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In this work, we analyzed an isotropic colloidal model incorporating both short-
range sticky attractions and long-range electrostatic repulsions. We computed the
zero-shear viscosity and second virial coefficient for a dilute colloidal suspension (i.e.,
pair interactions only) as a function of the strength of attractions and repulsions. We
also developed an analytical approximation that allows us to better understand the
coupling of the two types of interactions. The attractions and repulsions contribute
to the zero-shear viscosity and second virial coefficient in different ways, leading to
cases with the same second virial coefficient but different zero-shear viscosity. The
analytical approximation shows that the mechanism of the coupling of interactions is
that long-range repulsions can weaken the influence of short-range attractions. This
effect alters how repulsions change the zero-shear viscosity. Acting independently,
both attractions and repulsions increase the viscosity coefficient of the system. How-
ever, when both type of interactions are considered together, repulsions can screen

the effect of attractive interactions thereby reducing the viscosity.
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I. INTRODUCTION

Models for colloidal dispersions serve as a useful tool to connect microscopic details to
overall fluid properties. In spite of simplifications, such models are still able to capture the
macroscopic behavior of various materials. Colloidal models often work under the assump-
tion that the dispersed particles are hard spheres to simplify the hydrodynamic calculations.
Such models have been applied to protein solutions, despite the ability of proteins to undergo
conformational changes when exposed to large pH variations, the addition of denaturants, or
strong shear, among other influences. It has been shown that such models can successfully
represent the behavior of protein solutions as long as the conditions are maintained to retain

the quasispherical shape of the proteins [1, 2, 3].

In many studies, the dispersed particles are assumed to possess only a single type of
particle-particle interaction. When looking at particle aggregation and self-assembly, the
particles are treated as having ‘sticky’ interactions in which the particles reversibly adhere
when they come into contact [4, 5, 6, 7, 8]. Such systems are inherently unstable and such
studies are often interested in the transition from a collection of singlets to clusters of par-
ticles. Even for systems with complex, orientation-dependent attractions, it has been found
that the details of the interaction potential are not always important and a simple sticky
interaction potential is sufficient to deduce the macroscopic properties of these systems [9].
Systems featuring orientation-dependent interactions include protein molecules [10, 11] and

patchy microparticles [12].

Stable dispersions are often thought of as an ensemble of particles dominated by repul-
sive interactions to provide stability. These repulsive interactions may take the form of
electrostatic interactions due to the charge on suspended microparticles [13, 14, 15, 16], or
steric interactions due to polymeric chains that prevent flocculation [17]. Studies involving
electrostatic interactions can be modeled using a screened coulomb potential while steric
interactions may be modeled using an excluded shell model. However, electrostatic interac-
tions may be simplified to having an equivalent excluded shell distance rather than having
a repulsive potential that varies with distance.

Studies involving repulsive interactions often assume that the repulsive effects exclude

the possibility of experiencing attractive forces and that these interactions are time invari-

ant. Such studies are often designed to maintain strongly repulsive interactions that would



preclude underlying attractive interactions. For example, studies involving protein solutions
are performed far from the isoelectric point, such that strong electrostatic repulsions ex-
ist between proteins [1, 18]. However, even stabilized dispersions will eventually aggregate
when given the time to degrade [19]. London-van der Waals attractions and hydrodynamic
interactions become relevant when repulsive forces are weak.

Both attractive and repulsive forces should be considered in any colloidal system wherein
the two types of forces are comparable in magnitude. Thus in systems involving reversible
aggregation [20], protein solutions [21, 22], or gelation [13, 23], the interplay between attrac-
tive and repulsive forces between colloidal particles or with the substrate may be important.
The view that many colloidal systems experience a single interaction is, fundamentally, a
simplification. Including both attractions and repulsions will paint a more accurate picture
of the rheology of colloidal systems.

In this article, we consider a colloidal model incorporating short-range sticky attractions
and long-range electrostatic repulsions. We calculate the low-shear viscosity for a dilute
suspension of such sticky electrostatic spheres and demonstrate how the viscosity and second

virial coefficient can be varied independently for such systems.

II. BACKGROUND

In this section we provide details of the system. We consider a dilute suspension of rigid,
spherical particles and compare the second virial coefficient and zero-shear viscosity. These
are calculated as a function of the particle pairwise interaction potential. All energy terms
are nondimensionalized using the thermal energy of the system kT as the energetic scale,
with k& being the Boltzmann constant and 7" being the absolute temperature of the system.

Further, all distances are nondimensionalized using the particle radius a as a length scale.

A. Interaction Potential

The macroscopic behavior of colloidal dispersions is determined by the behavior of the
underlying microstructure. This in turn is dependent on the interactions between individ-
ual colloidal particles. Not only do the interactions between particles yield hydrodynamic

stresses, but Brownian motion and the forces between particles act to maintain the equilib-



rium microstructure, which resists perturbations to the microstructure [24]. In this section,
we define the pair interaction potential between two rigid hard spheres at dilute concentra-
tions possessing both short-range sticky attractions and long-range electrostatic repulsions.
By varying the strength of each, we can understand how the combination determines the
overall properties.

