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Abstract

We propose a randomized algorithm with
quadratic convergence rate for convex optimiza-
tion problems with a self-concordant, composite,
strongly convex objective function. Our method
is based on performing an approximate Newton
step using a random projection of the Hessian.
Our first contribution is to show that, at each iter-
ation, the embedding dimension (or sketch size)
can be as small as the effective dimension of the
Hessian matrix. Leveraging this novel fundamen-
tal result, we design an algorithm with a sketch
size proportional to the effective dimension and
which exhibits a quadratic rate of convergence.
This result dramatically improves on the classical
linear-quadratic convergence rates of state-of-the-
art sub-sampled Newton methods. However, in
most practical cases, the effective dimension is
not known beforehand, and this raises the ques-
tion of how to pick a sketch size as small as the
effective dimension while preserving a quadratic
convergence rate. Our second and main contri-
bution is thus to propose an adaptive sketch size
algorithm with quadratic convergence rate and
which does not require prior knowledge or estima-
tion of the effective dimension: at each iteration,
it starts with a small sketch size, and increases
it until quadratic progress is achieved. Impor-
tantly, we show that the embedding dimension
remains proportional to the effective dimension
throughout the entire path and that our method
achieves state-of-the-art computational complex-
ity for solving convex optimization programs with
a strongly convex component. We discuss and
illustrate applications to linear and quadratic pro-
gramming, as well as logistic regression and other
generalized linear models.
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1. Introduction

We consider a composite optimization problem of the form

¥ = argrﬂgin {f(@):= folz) +g(x)}, (1
zERY

where fy, g : R? — R are both closed, twice differentiable
convex functions. Here, we denote R : = R U {+00} and
by dom f the domain of f. We are interested in the struc-
tured setting where forming the Hessian matrix V2 f () is
prohibitively expensive, but we have available at small com-
putational cost a Hessian matrix square-root V2 fo(x)'/2,
that is, a matrix V2 fy(x)'/? of dimensions n x d such that
(V2 fo(z)/2) TV fo(x)V/? = V2 fy(x) for some integer
n > d, and n eventually very large. Moreover, we assume
the function g to be u-strongly convex, i.e., V2g(z) = ulq.

Large-scale optimization problems of this form are becom-
ing ever more common in applications, due to the increas-
ing dimensionality of data (e.g., genomics, medicine, high-
dimensional models). Typically, the function f; may repre-
sent an objective value we aim to minimize over a convex
set C C R?, that is, we aim to solve mingec fo (z). A com-
mon practice to turn this constrained optimization problem
into an unconstrained one is to add to the objective function
a penalty or barrier function g(z) which encodes C (e.g.,
logarithmic barrier functions for polyhedral constraints or
¢,-norm regularization for ¢,-ball constraints). In many
cases of practical interest, a matrix square-root V2 fo(x)'/?
can be computed efficiently. For instance, in the broad
context of empirical risk minimization, the function fj has
the separable form fo(z) = >"'" | ¢;(a; ) where the func-
tions ¢; are twice-differentiable and convex. In this case, a
suitable Hessian matrix square root is given by the n x d
matrix V2 fo(2)/? : = diag(¢/(a; x)'/?) A. On the other
hand, we assume that the Hessian of the function g is well-
structured, so that its computation is relatively cheap in
comparison to that of fy. For instance, if the constraint set
is the unit simplex (i.e., x > 0 and 1Tz < 1), then the
Hessian of the associated logarithmic barrier function is a
diagonal matrix plus a rank one matrix. Other examples
include problems for which g has a separable structure such
as typical regularizers for ill-posed inverse problems (e.g.,
graph regularization g(z) = Yijen(@i— z;)?, £,-norms
with p > 1 or approximations of /1-norm).
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Second-order methods such as the Newton’s method enjoy
superior convergence in both theory and practice compared
to first-order methods, that is, quadratic convergence rate
versus 1/T for accelerated gradient descent. A common is-
sue in first-order methods is the tuning of step size (Asi
& Duchi, 2019), whose optimal choice depends on the
strong convexity and smoothness of the underlying prob-
lem. In contrast, whenever the objective function f is self-
concordant, then Newton’s method has the appealing prop-
erty of being invariant to rescaling and coordinate transfor-
mations, is independent of problem-dependent parameters,
and thus needs little or no tuning of algorithmic hyperparam-
eters. More precisely, we recall that, given a current iterate
x, the standard Newton’s method computes the Hessian
matrix H () and the descent direction vy, defined as

H(z) : =V fo(z) + Vg(x), 2)
Ve i = —H(x) 'V f(z). 3)

Given a step size s > 0, it then uses the update
Tpe : = T + S VUpe - @)

