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Abstract
Understanding the fundamental mechanism be-
hind the success of deep neural networks is one
of the key challenges in the modern machine
learning literature. Despite numerous attempts, a
solid theoretical analysis is yet to be developed.
In this paper, we develop a novel unified frame-
work to reveal a hidden regularization mecha-
nism through the lens of convex optimization.
We first show that the training of multiple three-
layer ReLU sub-networks with weight decay reg-
ularization can be equivalently cast as a convex
optimization problem in a higher dimensional
space, where sparsity is enforced via a group `1-
norm regularization. Consequently, ReLU net-
works can be interpreted as high dimensional fea-
ture selection methods. More importantly, we
then prove that the equivalent convex problem
can be globally optimized by a standard convex
optimization solver with a polynomial-time com-
plexity with respect to the number of samples
and data dimension when the width of the net-
work is fixed. Finally, we numerically validate
our theoretical results via experiments involving
both synthetic and real datasets.

1. Introduction
Deep neural networks have been extensively studied in ma-
chine learning, natural language processing, computer vi-
sion, and many other fields. Even though deep neural net-
works have provided dramatic improvements over conven-
tional learning algorithms (Goodfellow et al., 2016), fun-
damental mathematical mechanisms behind this success re-
main elusive. To this end, in this paper, we investigate the
implicit mechanisms behind deep neural networks by lever-
aging tools available in convex optimization theory.
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Figure 1: An architecture with three sub-networks, i.e.,
K = 3, where each is a three-layer ReLU network.

1.1. Related Work

The problem of learning the parameters of a deep neural
network is the subject of many studies due to its highly
non-convex and nonlinear nature. Despite their complex
structure, deep networks are usually trained by simple lo-
cal search algorithms such as Gradient Descent (GD) to
achieve a globally optimal set of parameters (Brutzkus
& Globerson, 2017). However, it has been shown that
these algorithms might also converge a local minimum in
pathological cases (Shalev-Shwartz et al., 2017; Goodfel-
low et al., 2016; Ergen & Pilanci, 2019). In addition to
this, (Ge et al., 2017; Safran & Shamir, 2018) proved that
Stochastic GD (SGD) is likely to get stuck at a local min-
imum when the number of parameters is small. Further-
more, (Anandkumar & Ge, 2016) reported that complicated
saddle points do exist in the optimization landscape of deep
networks. Since such points might be hard to escape for
local search algorithms, training deep neural networks is
a computationally challenging optimization problem (Das-
Gupta et al., 1995; Blum & Rivest, 1989; Bartlett & Ben-
David, 1999).
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(a) K = 1 (b) K = 50

Figure 2: The loss landscape of an architecture consisting of K three-layer ReLU networks trained on a synthetic dataset,
where the number of samples, features, and neurons are chosen as (n, d,m1) = (100, 10, 10), respectively. For the dataset,
we first randomly generate a data matrix by sampling a multivariate standard normal distribution and then obtain the
corresponding label vector by feeding the data matrix into a randomly initialized teacher network with m1 = 10.

In order to alleviate these training issues, a line of re-
search focused on designing new architectures that enjoy
a well behaved optimization landscape by leveraging over-
parameterization (Brutzkus et al., 2017; Du & Lee, 2018;
Arora et al., 2018; Neyshabur et al., 2018) and combin-
ing multiple neural network architectures, termed as sub-
networks, in parallel (Iandola et al., 2016; Szegedy et al.,
2017; Chollet, 2017; Xie et al., 2017; Zagoruyko & Ko-
modakis, 2016; Veit et al., 2016) as illustrated in Figure 1.
Such studies empirically proved that increasing the num-
ber of sub-networks yields less complicated optimization
landscapes so that GD generally converges to a global min-
imum. These empirical observations are due to the fact
that increasing the number of sub-networks yields a less
non-convex optimization landscape. To support this claim,
we also provide an experiment in Figure 2, where increas-
ing the number of sub-network clearly promotes convex-
ity of the loss landscape. In addition to better training
performance, neural network architectures with multiple
sub-networks also enjoy a remarkable generalization per-
formance so that various such architectures have been in-
troduced to achieve state-of-the-art performance in prac-
tice, especially for image classification tasks. As an exam-
ple, SqueezeNet (Iandola et al., 2016), Inception (Szegedy
et al., 2017), Xception (Chollet, 2017), and ResNext (Xie
et al., 2017) are combinations of multiple networks and
achieved notable improvements in practice.