To model short-range attraction, the Baxter Sticky Sphere (BSS) model is typically used,
wherein an infinitely steep hard-core repulsion is followed by a short-range square-well at-

traction. The dimensionless pair interaction potential for the BSS model is given by [4, 5]:

00 p <2
Viss (p) = qlog[67(R—2)] 2<p<R (1)
0 R<p

where p is the dimensionless center-center distance between two particles, 7 is the stickiness
parameter, and R is the outer bound of the attractive well. Results are taken in the limit
of R — 2 and thus quantified by only 7. At dilute concentrations, the equilibrium radial

distribution function is given by the Boltzmann distribution of pairs as:

() =002+ () a2 )

where 6 is the Heaviside function and ¢ is the Dirac delta function. The first term is the
hard sphere contribution, while the second term is due to the sticky part of the interaction
potential. The integral of the second term is 1/(67) and can be used to quantify the strength
of attraction. The particles are ‘stickier’ with smaller values of 7.

While Baxter’s sticky sphere model is commonly used, it can lead to problems in some
numerical methods due to the discontinuities in the derivative of the potential. Instead of
using the BSS model, we use a Morse potential that is continuous and captures the important
features of the BSS model [9]. Parameters are chosen to replicate the hard-core repulsion
followed by a short-range attractive well similar to that in the BSS model. The Morse (M)
potential for p > 2 is described by:

Var (p) — e (P—2)/e (e—(P—Q)/6 _ 2) (3)

where ¢ is the depth of the attractive well, occurring at a distance 2, and € is the range

of the sticky interaction. We calculate an equivalent stickiness parameter 7* for this model
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using the integral of the equilibrium radial distribution function g,; is used to calculate the

equivalent stickiness parameter:

I CICER R (@
We consider a system where long-range interactions are dominated by isotropic screened
electrostatic repulsions. An electrically charged particle in solution develops a diffuse coun-
terion cloud that shields the surface charge. The extent of this electric double layer is
characterized by the dimensionless Debye length 1/k. The charge is quantified by the pa-
rameter «, which is a dimensionless group comparing the electrostatic force to the Brownian
force. Any motion of the bulk fluid will perturb the electric double layer. In response,
Brownian and electrostatic forces restore equilibrium by moving ions relative to the fluid.
Considering a system with strong electrostatic forces (o > 100) and electric double layers
that are only slightly perturbed from equilibrium, we use an approximate screened Coulomb

(SC) potential given by [25]:
Vsc (p) = ae™™ /kp (5)

The dimensionless group « is given by:

_ €f¢8a 2K
o=~ ke (6)

where €7 is the permittivity of the fluid, 1)y is the surface potential and a being the particle
radius.
The pair interaction potential for sticky electrostatic spheres (SES) is taken to be the

sum of the Morse potential and the screened Coulomb potential (equations (3) and (5)):

Vses (p) =V (p) + Vse (p) - (7)

V' are shown in figure 1. In

An example potential and equilibrium distribution g = e~
the interaction potential, there is in an attractive well over 2 < p < 2 + 3¢ followed by a
repulsive peak that gradually decays as p — oo. The corresponding equilibrium distribution
is calculated for each interaction potential as the Boltzmann distribution of the interaction
potential. The separation of the particle surfaces is plotted on a log scale to show the
behavior near contact and far away. It is worth noting that in this figure, the effective stick-

iness (1/7* = 0.02) is relatively small compared to the range of values that were examined

(0 < 1/7* <20). Even for small values of stickiness, the depth of the energy well at contact
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FIG. 1. The interaction potential is plotted against particle separation for a particle with effective
stickiness (1/7* = 0.02) and electrostatic repulsion (a« = 20). (b) The equilibrium distribution

function is plotted for the same particle. The dashed line represents the hard sphere result.

appears large. This manifests itself similarly for the equilibrium distribution, in which g near
contact is large. However, the number of particles near contact is related to the integral of

g, which is not necessarily large even if the g near contact is large.

The second virial coefficient can be calculated using the pair interaction potential from:

By = —27ra3/0 (e7V) — 1) pdp. (8)
B, 3 [~
2= Bows 8 /0 (e ) pdp (9)

167a®

5= is the hard sphere result and Bj is the second virial coefficient

where, By pg =
normalized by the hard sphere result (By = By/Bs ps). The second virial coeflicient is often
regarded as an indicator of the interactions between particles in colloidal systems. The
second virial coefficient is effective at capturing the osmotic pressure when examining the
combination of different, opposing interactions [26]. However, the effects of such interaction

on the viscosity of a suspension are not as intuitive or obvious.