Despite these advantages, Newton’s method requires, at
each iteration, forming and solving the high-dimensional
linear system H (z)vne = —V f(x), which has complexity
scaling as O(nd?), and this becomes prohibitive in large-
scale settings. To address this numerical challenge, a multi-
tude of different approximations to Newton’s method have
been proposed in the literature. Quasi-Newton methods (e.g,
DFP, BFGS and their limited memory versions (Nocedal
& Wright, 2006)) are computationally cheaper, but their
convergence guarantees require stronger assumptions and
are typically much weaker than those of Newtons’s method.
On the other hand, random projections are an effective way
of performing dimensionality reduction (Vempala, 2005;
Mahoney, 2011; Drineas & Mahoney, 2016), and many
random projection (or sketching) based algorithms were
designed to reduce the cost of solving the linear Newton sys-
tem. For instance, the respective methods in (Gower et al.,
2019) and (Lacotte et al., 2019) embed the optimization vari-
able into a lower dimensional subspace, so that solving the
Newton system becomes cheaper; (Qu et al., 2016) propose
to solve an approximate Newton system based on random
principal sub-matrices of a global upper bound on the Hes-
sian; (Doikov & Richtérik, 2018) address a common setting,
that of block-separable convex optimization problems, and
propose a method combining the ideas of randomized co-
ordinate descent with cubic regularization (Nesterov, 2012;
Nesterov & Polyak, 2006).

Our work builds specifically on a generic method, that is,
the Newton sketch (Pilanci & Wainwright, 2017), which
is based on a structured random embedding of the Hessian
matrix H(x). Formally, given a sketch size m such that

m < n and an embedding matrix S € R"™*"™ to be pre-
cised, the Newton sketch computes the approximate Hessian
Hg(x) and the approximate descent direction v,¢y defined
as

Hs(z) 1= (V2 fo(2)2) TSTSV2fo(2)? + V3g(z), (5)
Unsk = —Hg(x)_1Vf(as). (6)

Given a step size s > 0, it then uses the update
Tnsk ' = & + S Unsk - (7)

For classical embeddings (e.g., sub-Gaussian, randomized
orthogonal systems), it has been shown by (Pilanci & Wain-
wright, 2017) that, in general, a sketch size m < d is suf-
ficient for the Newton sketch to achieve a linear-quadratic
convergence rate with high probability (w.h.p.).

Contributions. Our first key contribution is to show that,
under the assumption that g is p-strongly convex, the scal-
ing m =< d,, log(d,,)/¢ is sufficient for the Newton sketch
to achieve a §-accurate solution at a quadratic convergence
rate with high probability. More generally, we show that
convergence is geometric provided that m scales appropri-
ately in terms of d,,. Here, the critical quantity d,, is the
effective (Hessian) dimension, defined as

d, := sup d,(x), (8)

z€S (o)

where x is the initial point of our algorithm, S(x¢) is the
sublevel set of f at x, and

dy, () : = trace(V? fo (2)(V? fol(z) + pla) ") (9)

is the local effective dimension. Importantly, it always
holds that d,, (z) < d,, < min{n, d} = d. In many applica-
tions, the effective dimension is substantially smaller than
the ambient dimension d (Bach, 2013; Alaoui & Mahoney,
2015; Yang et al., 2017). However, in order to pick m in
terms of au which is usually unknown and then achieve
computational and memory space savings, it is necessary to
estimate d,,. There exist randomized techniques for precise
estimation of d,(z), but they provably work under strin-
gent assumptions, e.g., d,, (x) very small (e.g., see Theorem
60 in (Avron et al., 2017)). In the context of ridge regres-
sion, (Lacotte & Pilanci, 2020) proposed a sketching-based
method with adaptive (time-varying) sketch size scaling as
the effective dimension, and without prior knowledge or
estimation of it. Starting with a small sketch size, it checks
at each iteration whether enough progress is achieved by
the update. If not, it doubles the sketch size. The time and
memory complexities of this method to return a certified
d-accurate solution w.h.p. scale in terms of the effective
dimension, i.e., it takes time O(ndlog®(d,,) log(d/§)) with
a sketch size m < d,, log(d,,) for large values of n. This
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significantly improves on usual standard randomized pre-
conditioning methods (Rokhlin & Tygert, 2008; Avron et al.,
2010; Meng et al., 2014) which require m 2 d.

In a vein similar to this adaptive ridge regression solver, our
second key contribution is to propose an adaptive sketch
size version of the effective dimension Newton sketch. Im-
portantly, we prove that the adaptive sketch size scales in
terms of Eu. Furthermore, our adaptive method offers the
possibility to the user to choose the convergence rate, from
linear to quadratic.