1.2. Our Contributions

Our contributions can be summarized as follows:

• We introduce an exact analytical framework based on
convex duality to characterize the optimal solutions to
regularized deep ReLU network training problems. As

a corollary, we provide interpretations for the conver-
gence of local search algorithms such as SGD and the
loss landscape of these training problems. We also nu-
merically verify these interpretations via experiments in-
volving both synthetic and real benchmark datasets.

• We show that the training problem of an architecture with
multiple ReLU sub-networks can be equivalently stated
as a convex optimization problem. More importantly, we
prove that the equivalent convex problem can be globally
optimized in polynomial-time using standard convex op-
timization solvers. Therefore, we prove the polynomial-
time trainability of regularized ReLU networks with mul-
tiple nonlinear layers, which generalizes the recent two-
layer results in (Pilanci & Ergen, 2020; Ergen & Pilanci,
2020a;b) to a much broader class of neural network ar-
chitectures.

• Our analysis also reveals an implicit regularization struc-
ture behind the non-convex ReLU network training prob-
lems. In particular, we show that this implicit regular-
ization is a group `1-norm regularization, which encour-
ages sparsity for the equivalent convex problem in a high
dimensional space. We further prove that there is a di-
rect mapping between the original non-convex and the
equivalent convex training problems so that sparsity for
the convex problem implies a smaller number of sub-
networks for the original non-convex problem.

• Unlike the previous studies, our results hold for arbi-
trary convex loss functions including squared, cross en-
tropy, and hinge loss, and common regularization meth-
ods, e.g., weight decay.
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1.3. Notation

We denote matrices and vectors as uppercase and lowercase
bold letters, respectively. We use Ik to denote the identity
matrix of size k × k and 0 (or 1) to denote a vector/matrix
of zeros (or ones) with appropriate sizes. We denote the set
of integers from 1 to n as [n]. In addition, ‖ · ‖2 and ‖ · ‖F
denotes the Euclidean and Frobenius norms, respectively.
Furthermore, we define the unit `p-ball as Bp := {u ∈
Rd : ‖u‖p ≤ 1}. We also use 1[x ≥ 0] and (x)+ =
max{x, 0} to denote the elementwise 0-1 valued indicator
and ReLU, respectively.

1.4. Overview of Our Results

In this paper, we consider an architecture with K sub-
networks each of which is an L-layer ReLU network with
layer weights Wlk ∈ Rml−1×ml , ∀l ∈ [L], where m0 = d,
mL = 11, and ml denotes the number of neurons in the
lth hidden layer. Given an input data matrix X ∈ Rn×d
and the corresponding label vector y ∈ Rn, the regularized
network training problem can be formulated as follows

min
θ∈Θ
L
(

K∑
k=1

fθ,k(X),y

)
+ β

K∑
k=1

Rk(θ) , (1)

where Θ is the parameter space, L(·, ·) is an arbitrary
convex loss function, Rk(·) is the regularization func-
tion for the layer weights in the kth sub-network, and
β > 0 is a regularization parameter. In addition to this,
we compactly define the set of network parameters as
θ := {{Wlk}Ll=1}Kk=1, θ ∈ Θ and the output of each sub-
network as

fθ,k(X) :=
(
(XW1k)+ . . .w(L−1)k

)
+
wLk.

Remark 1. Notice that the function parallel architectures
include a wide range of neural network architectures in
practice. As an example, ResNets (He et al., 2016) are a
special case of this architecture. We first note that resid-
ual blocks are applied after ReLU in practice so that the
input to each block has nonnegative entries. Hence, for
this special case, we assume X ∈ Rn×d+ . Let us con-
sider a four-layer architecture with K = 2, W11 = W1,
W21 = W2, W12 = W22 = Id, w31 = w32 = w3, and
w41 = w42 = w4 then

fθ,k(X) =
2∑
k=1

((
(XW1k)+ W2k

)
+
w3k

)
+
w4k

=
((

(XW1)+ W2

)
+
w3

)
+
w4 + (Xw3)+ w4

1We consider scalar output networks for presentation simplic-
ity, however, all our derivations can be extended to vector output
networks as shown in Section A.7 of the supplementary file.

which corresponds to a shallow ResNet as depicted in Fig-
ure 1 of (Veit et al., 2016).