B. Zero-Shear Viscosity

The bulk stress of a suspension of particle arises from three distinct sources [27, 28]. The
first are hydrodynamic stresses originating from the viscous nature of the fluid. The presence
of rigid spheres adds extra stresses to the system, arising from not only the influence of indi-
vidual particle on the fluid flow, but also from the hydrodynamic interactions between pairs
of particles. The hydrodynamic stress is affected by Brownian motion and the interparticle
potential through the equilibrium distribution function g (p). Both the Brownian motion
of particles and the interparticle potential contribute to the bulk stress of the system, and
comprise the other two sources. When stress is applied to the system, the microstructure is
perturbed. These mechanisms resist this perturbation and seek to restore the microstruc-
ture. This equilibrium microstructure thus contributes to the stress even at the low-shear
limit and causes non-Newtonian behavior at high shear rates. The microstructure of a dilute
suspension of particles can be described using the pair distribution function P (p), which
reflects the probability of finding a second particle at distance p relative to a test particle.
Due to the shear on the system, the pair distribution function will deviate from the equi-
librium value of g (p). This deviation is described by the perturbed distribution function
f (p). The pair distribution function is related to the equilibrium distribution function and

the perturbed distribution function by [5]:
s\ (P-E-p
P (o) =g (o) L~ (ma) (252 ) 1 0] (10)

In the dilute limit, the pair distribution must satisfy the conservation equation for par-
ticles as described by Batchelor. Russel reduced this equation, via a regular perturbation

expansion for small Pe, to [5]:

d o, .df o AV df 9 3 av
—pG——pG|— | ——-6Hf=—p"W 1—A)— 11
it (dp>dp f==p"W+p( )dp (11)
with boundary conditions
d
p(l—A)+G—f:O at p=2
ap (12)

f—0 as p—o0

This equation is valid for an arbitrary isotropic interaction potential V. Solving this bound-

ary value problem involves a set of known hydrodynamic functions (G, H, A, B, W) for a
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pair of equal rigid spheres. These functions depend only on p, and have defined asymptotic

forms in the limits of wide separation (p — o0o) and near contact (p — 2);

;

1=3pt+p3+Lpt 4+ . p— 00
Gp)={ ° ' § )
12(0=2) =3 (p—=2)log(p=2)" —4(p=2)"+... p—2
>
1-3pt—1p=3 4 p — 00
1
Hip)= 20547 0.151
\0‘402 + 1349tlog(p—2) T 1.69+log(p—2) T T op2 (13)
4
5p73 —8p 0+ ... p — 00
Alp) =

1—4.077(p=2)4... p—2

Hp S +... p— oo

6.372+... p—2

In a later section we describe the numerical methods used to solve this boundary value
problem and use the solution to compute the viscosity.

In solving for the microstructure of the system, we are able to compute the zero-shear
viscosity of the dilute suspension of particles. Batchelor had found the zero-shear viscosity

of a dilute suspension of hard spheres, up to order ¢2, to be:
p=po (142504 c20” +...) (14)

where g is the fluid viscosity and ¢ is the volume fraction of the colloidal particles. The
first two terms represent the fluid viscosity and the contribution of isolated particles to the
viscosity. The third term ¢y or the quadratic coefficient of viscosity, reflects the contribution
from the interaction between pairs of particles. For a suspension of hard spheres, Batchelor
found that cy ys = 6.2, but later work refining the calculation found that co s = 5.9
29, 30]. In other works where the relative viscosity is expressed as a function of the weight
concentration of colloidal particles and intrinsic viscosity, the coefficient to the second order
term is the Huggins coefficient kg, where ky = c,/2.5%. We are interested in how the sticky
electrostatic interactions manifest in the quadratic coeflicient.

Previous work has found that the quadratic coefficient is the sum of a hydrodynamic

contribution ¢, a Brownian contribution ¢Z and an interaction contribution ¢ and can be
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computed via the following integrals [24, 28]:
Cy = cf + cf + cg

g5+ [Trwawia

E=g| [ A0 £ )

6524—90 U;op?’(l—fl(p));l—if(p)dp}

(15)

The hydrodynamic contribution encompasses stresses that arise due to the flow of fluid
around each particle. Additional stresses arise from a particle being entrained in the flow
caused by another particle and dependent on the distance between particles. Near-field
hydrodynamic interactions are accounted for by J (p), which decays as J ~ ? p~%asp— oo.
The Brownian contribution arises from thermodynamic forces restoring the microstructure
to its equilibrium after a perturbation. The interaction contribution covers the resistance to

perturbation that arises from the force directly exerted on a particle due to another particle.

ITI. RESULTS AND DISCUSSION
A. Numerical Solution

Numerical calculations were performed in MATLAB. The interaction potential is specified
through four parameters. For the sticky part of the interaction potential (equation (3)),
the depth of the attractive well was chosen within 0 < ¢ < 63, while the range of sticky
interaction was chosen to be small to simulate the sticky limit [9]. A value of € = 107 was
chosen as it was the smallest value before encountering machine precision issues. For the
electrostatic part (equation (5)), the strength of electrostatic repulsion was chosen within
0 < a < 30, while the Debye length was fixed k! = 1.