Other related works. Recent studies in the literature on
randomized second-order and Sub-sampled Newton meth-
ods (Byrd et al., 2011; Bollapragada et al., 2019; Roosta-
Khorasani & Mahoney, 2019; Berahas et al., 2020) show
that picking an embedding dimension proportional to d and
possibly smaller than d under certain conditions do work em-
pirically in many settings (Xu et al., 2016; 2020; Wang et al.,
2018). The recent work by (Li et al., 2020) provides a more
precise understanding of these phenomena. In the context
of empirical risk minimization with ¢3-regularization, they
show that the subsampled Newton method with m = Eu
data points is enough to guarantee convergence. However,
differently from our work, their method needs to estimate
the effective dimension at each iteration. Furthermore, their
convergence guarantees severely depend on the condition
number of the problem (e.g., see their Theorems 1 and 2),
whereas our results are independent of condition numbers
and only involve the relevant dimensions of the problem
(n,d, Eu) and the target accuracy. Besides effective dimen-
sion based sampling, sketching-based methods are used in
the context of distributed optimization where due to strin-
gent memory and/or communication constraints, reducing
the number of iterations and/or the size of second-order
information is critical (Shamir et al., 2014; Derezinski et al.,
2020; Bartan & Pilanci, 2020).

1.1. Notations and background

A closed convex function ¢ : RY — R is self-concordant
if [ (2)| < 2(¢"(x))?/2. This definition extends to a
closed convex function f : R? — R by imposing this re-
quirement on the univariate functions ¢, ,(¢) : = f(z +ty)
for all choices of x, y in the domain of f. Self-concordance
is a typical assumption for the analysis of the classical
Newton’s method, in order to obtain convergence results
which are independent of unknown problem parameters
(e.g., strong convexity, smoothness or Lipschitz constants;
see the books by (Nesterov, 2003) or (Boyd & Vanden-
berghe, 2004) for further background), and this encom-
passes many widely used functions in practice, e.g., lin-
ear, quadratic, negative logarithm. Hence, in this work, we
assume that fy and g are self-concordant functions.

The choice of the sketching matrix S € R™*"™ is critical

for statistical and computational performances. The well-
structured subsampled randomized Hadamard transform
(SRHT) (Ailon & Chazelle, 2006) usually serves as a refer-
ence for comparing sketching algorithms thanks to its strong
subspace embedding properties (Mahoney, 2011; Drineas &
Mahoney, 2016; Dobriban & Liu, 2019; Lacotte et al., 2020)
and fast sketching time O(ndlog m) compared to the clas-
sical sketching cost O(ndm) of sub-Gaussian embeddings.
Another typical choice is the sparse Johnson-Lindenstrauss
transform (SJLT) (Nelson & Nguyén, 2013; Woodruff et al.,
2014) with, for instance, one non-zero entry per column.
With A € R"*4_a sketch SA is then much faster to com-
pute (it takes time O(nnz(A))) at the expense of weaker
subspace embedding properties.

1.2. Organization of the paper

In Section 2, we introduce critical quantities and prelimi-
nary results for both the implementation of our algorithms
and their analysis. We show that the approximate Newton
direction v, is close to the exact one vy,e, provided that the
sketch size scales in terms of E;r In Section 3, we formally
introduce our (non-adaptive) effective dimension Newton
sketch algorithm (see Algorithm 1), and we present several
relevant applications. Assuming knowledge of E#, we prove
that its convergence rate is geometric. In Section 4, we intro-
duce an adaptive version of Algorithm 1 (see Algorithm 2):
importantly, it does not require knowledge of Eﬂ, but still
guarantees geometric convergence as well as low memory
complexity in terms of d,,. We summarize our complexity
guarantees in Table 1 and compare to standard first- and
second-order methods and to the original Newton sketch
algorithm (Pilanci & Wainwright, 2017) whose implementa-
tion and guarantees are agnostic to the effective dimension
of the problem. Finally, we show in Section 5 the empir-
ical benefits of our adaptive method, compared to several
standard optimization baselines.

2. Preliminaries

Critical to our algorithms and their analysis are the Newton
and approximate Newton decrements, defined as

M) = (V@) H@) V@), (10)
N(2) = (V) He(z) 'V F(@) 2 . (1)

Importantly, for a self-concordant function f, the optimality
gap at any point x € dom f is bounded in terms of the
Newton decrement as

flx) = f(@%) < Ap(x)?. (12)

Due to the expensive cost of computing the Newton decre-
ment \s(x) as opposed to A¢(x), we will aim to charac-
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terize, w.h.p. over the randomness of the sketching matrix,
similar optimality bounds and properties with A ().

Given x € dom f, a sketch size m > 1, a random embed-
ding S € R™*? and a sampling precision parameter ¢ > 0,
we consider the following probability event which is critical
to our convergence guarantees,

Eome i ={(1= L= Cs <1+ DL}, (3)

where Cs := H :HgH 2, H = H(xz) and Hs =
Hg(z). In words, when &, ., . holds true, the matrix
H~Y2HgH~'/? is a close approximation of the identity,
ie, H"Y2HgH Y2 ~ H-Y2HH~'/2 = ],. The next
result bounds the probability for this event to hold for differ-
ent choices of the sketching matrix.

Lemma 1. Let ¢ € (0,1/4) and p € (0,1/2). It holds that
P(&ze,m) = 1 — p, provided that m = Q(d#(x)z/(s2p))
for the SILT with single nonzero element in each column,

and, m = Q((d,(x) + log(1/ep)log(d,.(x)/p))/*) for
the SRHT.