Throughout the paper, we consider the conventional re-
gression framework with weight decay regularization and
squared loss, i.e., L(fθ(X),y) = ‖fθ(X) − y‖22 and
R(θ) = 1

2‖θ‖22. However, our derivations also hold for ar-
bitrary convex loss functions including hinge loss and cross
entropy and vector outputs as proven in the supplementary
file. Thus, we consider the following optimization problem

P ∗ := min
θ∈Θ
L
(

K∑
k=1

fθ,k(X),y

)
+
β

2

K∑
k=1

L∑
l=L−1

‖Wlk‖2F ,

(2)

where Θ := {θ : ‖Wlk‖F ≤ 1, ∀l ∈ [L − 2], ∀k ∈ [K]}
without loss of generality.
Remark 2. In (2), we impose unit Frobenius norm con-
straints on the first L− 2 layer weights and regularize only
the last two layers. Although this might appear to limit the
effectiveness of the regularization on the network output,
in Lemma 1, we show that as long as the last two layers’
weights of each sub-network are regularized, the remaining
layer weights do not change the structure of the regulariza-
tion. They only contribute to the ratio between the training
error and regularization term. Therefore, one can undo this
by simply tuning β (see Section A.3 of the supplementary
file for details).

Next, we introduce a rescaling technique to equivalently
state the problem in (2) as an `1-norm minimization prob-
lem, which is critical for strong duality to hold.
Lemma 1. The following problems are equivalent 2:

min
θ∈Θ
L
(

K∑
k=1

fθ,k(X),y

)
+
β

2

K∑
k=1

L∑
l=L−1

‖Wlk‖2F

= min
θ∈Θp

L
(

K∑
k=1

fθ,k(X),y

)
+ β

K∑
k=1

|wLk|,

where Θp := {θ ∈ Θ : ‖Wlk‖F ≤ 1, ∀l ∈ [L −
2], ‖w(L−1)k‖2 ≤ 1, ∀k ∈ [K]}.

Using Lemma 1, we first take the dual of `1 equivalent of
(2) with respect to the output weights wLk and then change
the order of min-max to achieve the following dual prob-
lem, which provides a lower bound for the primal problem
(2)3

P ∗ ≥ D∗ := max
v
−L∗(v) (3)

s.t. max
θ∈Θp

∣∣∣vT ((XW1)+ . . .w(L−1)

)
+

∣∣∣ ≤ β,
2All the proofs are presented in the supplementary file.
3We present the details in Section A.6 of the supplementary

file.
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where L∗ is the Fenchel conjugate function defined as
(Boyd & Vandenberghe, 2004)

L∗(v) := max
z

zTv − L(z,y) .

Using this dual characterization, we first find a set of hid-
den layer weights via the optimality conditions (i.e. active
dual constraints). We then prove the optimality of these
weights via strong duality, i.e., P ∗ = D∗.

1.5. Prior Work (Zhang et al., 2019; Haeffele & Vidal,
2017; Pilanci & Ergen, 2020)

Here, we further clarify contributions and limitations of
some recent studies (Zhang et al., 2019; Haeffele & Vi-
dal, 2017; Pilanci & Ergen, 2020) that focus on the train-
ing problem of architectures with sub-networks through
the lens of convex optimization theory. (Haeffele & Vi-
dal, 2017) particularly analyzed the characteristics of the
local minima of the regularized training objective in (1).
However, the results are valid under several impractical as-
sumptions. As an example, they require all local minima
of (1) to be rank-deficient. Additionally, they assume that
the objective function (1) is twice differentiable, which is
not the case for non-smooth problems, e.g., training prob-
lems with ReLU activation. Furthermore, they require K
to be too large to be of practical use. Finally, their proof
techniques depend on finding a local descent direction of a
non-convex training problem, which might be NP hard in
general. Therefore, even though this study provided valu-
able insights for future research, it is far from explaining
observations in practical scenarios.

In addition to (Haeffele & Vidal, 2017), (Zhang et al.,
2019) provided some results on strong duality. They par-
ticularly showed that the primal-dual gap diminishes as the
number of sub-networks K increases. Although this study
is an important step to understand deep networks through
convex duality, it does not include any solid results for
finite-size networks. Moreover, their results require strict
assumptions: 1) the analysis only works for hinge loss and
linear networks; 2) the analysis requires the data matrix to
be included in the regularization term R(θ), thus, it is not
valid for commonly used regularizations such as weight de-
cay in (2); 3) they require assumptions on the regularization
parameter β.

Another closely related work (Pilanci & Ergen, 2020) stud-
ied convex optimization for ReLU networks and followed
by a series of papers (Sahiner et al., 2021; Ergen & Pilanci,
2021; Ergen et al., 2021; Gupta et al., 2021). Particularly,
the authors introduced an exact convex formulation to train
two-layer ReLU networks in polynomial-time for training
data X ∈ Rn×d of constant rank, where the network out-
put is fθ(X) :=

∑m
j=1 (Xuj)+ αj given the hidden layer

weights uj ∈ Rd and the output layer weights αj ∈ R.