The hydrodynamic functions (A, G, H, J, W) utilize the known behavior near-contact
and far-from-contact wherever possible. For simplicity, the intermediate values of the func-
tions were approximated by interpolating Batchelor’s tabulated values [31, 32]. This results
in a co yg that most closely aligns with Batchelor’s original result. Although Batchelor’s
result was refined in later works using more complex numerical approaches, they do not

affect the conclusions of this work.



The boundary value problem described in equation (11) was solved using the MATLAB
function bupdc() for different interaction potentials. This boundary value problem is diver-
gent at contact (p = 2), so a Neumann boundary condition was chosen at p = 2 + 10713,
Noting that the machine precision of MATLAB is 2.2204 x 10716, this is the closest to
contact that the boundary value problem could be evaluated before breaking down. The
far boundary condition was a Dirichlet boundary condition evaluated at p = 1002, a point
far enough away to be indistinguishable from p — oco. The solution of the boundary value

H B

problem for f (p) was then used to compute the integrals in equation (15) to obtain ¢y, ¢3,

and ci. These integrals were computed using MATLAB’s integral() function.

Figure 2 (a) shows the perturbed distribution function for a purely sticky particle for
varying stickiness without electrostatic repulsion. The distribution function is reduced rel-
ative to the hard-sphere case, with stronger attractions leading to more reduction. Recall

from equation (11) that f represents how the distribution is changed due to weak flows.
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FIG. 2. (a) The perturbed distribution function is plotted against particle separation for particles
with varying stickiness and no electrostatic repulsion. The black is for a hard sphere (1/7* = 0),
the blue is 1/7% = 0.2, the red is 1/7* = 0.5, and the cyan is 1/7* = 1.5. For all curves, e = 1075.
(b) The perturbed distribution function plotted against particle separation for particles with no
stickiness and varying strength of electrostatic repulsion. The black is for a hard sphere (a = 0),

the blue is a = 12, the red is a = 18, and the cyan is o = 24. For all curves, k' = 1.
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Negative values of f mean that there are more particles than equilibrium at certain angles
relative to the flow. For p—2 < ¢ = 1075, f is nearly constant. The deviation of f from the
hard-sphere result extends to large enough distances where the Morse potential has decayed
to zero. In this region, the reduction relative to the hard-sphere result behaves nearly loga-
rithmically and vanishes near p — 2 ~ 1. The work of Cichocki & Felderhof [33] also showed
a logarithmic behavior of f for the Baxter model.

Based on the numerical results in Figure 2 (a), 2(b) and additional results with larger
¢ (data not shown) the contact value, fo, given by equation (A16) in appendix has been
approximated. To further analyse fo with attractions-only contribution (sticky spheres),

equation (A16) can be substituted with a=0 and approximated as fc gs ,where

0.21 (&) Ine
Joss R 13T+ 08 (L) ne+1 (16)

In the limit of zero sticky interactions, Ti — 0, the value of fr s corresponds to the hard-

sphere case. In the limit of strong attractions, fc ss approaches a limiting value of —2.83, a
similar behavior observed by Cichocki & Felderhof [33] for highly sticky particles (in their
work denoted as f, = -2.963).

For sticky attractions, it is common to examine the limit where the range of interaction
approaches zero, which here corresponds to € — 0. Because of the logarithm, this limit is slow
to converge. Even for a small value of e = 107% used here, fc g5 only approaches the limiting
value for Ti much greater than 3. In practice, the sticky attraction model is often used to
represent phenomena such as hydrophobic attractions within water or depletion attractions.
Although the range of these interactions is often less than the size of the objects/spheres,
using the limiting value of fo gg could lead to significant errors.

Figure 2 (b) shows the perturbed distribution function for varying strength of electrostatic
repulsion, with no attractions. Electrostatic repulsion increases the perturbed distribution
function with increasing electrostatic repulsion. For a Debye length of k= = 1, the effect
of electrostatic repulsion extends somewhat beyond the Debye length, going as far as p —

2 =~ 10. fc with electrostatic repulsions-only contribution (electrostatic spheres) can be

approximated from equation (A16) by

1 2
fees = fc (; = 0) ~ gae_% + 1.37 (17)

Using the equilibrium distribution function and the perturbed distribution function for a

particular set of parameters, we are able to compute the quadratic coefficient of the viscosity,
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¢o. In order to compare with the results for the combination of interactions, we first show the
results for the individual interactions and how the numerical results compare with previous
analysis in the literature.