We show next that conditional on &, ,, ., the approximate

Newton decrement 7(z) is close to Ay (z), as well as the
approximate Newton direction v,si to the exact one vye.

Theorem 1 (Closeness of Newton decrements). Let € €
(0,1/4). Conditional on the event &, ,, , it holds that

[vne — Vnskll 2 (2) < € [|Vnell F(z) 5 (14)

VI—edf(z) < f(:v)\\/l—i—a)\f(x). (15)

Given ¢ € (0,1/4), we introduce positive parameters a, b
1—e

line-search (see Algorithm 1 for details). Furthermore, we
define the parameters

2
such that 1 — % (m) > a, which we use for backtracking

1 1, 14¢.2 1+e3
mi=g -5 — /=)
2
n
V::ab]_—i-T

The next results aim to describe the empirical behavior of
our methods. As for the classical Newton’s method, we
distinguish two phases. The algorithm follows a first phase
with constant additive decrease in objective value. In a
second phase, it converges faster, i.e., the Newton decrement
converges to zero at a geometric rate up to quadratic for an
appropriate choice of the hyperparameters.

Lemma 2 (First phase decrement). Let ¢ € (0,1/4). Sup-

pose that &, ., - holds true and that \y(x) > n. Then, we
have that

fznsk) — fz) < —v. (16)

We introduce the following numerical function which will
prove to be useful to characterize the rate of convergence of
our algorithms,
167
=0.57+ — 17

a(r) i =057+ . a7
It is easy to verify that a(7)'/7 < 2 for 7 € (0,1] and
a(0) < 35
Lemma 3 (Second phase decrement). Let x € dom f,
7 € [0,1] and e € (0,1/4). Set ¢’ = ¢ min{l, A¢(z)"}.
We assume that the event &, r, o holds and that \¢(z) < 1.
Then, we have

Af (Znsi) < () Ap ()7 (18)

Consequently, the progress is geometric for any T € (0, 1],
ie.,

CY(T)l/T Af(@nsk) < (CY(T)l/T )\f(x))HT ) (19)

On the other hand, the progress is linear for 7 = 0, i.e.,

Af (Tnsk) < >‘f( ). (20)

We conclude this section with a simple technical lemma
which characterizes a sufficient number of iterations before
termination, under geometric convergence.

Lemma 4 (Geometric convergence and sufficient iteration
number). Leté € (0,1), « > 0, 7 € (0,1], and {B¢ }1>0 be
a sequence of positive numbers such that By < 1, na'/™ <
L Vo™ < 1and aV/7Bypq < (7B forall t > 0.
Then, it holds that B; < \/ngr anyt > Ty o s where

7 log(1/6)
1 L+ Syoei/a) 1. @

— = _log | —=22/Y
log(1+7) "%\ 14 7lel/n

TT,a,6 L= [

Throughout this work, we will use the shorthand
T‘r,5 = T‘r,a(T),6 . (22)

Note in particular that T s = O(log(7log(1/0))) for small

0. Further, it holds that lim, o 7.5 < [ofsz/1% ], which
corresponds to the classical complexity of linear conver-

gence with rate 16/25.

3. Effective dimension Newton sketch

We formally introduce our effective dimension Newton
sketch method in Algorithm 1. Algorithm 1 takes as in-
puts the phase 1 and phase 2 sketch sizes m; and m,. As
we will see in Theorem 2, sufficient values for 77; and 779
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Algorithm 1 Effective dimension Newton sketch
Require: Initial point ¢y € domf, threshold sketch sizes
M1 and Mo, initial sketch size mg = 74, line-search
parameters (a, b), target accuracy 6 > 0, convergence
rate parameter 7 € [0, 1] and sampling precision param-
etere =1 / 8.
1: fort =0,... do
2: Sample an my x n embedding S; independent of
{S; } Compute Unsk and h\ 7(z;) based on S;.
3. if Xf(xt) 1(5 then return z;.
4:  Starting at s = 1: while f(x: + svngk) > f(z) +
asVf(xs) Tvnsk, 5 < bs.
5:  Update z¢4+1 < 2 + S Unsk-
If Ap(ay) > 1, set myp1 = .
mi41 = mo.
7: end for

Otherwise, set

to guarantee convergence both depend on the effective di-
mension Eu' Here and only for Algorithm 1, we make the
idealized assumption that the quantity d,, is known. In con-
trast, we introduce in Section 4 an adaptive method that
does not require knowledge of Eu'

Theorem 2 (Geometric convergence guarantees of the New-
ton sketch). Let T € [0,1], 0 € (0,1/2) and py € (0,1/2).
Set ¢ = 1/8. Then, the total number of iterations Ty and
the total time complexity C for obtaining a d-approximate
solution T in function value (i.e., f(T) — f(z*) < J) via
Algorithm 1 satisfy

T T M+TT%5+1’ (23)
v :
C= (’)( 2d 4+ ndlog mg) T, (24)
with probability at least 1 - provided that
o2 de log( )1 g(d ) and Wy 2

5T <Eu + log( 5,/2 for the SRHT, whereas
o

. __ T
for the SJILT, it is sufficient to have m; 2 o and
&T
™Mo >

N67'

We draw some immediate consequences of Theorem 2,

which will be useful for further discussions and compar-

isons of our complexity guarantees in Section 4.1. With the

SRHT, consider the quadratic convergence case, i.e, 7 = 1.