However, their analysis does not extend to deep architec-
tures with more than one ReLU layer. The reason for this
limitation is that the composition of multiple ReLU lay-
ers is a significantly more challenging optimization prob-
lem. Moreover, in such a case, the complexity becomes
exponential-time due to the complex and combinatorial be-
havior of multiple ReLU layers.

2. Architectures with Three-layer ReLU
Sub-networks

Here, we consider K three-layer ReLU sub-networks, i.e.,
L = 3, trained with squared loss. Given a dataset {X,y},
the regularized training problem is as follows

P ∗ = min
θ∈Θ

1

2
‖fθ(X)− y‖22 +

β

2

K∑
k=1

(
‖w2k‖22 + w2

3k

)
,

(4)

where Θ := {θ : ‖W1k‖F ≤ 1, ∀k ∈ [K]} and

fθ(X) :=
K∑
k=1

fθ,k(X).

Using the rescaling in Lemma 1, (4) can be written as

P ∗ = min
θ∈Θp

1

2
‖fθ(X)− y‖22 + β‖w3‖1. (5)

We then take the dual with respect to w3 and then change
the order of min-max to obtain the following dual problem

P ∗ ≥D∗ := max
v
−1

2
‖v − y‖22 +

1

2
‖y‖22 (6)

s.t. max
θ∈Θp

∣∣∣vT ((XW1)+ w2

)
+

∣∣∣ ≤ β.
In order to obtain the bidual of (4), we again take the dual
of (6) with respect to v, which yields

P ∗B := min
µ

1

2

∥∥∥∥∥
∫
θ∈Θp

(
(XW1)+ w2

)
+
dµ(θ)− y

∥∥∥∥∥
2

2

+ β‖µ‖TV , (7)

where ‖µ‖TV is the total variation norm of the Radon
measure µ. We now note that (7) is an infinite-size reg-
ularized neural network training problem studied in (Bach,
2017), and it is convex. Therefore, strong duality holds,
i.e., D∗ = P ∗B . We also note that although (7) involves an
infinite dimensional integral, by Caratheodory’s theorem,
this integral form can be represented as a finite summa-
tion of at most n + 1 Dirac delta measures (Rosset et al.,
2007). Thus, we select µ′ =

∑K∗

i=1 w3i δ(θ − θi), where
K∗ ≤ n+ 1, to achieve the following finite-size problem

P ∗B = min
θ∈Θp

1

2

∥∥∥∥∥
K∗∑
i=1

fθ,i(X)− y

∥∥∥∥∥
2

2

+ β‖w3‖1. (8)
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Note that (8) is the same problem with (5) provided that
K ≥ K∗. Therefore, strong duality holds, i.e., P ∗ =
P ∗B = D∗. Using strong duality, we first characterize op-
timal hidden layer weights via the active constraints of the
dual problem. We then introduce a novel framework to rep-
resent the constraints in a convex form to obtain an equiva-
lent convex formulation for the primal problem (4).

We now represent the constraint in (6) as{
v : max

θ∈Θp

vT
(
(XW1)+ w2

)
+
≤ β

}
⋂{

v : max
θ∈Θp

−vT
(
(XW1)+ w2

)
+
≤ β

}
.

We first focus on a single-sided dual constraint

max
θ∈Θp

vT
(
(XW1)+ w2

)
+
≤ β. (9)

Noting that Θp = {θ ∈ Θ : ‖W1k‖F ≤ 1, ‖w2k‖2 ≤
1, ∀k ∈ [K]}, we then equivalently write the constraint in
(9) as

max
Ij∈{±1}

max
θ∈Θp

w2≥0

vT

m1∑
j=1

Ij (Xw1jw2j)+


+

≤ β, (10)

where Ij = sign(w2j) ∈ {+1,−1}. Now, modifying
‖W1‖F ≤ 1 as ‖w1j‖22 ≤ tj such that 1T t ≤ 1 and

defining w′1j =
√
w′2jw1j , where w′2j = w2

2j , yield

max
tj≥0

1T t≤1
Ij∈{±1}

max
‖w′1j‖

2
2/w

′
2j≤tj

1Tw′2≤1

w′2≥0

vT

m1∑
j=1

Ij
(
Xw′1j

)
+


+

≤ β.