For Baxter sticky hard spheres, Russel originally calculated the viscosity under the as-
sumption that the perturbed distribution function does not vary with varying stickiness [5].
Cichoki & Felderhof later found an error in Russel’s calculations. The corrected quadratic
coefficient is [33]:

c2.55 = 5.931 +0.76/7 (18)

They further point out that Russel’s original assumption of an unchanging perturbed dis-
tribution function to be incorrect. When accounting for a changing f, Cichocki & Felderhof

found the quadratic coefficient for the Baxter sticky sphere model to be
c2.55 = 5.931 + 1.899/7 (19)

In figure 3, our numerical results using the Morse potential are compared against the
theories of the Baxter model of Russel [27, 33] and Cichocki & Felderhof [33]. We find that

our numerical solution follows more closely to the corrected Russel curve for stickiness less
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FIG. 3. The quadratic coefficient of viscosity is plotted against the strength of stickiness (1/7%)
for a purely sticky particle (triangles). The dashed line is Cichocki’s theory (equation (19)) while
the dotted line is Cichocki’s corrected version of Russel’s theory (equation (18)). The solid line

represents the analytical solution (equation (20)).
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than one (1/7* < 1), while it follows more closely the theory of Cichocki for high value of
stickiness (1/7* > 1). We can better understand this using an analytical approximation of
our numerical solution. The general formula is given in the Appendix. For the case of no

electrostatic repulsions, it becomes

=619+ — (111 - 0.26fc) = 619+ — ( 0.75+ 0055 (o) Inc (20)
2,55 = 0. = “0Je) =0 o\ —0.05 (%) Ine+1

1

Note that we use approximate values to the hydrodynamic functions from Batchelor,

resulting in a constant term in ¢y that is more similar to earlier calculations of ¢, g rather
than following Cichocki’s [34, 35] or other later results [30].

We can also look at the case with only electrostatic repulsions and zero sticky attractions,

and compare with previous results by Russel [25, 30]. They found the quadratic coefficient

to be
5 3 1 «

wse =3+ (i) (Fomrma) -

This theory was developed under the assumption that the particles were strongly repulsive

(o> 1) and has been shown to successfully represent the results of experiments for strong

207
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FIG. 4. The quadratic coefficient of viscosity plotted against the strength of electrostatic repulsion
for a purely repulsive particle (circles). The dashed line is a theoretical curve for highly repulsive
particles (o > 1) from equation (21). The solid line represents an analytical solution for sticky

electrostatic spheres from equation (22) with a A; of 2.35 from equation (A26) .
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repulsions.

Figure 4 compares our numerical results with this analytical approximation. Note that
Russel’s theory does not approach the hard sphere result as electrostatic repulsion decreases
(a = 0). Our analytical approximation from the Appendix can be applied to this case

without sticky attractions and obtain

5
50 =5+ 2.03¢7C + 1.66+

o <%) (%m mﬂl (i) (é (% In m)zm (=) + 1.37) 22

It contains the same physical features as Russel’s result and same qualitative behavior.
However, because it matches the numerical results better in this range of «, it is useful to
use when examining the case with both electrostatic repulsions and sticky attractions.

Having shown the behavior for exclusively sticky particles and for exclusively electro-
statically repelling particles, we next describe the results for the viscosity and second virial
coefficient for particles that are simultaneously sticky and repulsive. We examine sticki-
ness in the range of 0 < 1/7* < 20 and strength of electrostatic repulsion in the range of

0<a<30.

(a) 20 4 (b) 20

15

FIG. 5. A contour plot of B (a) and c2 (b) plotted against the stickiness (1/7*) and the strength

of electrostatic repulsion (a).

In figure 5 (a), we plot the contours of the second virial coefficient normalized by the

14



hard sphere result (Bs = By/Bs ys). In figure 5 (b), we plot the contours of the quadratic
coefficient (cy). Following either contour plot along y-axis yields the exclusively sticky cases
while following along the x-axis yields the exclusively repulsive cases.

In figure 5 (a), we find that increasing stickiness always acts to decrease Bs, while in-
creasing the electrostatic repulsion always acts to increase B,. This trend is independent of
the strength of the other interaction, and results in contour curves that are monotonic.

In figure 5 (b), we find that both stickiness and electrostatic repulsion overall act to
increase cs when the other interaction is weak. However, they can also interfere with each
other, leading to a weakened increase in viscosity for some combinations of parameters.
This results in contour curves that are not monotonic. This is most evident in the middle
of the contour plot (for 1/7* = 10) where the viscosity is lowest for intermediate values of
a (15 < a < 25).

We can quantify the coupling between the stickiness and repulsion by looking at what
the behavior would be if the two types of interactions contributed independently to By or
cs. We can define the two functions

By (a,1/7%) = B3 (0,1/7%) + Bj (,0) — B; (0,0) 23)

Co(a,1/7) = 2 (0,1/7%) + 2 (o, 0) — ¢2 (0,0).
The results from attractions only and repulsions only are added together. The hard-sphere
case must be subtracted so that the overall behavior produces the correct result when only
one type of interaction is present. In figure 6, these sums are compared against the numerical
results for the same stickiness (1/7% =2) and a range of repulsive strength (0 < o < 30).
Curves representing the repulsion-only case (no attractions) are also included, and are a
constant shift compared to equation (23). Finally, we compare the numerical results with
the approximation developed in the Appendix.