We pick a failure probability pg = f, and sketch sizes
dy

my = du and My < M. We observe quadratic con-
vergence with Ty = O(loglog(3)) iterations. Further, as-
suming that the sample size n is large enough for the sketch-
ing cost O(ndlog ) to dominate the cost O(m 2d) of solv-

d° log(d, /6
ing the randomized Newton system, i.e., n 2> %“/),

then the total complexity results in

C= (’)(ndlog (

o &

2) log 10g(6)) (25)

Similarly, we consider the linear conxergence case, i.e.,
7 = 0. For simplicity, suppose that d,, 2 loglog(1/d).
We pick pg < = , and sketch sizes m; < mg = d We

observe linear convergence with Ty = O(log 5) iterations.
Assuming again that the sample size n is large enough for
the sketching cost to dominate the cost of solving the ran-

domized Newton system, i.e., n 2 Ei / log(au), we obtain

the total time complexity

C= O(ndlog(du) log(§)> . (26)

We proceed with a similar discussion for the SJLT at the
end of the proof of Theorem 2 deferred to the Appendix.

3.1. Some applications of the effective dimension
Newton sketch

We discuss various concrete instantiations of the optimiza-
tion problem (1) where the function g satisfies u-strong
convexity and for which forming the partially sketched Hes-
sian Hg(x) is amenable to fast computation.

Example 1 (Ridge regression). We consider the optimiza-
tion problem

1
in { ) := 3142 3+ Sl @7

zERC

where A € R™*? with n > d and whose solution is given
in closed-form by z* = (ATA + uly) "L ATb. Direct meth-
ods yield the exact solution in time O(nd?), whereas first-
order methods (e.g., conjugate gradient method) yield an §-
approximate solution in time O(\/rkndlog(1/9)), where k
is the condition number of A. Randomized pre-conditioning
and sketching methods can improve on this complexity (see
Section 4.1 for further details). Here, our setting for the
Newton sketch applies with fo(z) = 3||Az — b||3 (whose
square-root Hessian is A) and g(x) = 5|z|3 which is
u-strongly convex.

Example 2 (Portfolio optimization). The optimization prob-
lem takes the form

min { fo(x)

T

sso g : rz+ax, Em)} , (28)
where . = AT A is an empirical covariance matrix
based on the data A € R with n > d. Us-
ing the barrier method, we need to solve its penal-
ized version min,cra{fo(x) + g(x)}, where g(x) :=
—l Z?:l log(z;) — plog(1 — (1,2)). We clearly have
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the Hessian square-root V? fo(x)'/? = \/aA. Further, g
is p-strongly convex over its domain: indeed, note that for
0 < x; < 1, the Hessian of g is pdiag(z?)™' + 11" and
the first term satisfies p diag(x?) ™1 = ply.

Example 3 (Solving Lasso via its dual). Given A € R"*¢
with d >> n, the dual Lasso problem takes the form

1 2
m ——ly - . 29
|AT$?§<A{ 511y mllz} (29)

Applying the logarithmic barrier method, one needs to solve
a sequence of problems of the form mingcg-{ fo(x)+g(z)}
where g(z) 1= Y|y — |3, fo(z) := — Z;lzl log(\ —
(a;,z)) — E?Zl log(A+ (aj, x)) and a; is the j-th column
of A. This form is amenable to the Newton sketch: a square-
root of V2 fo(x) is given by V2 fo(x)'/? = diag(|\ —
{aj,z) |7V + X+ (aj,z) |7') AT, and the function g(x)
is p-strongly convex.

Example 4 (Regularized logistic regression with n > d).
We consider data points {(a;, y;) }I_, where each a; is a d-
dimensional feature vector with binary response y; € {£1}.
We aim to find a linear classifier through regularized logistic
regression, that is,

RS CpeaTa) L B
min {;log(l—l-e yia] )+2||z|§} . (30)

Setting fo(z) = >0, log(lJre*yiaiTz) and g(x) =
£lz||3, we have that V2fo(x)z = diag(h)A where the

i-th coefficient of h € R™ is given by h; = M More

Teviti =
generally, empirical risk minimization with generalized lin-
ear models yields a Hessian square-root of the form 'diago-
nal times data matrix A’.