(11)

We remark that (11) is non-convex due to the ReLU acti-
vation. Therefore, to eliminate ReLU without altering the
constraints, we introduce a notion of hyperplane arrange-
ment as follows.

Let H1 and H2 be the sets of all hyperplane arrangements
for the hidden layers, which are defined as

H1 :=
⋃{
{sign(Xw)} : w ∈ Rd

}
H2 :=

⋃{
{sign((XW1)+ w2)} : W1 ∈ Rd×m1 ,

w2 ∈ Rm1
}
.

We next define an alternative representation of the sign pat-
terns inH1 andH2, which is the collection of sets that cor-
respond to positive signs for each element inHj as follows

Sj :=
{
{∪hi=1{i}} : h ∈ Hj

}
, ∀j ∈ [2].

We note that ReLU is an elementwise function that masks
the negative entries of a vector/matrix. Hence, we define
two diagonal mask matrices D(Sj) ∈ Rn×n as D(Sj)ii :=
1[i ∈ Sj ]. We now enumerate all hyperplane arrangements
and signs, and index them in an arbitrary order, which are
denoted as Ij , D1ij , and D2l, where i ∈ [P1], l ∈ [P2],
P1 = |S1|, and P2 = |S2|. We then rewrite (11) as

max
i∈[P1]
l∈[P2]

max
tj≥0

1T t≤1
Ij∈{±1}

max
‖w′1j‖

2
2/w

′
2j≤tj

1Tw′2≤1

w′2≥0

vTD2l

m1∑
j=1

IjD1ijXw′1j

s.t. (2D1ij)− In)Xw′1j ≥ 0, ∀i, j,

(2D2l − In)

m1∑
j=1

IjD1ijXw′1j ≥ 0, ∀i, l,

where we use an alternative representation for ReLU as
(Xw1)+ = DXw1 provided that (2D − In)Xw1 ≥ 0.
Therefore, we can convert the non-convex dual constraints
in (9) to a convex constraint given fixed diagonal matrices
{D1ij}m1

j=1, D2l and a fixed set of signs {Ij}m1
j=1 (see Sec-

tion A.4 for details).

Using this new representation for the dual constraints, we
then take the dual of (6) to obtain the convex bidual form
of the primal problem (4) as described in the next theorem.

Theorem 1. The non-convex training problem in (4) can
be equivalently stated as a convex problem as follows

min
w,w′∈C

1

2

∥∥∥X̃ (w′ −w)− y
∥∥∥2

2
+ β (‖w‖2,1 + ‖w′‖2,1)

(12)

where ‖ · ‖2,1 is d dimensional group norm operator such
that given a vector u ∈ RdP , ‖u‖2,1 :=

∑P
i=1 ‖ui‖2,

where ui’s are the ordered d dimensional partitions of u.
Moreover, X̃ ∈ Rn×2dm1P1P2 and C are defined as

C :=
{
w ∈ R2dm1P1P2 :

(2D1ij − In)Xw+
ijl ≥ 0, (2D1ij − In)Xw−ijl ≤ 0,

(2D2l − In)

m1∑
j=1

D1ijXw±ijl ≥ 0, ∀i, j, l,±
}

X̃ :=

[
X̃s 0

0 X̃s

]
,

where w,w′ ∈ R2dm1P1P2 are the vectors con-
structed by concatenating {{{{w±ijl}P1

i=1}m1
j=1}P2

l=1}± and

{{{{w±′ijl}P1
i=1}m1

j=1}P2

l=1}±, respectively, and

X̃s :=
[
D21D111X . . . D2lD1ijX . . . D2P2

D1P1m1
X
]
.
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Difference between convex programs for two-layer (Pi-
lanci & Ergen, 2020) and three-layer (ours) networks:
(Pilanci & Ergen, 2020) introduced a convex program for
two-layer networks. In that case, since there is only a
single ReLU layer, the data matrix X is multiplied with
a single hyperplane arrangement matrix, namely Di, and
the effective high dimensional data matrix becomes X̃s =
[D1X . . . DPX]. However, our architecture in (4) has
two ReLU layers, combination of which can generate sig-
nificantly more complex features, which are associated
with local variables {w±ijl} that interact with data through
the multiplication of two diagonal matrices as X̃s =
[D21D111X . . . D2P2

D1P1m1
X]. In particular, a deep

network can be precisely interpreted as a high-dimensional
feature selection method due to convex group sparsity reg-
ularization, which encourages a parsimonious model. In
simpler terms, such deep ReLU networks are group lasso
models with additional linear constraints. Therefore, our
result reveals the impact of having additional layers and its
implications on the expressive power of a network.