The behavior of the second virial coefficient and viscosity coefficient have a number of
many similarities. At o = 0, they match with equation (23) by construction since only
attractions are present. When repulsive interactions are introduced to the system (a > 0),
the numerical results deviate from equation (23) and approach the result including only
repulsions. That is, strong enough electrostatic repulsion reduces the impact that stickiness
has on both the second virial coefficient or the viscosity coefficient. However, this feature

leads to different overall behavior.
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FIG. 6. The second virial coefficient (a) and the quadratic coefficient of viscosity (b) plotted against
the strength of electrostatic repulsion. The blue squares represents B3 and cy for a particle with
some stickiness (1/7* = 2) while the dashed lines represents B, and é& (see equation 23) for the
same stickiness. The dotted line represents Bj and ¢y for a particle with no stickiness (1/7* = 0).

The solid lines represent the analytical approximation from the Appendix.

For the second virial coefficient, attractions alone lead to a decrease while repulsions
alone lead to an increase. Therefore, when repulsions reduce the impact of attractions, it
also leads to a increase in the second virial coefficient. This is observed in Figure 6(a) by
the numerical results increasing faster than equation (23).

For the viscosity coefficient, attractions and repulsions alone lead to an increase. However,
when repulsions reduce the impact of attractions, it actually leads to a decrease in ¢y. This
occurs in Figure 6(b) for 0 < a < 5. For larger «, the repulsions suppress nearly all of the
contribution from attractions. This leads to a increase in ¢y with increasing a as if there
were no attractions.

Because the analytical approximation developed in the Appendix matches well with the
numerical results, we can use the analytical approximation to understand the mechanism of
the coupling between the attractions and repulsions. The integral formulas for By and ¢y
add the contributions from pairs of particles including the frequency of finding pairs with a
particular p and the contribution from pairs at that separation.

The interaction potential between pairs of particles determines the frequency that parti-
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cles are able to approach certain distances relative to other particles. This is quantified at
equilibrium using g and the change in flow using f. Attractive interactions increase the fre-
quency with which particles approach each other, while repulsions decrease that frequency.
As shown in the Appendix, the equilibrium Boltzmann factor near contact is affected by
the repulsive potential near contact. Since the impact of the repulsions depends on the
frequency of pairs coming close together, the repulsions can reduce the contribution from

the attractions.

At large enough «, the repulsions suppress not just the near contact occurrences, but
also exclude larger separations. In these conditions, the excluded shell model becomes more
accurate. This leads to an increase in By and ¢y at larger a. The decay of the repulsions
with increasing p means that the repulsions can have an impact near contact for smaller o
than is necessary to exclude particles to larger distances. The decrease for v < 5 in Figure
6(b) occurs because the repulsions are able to suppress the contribution from the attractions

without significantly increasing the ¢y directly.

The overall effect of the screened electrostatic repulsions depends on both a and the

Debye length 1. All numerical results have been shown for =1

= 1, while the analytical
approximation was written for any x~!. Figure 7 shows the numerical results for two values

of k1 < 1. This corresponds to more screening of the repulsions.

' = 1. The weakening of the repulsions from

The behavior is similar to that seen for x~
the screening is such that the range 0 < o < 30 shown corresponds to relatively small a.
In this range, repulsions primarily act to indirectly reduce the contribution of attractions.
Another important feature visible in these results is that repulsions can act to reduce ¢y even
when Bj is greater than 1. This highlights that the way attractions and repulsions combine

together is different for ¢, and Bj.

Figure 8 shows the numerical results for two values of x~! > 1. This corresponds to less
screening of the repulsions. Because there is less screening, the influence of the repulsions
becomes significant even at smaller a. Although the repulsions still have both a direct effect
and indirect effect on the attractions, the overall strength of repulsions makes the role of

attractions less visible.
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FIG. 7. The second virial coefficient (a)(c) and the quadratic coefficient of viscosity (b)(d) plotted
against the strength of electrostatic repulsion for Debye lengths <1. The blue squares represents
Bj and ¢y for a particle with some stickiness (1/7* = 2) while the dashed lines represents Bs and
¢o (see equation 23) for the same stickiness. The dotted line represents B3 and ¢y for a particle

with no stickiness (1/7* = 0). The solid lines represent analytical approximation.
IV. CONCLUSIONS

The values of By and ¢, can be used to understand how the osmotic pressure and vis-
cosity of dilute suspensions are dependent on the interactions between particles. In order
to understand the coupling between attractions and repulsions, we computed the response
to two prototypical interactions: sticky attractions using the Morse potential and screened

Coulomb repulsions. By comparing the numerical results with an analytical approximation,
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FIG. 8. The second virial coefficient (a)(c) and the quadratic coefficient of viscosity (b)(d) plotted
against the strength of electrostatic repulsion for Debye lengths >1. The blue squares represents
Bj and ¢y for a particle with some stickiness (1/7* = 2) while the dashed lines represents B and
¢o (see equation 23) for the same stickiness. The dotted line represents B and ¢y for a particle

with no stickiness (1/7* = 0). The solid lines represent analytical approximation.

we were able to understand the mechanism by which the interactions couple: the overall

behavior is not the sum of the contributions with attractions and repulsions alone.