Example 5 (Projection onto polyhedra). Given v € RY,
A € R withn > dand b € R™ such that there ex-
ists xo € RY that satisfies Azg < b, we aim to solve the
optimization problem
min }Hx —ol3, st Ar<b 31
min 2 5, St <b.
Applying a barrier method, one needs to solve a sequence
of optimization problems of the form min,, fo(x) + g(z),
where fo(z) := —Y_1"_, log(b;—a; x) and g(z) = &||z—
v||3. Clearly, g is u-strongly convex, and a square-root of
V2 fo(x) is given by diag(|b; — a] x| 1) A

4. Adaptive Newton Sketch with effective

dimensionality

We turn to the adaptive version of Algorithm 1, which starts
with small sketch size and does not require knowledge or

estimation of the effective dimension Eu. Importantly, our
method is guaranteed to converge at a tunable geometric
rate, and with a sketch size scaling in terms of d,.

For7 € [0,1] and € € (0,1/4), we set

(1+¢)

m O[(T) s (32)

a(r,e) =

and we will consider in this section the sufficient number of
iterations T". ,(, .y s as defined in Lemma 4 for ov = a(r,e).
Our adaptlve method is formally described in Algorithm 2.
It starts each iteration by checking whether pzy) > .
If so, assuming the sketch size m, large enough, we have
w.h.p. by Lemma 2 that f(zpe) — f(z) < —v and we
set ;41 = xusk. Otherwise, if Xf(art) < 7, we have
w.h.p. by Lemma 3 a condition similar to h\ f(znsk) <
a(r, s)(Xf(xt))”T, in which case we set ;11 = Tpg.
If none of the above events happen, we increase the sketch
size by a factor 2. On the other hand, if the sketch size is
not large enough for the guarantees of Lemmas 2 and 3 to
hold w.h.p., then either the algorithm terminates with a po-
tentially small sketch size, or, the sketch size must at some
point become large enough due to the doubling trick.

Note that if Algorithm 2 terminates, then it returns an iterate
a such that X f(x)? < g. We prove next (see Lemma 5)
that this termination condition implies the d-approximation
guarantee, i.e., f(z) — f(z*) < § w.h.p., provided that the
initial sketch size is large enough, and regardless of the final
sketch size.

Lemma 5 (Termination condition). Let 6 € (0,1/2) and
p € (0,1/2), and suppose that Algorithm 2 returns x. Then,
it holds that f(x) — f(x*) < 0 with probability at least
1 — p provided that mo > log®(1/p) for the SRHT, and,

~

mo 2, 1/p for the SILT.

4.1. Time and memory space complexity guarantees

For conciseness, we present a succinct version of our com-
plexity guarantees for the adaptive Newton sketch (only for
the linear rate 7 = 0 and for the quadratic rate 7 = 1). A
more general statement for any 7 € [0, 1] can be found in
the proof of Theorem 3.

Theorem 3 (Geometric convergence guarantees of the adap-
tive Newton sketch). Ler 7 € [0,1], po € (0,1/2) and
d € (0,1/2). Let T be an initial sketch size. Then, it holds
with probability at least 1 — pqg that Algorithm 2 returns
a d-approximate solution T in function value (i.e., f(ZT) —

f(z*) < 6)inless than T = O(TT’Q(T’E)’% log@#)> itera-
tions, with final sketch size bounded by 2™ and with total

time complexity C. The values of T, T and C depend on
the choice S as follows.

(SRHT). For T = 1 (quadratic rate), picking po =< 5
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Algorithm 2 Adaptive effective dimension Newton sketch

Require: Initial point 2y € domf, initial sketch size
mo = Mo, line-search parameters (a, b), target accu-
racy 6 € (0,1/2), convergence rate parameter 7 €
[0, 1] and sampling precision parameter € = 1/8.

1: fort=0,... do

2:  Sample S; € R™*" independent of S;_1, ..., So.
3:  Compute vy, and A #(z¢) based on S;.
4 if Ap(,)? < 9 then return z;.
5. Find step size s with backtracking line search, and
Set Tngk = Tt + SUnsk-
6: if Ag(z;) > n then
7: if f(2nsk) — f(z) < —v then
8: Set Tt4+1 = Tnsk and M1 = My.
9: else
10: Set Tl = Tt and Mey1 = 2My.
11: end if
12:  else
13: Sample ST € R™*" independent of Sy, . . ., Sp.
14: Compute v+ = —HglVf(acnSk) and Xf (Tnsk) =
(—(V f(@nsk), v)) 2.
15: if A (znsk) < a(7,e)(Af(24))' "™ then
16: Set Ty 1 = Tngk, Miy1 = My, Unek = vT and
go to step 4.
17: else
18: Set Ti41 = T and miy1 = th.
19: end if
20:  end if
21: end for

252
and assuming n large enough such that n 2 d(;—z“, we
have Ty =< dlog(4), m = 4(d, + log(%)log(d,)).
T = O(log(d,,) loglog(d/d)) and

6:0@m%@@bgwﬁby%ww0. (33)

For 7 = 0 (linear rate), picking py < 1/8u and assuming
—52
n large enough such that n 2, logd(% 5
"

log?(d/$), m =< d,, T = O(log(d,,) log(d/s)) and

we have Mgy =

ézo@m%%@ﬂ%uwo. (34)

(SJLT). For T = 1 (quadratic rate), assuming n large
Eidz log(log(d/8))?

