2 samples.
10 Construct the set T ⊆ [n] by keeping the 2s symbols with highest M(x)’s.
11 Obtain p̂: estimate the distribution over T using the remaining n

2 samples.

We note that

E [M(x)] =
n

2

(
p(x)

eε − 1

eε + 1
+

1

eε + 1

)
,

which has a similar form as (13). Hence setting β = 1/(eε + 1) and γ = (eε− 1)/(eε + 1), we can
follow the steps in the communication constrained setting and obtain with probability at least 9/10,
dTV (p̂, p) ≤ α using

n = O

(
β
s2 log k

s

α2γ2

)
= O

(
s2 max{log(k/s), 1}

α2ε2

)
,

when ε = O(1).
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