When acting alone, sticky attractions act to decrease the second virial coefficient while
increasing the viscosity coefficient. When acting alone, screened electrostatic repulsions
act to increase both. However, when occuring simultaneously, repulsions can also lead to

a decrease in the viscosity coefficient. The physical mechanism is that the repulsions can
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reduce the likelihood of particles coming in close contact, which reduces the contribution
from the sticky attractions. This occurs even when the Bj is positive, such that repulsions

are stronger than attractions in their impact on the osmotic pressure.

Because the physical picture underlying this coupling is not specific to the details of the
interactions, we expect it to also occur in other situations. For example, many real systems

will not have perfectly isotropic interactions or of the exact functional forms used here.
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Appendix A: Analytical Approximation

We will use an analytical approximation to better understand the numerical results. For
the analytical solution, two features of the Screened-Coulomb potential Vgo are particularly
important: the potential at/near contact Vi = Vseo|,—2 and the separation distance Ly at
which the electrostatic potential balances out with thermal energy [25]. This distance is

defined as

e—HLo

~1 Al
I (A1)

For ae > 1, this can be approximated using the Lambert function to be [25]

1 o}
Ly~ —-In——F—— A2
Tk nln(a/lna) (42)
This is not a good approximation for smaller a. For 0 < a < 1.5,
1
Lo ~ a (A3)

kexp (o) exp )

It should be noted that for small values of «, the value of Ly is smaller than the contact
value of 2. For these situations, the value of Ly loose its physical meaning, but acts as a

way to extrapolate the approximation to the case v — 0.
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1. Second virial coefficient

The sticky electrostatic sphere pair potential is given by

o0 0<p<?2
Vip) = S Vi(p)+ Ve 2<p<2+3e (A4)
Vsco(p) 243e<p< oo

Based on (A4) the integral in (9) for computing Bj, can be simplified as a sum of various

ranges.

2 2+3¢ 0o
B; _ _g |:/ (e—V(p) o 1) p2dp—|—/ (e—V(p) _ 1) p2dp—|—/ (e—V(p) _ 1) p2dp:| (A5)
0 2 2

+3e€

Substituting equations (3), (4), (A1), (A2) and (A4) in (A5):

2 2+43¢ 00
B = —g {/0 (e_oo — 1) p2dp _|_/2 (e—VM(P)—Vc _ 1) p2dp+/2 (e_VSC(p) _ 1) de/)]

+3e
(AG)
3 _8 24-3¢ LO
B; ~ -3 {? + e_vc/ eV p*dp +/ (e7Vsele=Lo) 1) p2dp} (A7)
2 2+3¢
_ 1 Vo e—1 3
B2 ~1 47_*6 + bl ( 3e (Lo) ) (AS)

Equation (A8) has a constant b; added to match the numerical data. The value of
b, changes with the change in Debye length of the solution. The values of b; for k=1 =

0.7,0.85,1,1.25,1.5 are by = 0.6,0.78,0.93, 1.05, 1.1 respectively.

2. Zero-shear viscosity

Since the viscosity coefficient ¢, is also written as integrals in equation (15), we can
similarly approximate the integrals over the ranges 2 < p < 24 3¢ and 2+ 3¢ < p < o0.
The integrals over the first range capture the contribution from particle separation distances
where the sticky interactions play a direct role and the integrals over the second range yield

the contribution in which the sticky interactions can only have an indirect role.
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a. Hydrodynamic contribution

The hydrodynamic contribution is given by
5 2+3e o0
ng:§P+3<é <ng@nhm+[;gumngMQ} (A9)
Within the integrals, the function g(p) is known analytically. For the function J (p),
Batchelor et al. [32] provides a near-field value of 0.2214, intermediate tabulated values for
the range 2 + 3¢ < p < 3, and a far field form J =~ 1—25p_6 as p — oo. Equation (A9) can

hence be further split into:

Hps = o [1 +3 ( / 090 Pdp+ / T0s) o+ [ I00alo p%zp)]
(A10)

The first integral can be approximated as

24+3¢ 24-3€ 2
/ J(p)g(p)pPdp = J(2)e Ve / e M p2dp = 0.22146_VC; (A11)
2 2

T

For the range 2 4+ 3¢ < p < 3, we roughly approximate Vso &~ V¢, in order to simplify g(p),

and then numerically integrate the tabulated data of J to obtain

3 3

| dsesdemete [ ) pdpx0ame (A12)
2+43¢ 2+3¢

For the last part, 3 < p < oo, we can assume g (p) =~ 1 independent of o and the integral

can be solved analytically as

o0 15 [ 1
/ NMMM&M@;/‘jw (A13)
3 3 P

This approximation is sufficiently accurate for the values of o examined here. For larger «,
an alternative approximation, such as the excluded shell model, would be more accurate.