52p2 ’
dd;, log(log(d/5))

enough such that n 2 we have

Mo = leslosw/n g o Tlestest/o) o _
O(log(d,,)loglog(d/é)) and
C = O(nd log(d,) log(log(d/d)))) . (35)

For 7 = 0 (linear rate), assuming n large enough such that

-4 9 —2

d’, log(d/s : d’ log(d/s
n > Wl e have Ty < 108D g o duloB(/0)
~ Po Po Po

s

T = O(log(d,,)log(d/d)) and
C = O(nd log(d,) log(d/é))) . (36)

Note that adaptivity with convergence rate parameter 7
comes at the cost of an additional d” factor for the final
sketch size, compared to Algorithm 1. This is essentially
due to our exit condition threshold ¢ /d that we choose for
the following reason. For small m 2 1, the approximate
Newton decrement X?(m) may fluctuate around A% (x) by
a factor up to d, (see Theorem 1 in (Cohen et al., 2015)).
In this case, the exit condition As(z;)2 ~ & would result
in f(z¢) — f(2*) ~ §d,. To guarantee §-accuracy, it is
sufficient to use the termination condition 6/d,, to account
for these fluctuations. As Eu is unknown, we choose to
divide instead by d.

We summarize our complexity guarantees in Table 1.
In contrast to gradient descent (GD), Nesterov’s accel-
erated gradient descent (NAG) and Newton’s method
(NE), our time complexity has no condition number de-
pendency and scales linearly in nd up to log-factors,
and so does the original Newton sketch (NS). The
NS log-factor is at least log(d)log(1/0) whereas our
SRHT-quadratic mode adaptive method has a log-factor

log(d,,) log(d/d)log(log(d/d)). The latter is much smaller
for effective dimension d,, small compared to d and 1/4.
Furthermore, in terms of memory, our algorithm starts with
small m whereas NS uses a constant sketch size m 2 d.
For 7 = 0, our memory savings are drastic when Eu is
small. There are downsides to our method, in comparison to
NS. For Eﬂ close to d, our time complexity bounds become
worse than NS, by an adaptivity-cost factor log &M for both
7 = 0and 7 = 1. For 7 = 1, our worst-case sketch size
is always greater than that of NS, by a factor Eu /9, which
comes from enforcing quadratic convergence.

When logd,, > loglog(d/d), then our SRHT/quadratic
mode adaptive method yields a better time complexity than
its linear mode counterpart, but at the expense of worse
memory complexity.

In the context of ridge regression, we note that the time com-
plexity of our SRHT-linear mode adaptive method scales
similarly to the complexity of the adaptive method pro-
posed by (Lacotte & Pilanci, 2020) for returning a certified
d-accurate solution. Importantly, our method applies to
a much broader range of optimization problems, and can
achieve better complexity by tuning the convergence rate
parameter 7.

We emphasize again that our guarantees hold in a worst-case
sense. In practice, the sketch size can start from a small
value and may remain significantly smaller than the bounds
in Table 1, which we illustrate in our numerical experiments.
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Table 1. We compare the time complexity of different optimization methods in order to achieve a §-accurate solution in function value,
for a function with condition number . 'NS-effdim’ (resp. ’NS-ada’) refers to our Algorithm 1 (resp. our Algorithm 2); ’linear’
(resp. "quadratic’) signifies the choice 7 = 0 (resp. 7 = 1). We refer to (Nesterov, 2003) for gradient descent (GD), Nesterov’s accelerated
gradient method (NAG) and Newton’s method (NE); we refer to (Pilanci & Wainwright, 2017) for the Newton sketch (NS), and we refer
to Theorems 2 and 3 for our algorithms. Katyusha (Allen-Zhu, 2017) is an instance of an accelerated SVRG method whose condition
number dependency improves on NAG. For each algorithm, we assume that the sample size n is large enough for the time complexity to

scale at least linearly in the term nd.

‘ Algorithm ‘ Time complexity ‘ Sketch size ‘ Proba. ‘ Linear scaling regime ‘
| GD | knd log(1/4) | - 1 - |
| NAG | VEnd log(1/6§) | - I - |
| Katyusha | (nd + dv/kn)log(1/9) | - 1 - |
| NE | nd? log(log(1/4)) | - 1 - |
‘ NS ‘ ndlog(d)log(1/0) ‘ d ‘ 1-1 ‘ nz h;igzd ‘
. —~ = dz
NS-effdim ndlog(d,,)log(1/6) d, 1- i e rrcm)
(SHRT, linear)
— =2 0
NS-effdim ndlog(d,/§)log(log(1/6)) %“ log(d,./9) 1- % > 4 IOEQ(T/)
i
(SHRT, quadratic)
— — =52
NS-ada ndlog(d,)?log(d/s) d, 1- - > o
Iz og(dy)
(SRHT, linear)
- - - &2
NS-ada ndlog(d,)log(4)log(log(4)) | ¢ (d, +log(%)log(d,)) | 1— i n 2 —5t
(SRHT, quadratic)