Combining the terms together gives

5 1.11
CgSES =3 +e Ve <? + 2.03) + 0.69 (A14)

b. Brownian contribution

The Brownian contribution is given by

Bos=m ([ @s0 0o [T W easwd)| @

+3e
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This formula requires knowledge of the function f(p), which is the result of solving a differ-
ential equation for each set of interaction parameters. In general, the f resulting from the
sum of two potentials is not the sum of the functions from each potential individually. In
this work, the short ranged aspect of the Morse potential produces a f that is nearly the
sum of two contributions, one that depends on the Morse potential and one that depends
on the screened Coulomb potential.

For the range 2 < p < 2 + 3¢, we can approximate W and f as constants. The f at

contact is denoted as fo and is approximated from the numerical results as

0.21 (&) Ine 2
—0.05 (% )ln6—|—1+3a€ (A16)

fom1.37 +

With these approximations, and the definition in equation (4), the first integral becomes

2+3e 2+3e 2
/ p*Wafdp =~ 6.3726_chc/ ple ™ ™Mdp = 6.372¢7V° fr (3 *> (A17)
2 2 T

For the contribution from the integral in the range 2 4+ 3¢ < p < oo, we can again ignore
the dependence on a and use the hard-sphere result. Batchelor[24] provides a value of 0.97
for the contribution from the second integral. Although this is not accurate at large «, it is
sufficient accurate at the relatively smaller a examined here.

Combining the two approximations gives the overall contribution of

1 0.21 (&) Ine 2
psps =096 | [ —)e Ve [1.37 = 2] 4+ 1.01 A18
©2.5Es T* ¢ * —0.05( )lne+1 + a + ( )
c. Interaction contribution
The final contribution comes from the interactions directly, and is given by
9 /2+36 dg o) dg

e opg=— P (1—A(p —fpdp+/ 0’ (1—A(p)==f(p)dp A19
s =1 ([P0 a0) Er0aos [ a0 L )| s

Because of the derivative of g, the contribution from the first integral will be dominated
by the separation p =~ 2 + ¢ where the Morse potential changes most rapidly. We can
approximate Z—i as proportional to a Dirac delta function. The prefactor is chosen so that
the approximation has the correct integral. That is, within the first integral we approximate

dg _

i e C(1—e )i (p—(2+¢) (A20)
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Using this approximation and the function A near contact, the contribution from the first

integral is
- (%) (8)e Ve (ef — 1) (4.077(—:)/2 6f (p)o(p—(2+4¢€))dp (A21)

Finally, we can use the approximate f near contact and the definition of 7* to write the first

contribution as

1 0.21 (&) Ine 2
—122( —)e Yo | 1.37 u Zae % A22
(T*)e ( +—O.O5(1)lne+1+3ae (A22)

For the range 24 3¢ < p < oo, the Morse potential does not strongly impact g and we can
ignore its impact on f, keeping only the impact from the electrostatic repulsions. For the
second integral, we can follow previous literature with electrostatics alone and approximate
these effects using excluded shell model for large a.

Denoting the excluded volume radius as Ly and substitution of the far-field forms of the

hydrodynamic function into the second integral of (A19) produces a contribution of

9 —a
4—0L8€< Lo

e—KLO)ae—mLo {1 B 5 8

T L_g + L_g} f (Lo) (A23)

This expression requires an estimate of f at the excluded shell radius.

We can estimate f as

1
fp) ~ apQOze_”p +1.37 (A24)

This interpolates between the hard-sphere contact value of 1.37 and an expression that
balances electrostatic repulsions with Brownian motion, which is accurate at larger .
Substituting equation (A24) at p = Ly into equation (A23) gives a contribution from the

second integral of

9 _qe=tto qe R ko ) 8 1

9 pae(-em) 1— =+ —| ( =Ljoe "0 +1.37 A25
100 T { T Lg} <6 oce T (A25)
Finally, we can simplify for Ly > 1 and using ae;zzo ~ 1 to give

A, (4—30) (%m m)2ln (%) (% (% mW)an (%) + 1.37> (A26)

The constant A; has been added to account for the approximations of the integral and

match the analytical results quantitatively with the numerical solution. The value of A;

24



changes with the change in Debye length of the solution. The values of A; for k! =
0.7,0.85,1,1.25,1.5 are A; = 1.5,1.92,2.35, 3, 3.3 respectively.

The overall interaction contribution combines the results of both integrals to give

1 021 (%) In 2
Cg,SES = —1.22 (;) e Ve (1.37+ (T ) € + _a€—25> "

—0.05(&)Ine+1 3

3\ (1 ’ 1/1 ? 427
a a o o
A2 (n—2 ) () (2 () () 41
! (40) (FL nln(a/lna)) n(lna) <6 (FL nln(a/lna)) n(lna) + 37)
d. OQwverall result
Co,585 = Cosps + Crsms + G sms
) 1.11
Chgms = 5+ <e—VC (T— - 2.03)) +0.69
1 0.21 (&) Ine 2
B —V, —2k
=096 || — ¢l 1.37+ = + = + 1.01
5 sps [(7) ¢ ( 005 (L) Ine+1 3 > (A28)

T —0.05 (&) Ine+1 3
3 1 o) ? o) 1/1 o) ? o)
(i) (o) ) (5 (o) ) +27)
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