5. Numerical experiments

In this section, we compare adaptive Newton Sketch (NS-
ada) with other optimization methods in regularized lo-
gistic regression problems as in Example 4. The com-
pared methods include Newton Sketch (NS) with fixed
sketching dimension, Newton’s method (NE), gradient de-
scent method (GD), Nesterov’s accelerated gradient descent
method (NAG) (Nesterov, 1983), the stochastic variance
reduced gradient method (SVRG) (Johnson & Zhang, 2013)
and Katyusha (Allen-Zhu, 2017) . For NS-ada and NS, we
consider both SJLT sketching matrices and random row sam-
pling (RSS) sketching matrices. For SVRG and Katyusha,
we use a batch size of 20. All numerical experiments are ex-
ecuted on a Dell PowerEdge R840 workstation. Specifically,
we use 4 cores with 192GB ram for all compared methods.

The datasets used in the numerical experiments are col-
lected from LIBSVM' (Chih-Chung & Chih-Jen, 2011).
The datasets for multi-class classification are manually sep-
arated into two categories. For example, in MNIST dataset,
we classify even and odd digits. For each dataset, we ran-
domly split it into a training set and a test set with the ratio

"https://www.csie.ntu.edu.tw/ cjlin/libsvim/

1 : 1. Several additional numerical results and experimental
details are reported in Appendix A.

5.1. Regularized logistic regression

We demonstrate the performance of all compared methods
on regularized logistic regression problems. The relative
error is calculated by %f“:“ Here f,er is the minimal
training loss function Valuelglmong all compared methods
and € = 5 x 1077 is a small constant.

We report the relative error and the test error with respect to
the iteration number and the CPU-time in Figures 1 and 2.
NS-ada-SJLT or NS-ada-RRS can achieve the best perfor-
mance in the relative error with respect to the CPU-time. We
can also obverse the super-linear asymptotic convergence
rate of N'S-ada as it gets closer to the optimum. Compared to
NS, NS-ada requires less iterations and less time to converge
to a solution with small relative error. Compared to methods
utilizing second-order information, first-order methods are
less competitive to find a high-precision solution.
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relative-error relative-error
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Newton —— Newton
GD-LS —— GD-LS
NAG-LS NAG-LS
SVRG —+— SVRG
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50 100 150 200 100 150 200 250 300

epoch time

test-error test-error
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\ —=— NS-RRS —— NS-RRS
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Figure 1. MNIST. n. = 30000, d = 780, . = 10~ .
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epoch time

Figure 2. realsim. n = 50000, d = 20958, u = 1073,

5.2. Regularized logistic regression with kernel matrix

We also test on regularized logistic regression with the ker-
nel matrix. The relative error and the test error with respect
to the iteration number and the CPU-time are plotted in
Figure 5 to 9. NS-ada-SJLT and NS-ada-RRS demonstrate
asymptotic super-linear convergence rate of the relative er-
ror as the Newton’s method in terms of iteration numbers.
They also achieve a rapid decrease in relative error in terms
of CPU-time. First-order methods have worst performance
in terms of relative error. This may come from that the
kernel matrices are usually ill-conditioned, i.e., with large
condition number.

relative-error relative-error

1004 10°

B e T e |

T e NS-ada-SILT e

e~
e —— NS-ada-SJLT

-2 -2
10 —— NS-ada-RRS 10 NS-ada-RRS
. —— NS-SJLT . \\\' —— NS-SJLT

10 —+ NS-RRS 10 | —— NS-RRS
—<— Newton \+ Newton
107° —— GD-LS 107 —— GD-LS
NAG-LS NAG-LS
108 —— SVRG 10-¢ —— SVRG
Katyusha Katyusha
-10 -10
10 20 40 60 s 100 50 100 150 200
enoch time
test-error test-error
4x107! —— NS-ada-SJLT 4x1071 —=— NS-ada-SJLT
—— NS-ada-RRS —— NS-ada-RRS
I —+— NS-SLT —+— NS-S)LT
3x107! —=— NS-RRS 3x107! —=— NS-RRS
\ —— Newton —— Newton
e v —— GDLS I Wl e e N GDLS
\ —— NAG-LS —— NAG-LS il
2x1071 \\ —— SVRG 2x107H N —— SVRG
atyusha | atyusha
‘ K h K h
;..........ﬁ_._._,_k\‘ ——— e
10 20 30 40 50 0 20 40 60 80 100

epoch time

Figure 3. a8a. kernel matrix. n = 10000, d = 10000, p = 10.
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Figure 4. w7a. kernel matrix. n = 12000, d = 12000, u = 10.
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