Input

1 0 0

0 0 0

0 0 0

×

0 0 0

0 1 0

0 0 0

×

. . . 1 0 0

0 1 0

0 0 1

×

Output

Figure 3: Equivalent convex model for the network in Fig-
ure 1. Here, nonlinear ReLU layers are replaced with a lin-
ear layer and a transformation that maps to the input data
to higher dimensional space by multiplying it with fixed
diagonal matrices as detailed in Theorem 1.

The next result shows that there is a direct mapping be-
tween the solutions to (4) and (12). Therefore, once we
solve the convex program in (12), one can construct the op-
timal network parameters in their original form in (4) (see
Section A.5 for the explicit definitions of the mapping).
Proposition 1. An optimal solution to the non-convex
training problem in (4), i.e., {W∗

1k,w
∗
2k, w

∗
3k}Kk=1, can be

constructed using the optimal solution to (12), denoted as
(w∗,w′

∗
). Therefore, there is a direct mapping between

the architectures in Figure 1 and 3.

Remark 3. The problem in (12) can be approximated
by sampling a set of diagonal matrices {{D1ij}P̄1

i=1}m1
j=1

and {D2l}P̄2

l=1. As an example, one can generate random
vectors uij’s from an arbitrary distribution, e.g., uij ∼
N (0, Id), P̄1 times and then let D1ij = diag(1[Xuij ≥
0]), ∀i ∈ [P̄1], ∀j ∈ [m1]. Similarly, one can randomly
generate U1 ∈ Rd×m1 and u2 ∈ Rm1 P̄2 times and then
let D2l = diag

(
1
[
(XU1l)+ u2l ≥ 0

])
, ∀l ∈ [P̄2]. Then,

one can solve the convex problem in (12) using these hy-
perplane arrangements. In fact, SGD applied to the non-
convex problem in (4) can be viewed as an active set op-
timization strategy to solve the equivalent convex problem,
which maintains a small active support. We also note that
global optimums of the convex problem are the fixed points
for SGD, i.e., stationary points of (4). Furthermore, one
can bound the suboptimality of any solution found by SGD
for the non-convex problem using the dual of (12).

2.1. Multilayer Hyperplane Arrangements

It is known that the number of hyperplane arrangements for
the first layer, i.e., P1, can be upper-bounded as follows

P1 ≤ 2
r−1∑
k=0

(
n− 1

k

)
≤ 2r

(
e(n− 1)

r

)r
= O(nr)

(13)

for r ≤ n, where r := rank(X) ≤ d (Ojha, 2000; Stanley
et al., 2004; Winder, 1966; Cover, 1965). For the second
layer, we first note that the activations before ReLU can be
written as follows

m1∑
j=1

(Xw1j)+ w2j =

m1∑
j=1

(
Xw′j

)
+
Ij =

m1∑
j=1

IjD1jXw′j ,

which can also be formulated as a matrix-vector product[
I1D11X I2D12X . . . Im1D1m1X

]︸ ︷︷ ︸
X′

vec({w′j}m1
j=1})︸ ︷︷ ︸

w′

= X′w′,

where X′ ∈ Rn×m1d and w′ ∈ Rm1d. Therefore, given a
fixed set {Ij ,D1j}m1

j=1, the number of hyperplane arrange-
ments for X′ can be upper-bounded as follows

P ′2 ≤ 2r′
(
e(n− 1)

r′

)r′
≤ 2m1r

(
e(n− 1)

m1r

)m1r

,

where r′ := rank(X′) ≤ m1r since rank(X) = r and we
assume that m1r ≤ n. Since there exist 2 and P1 possible
choices for each Ij and D1j , respectively, the total num-
ber of hyperplane arrangements for the second layer can be
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Figure 4: Training cost of a three-layer architecture trained with SGD (5 initialization trials) on a synthetic dataset with
(n, d,m1, β, batch size) = (5, 2, 3, 0.002, 5) , where the green line with a marker represents the objective value obtained
by the proposed convex program in (12) and the red line with a marker represents the non-convex objective value in (4) of
a classical ReLU network constructed from the solution of convex program as described in Proposition 1. Here, we use
markers to denote the total computation time of the convex optimization solver.

Dataset Size Training Objective Test Error
n d SGD Convex SGD Convex

acute-inflamation (Czerniak & Zarzycki, 2003) 120 6 0.0029 0.0013 0.0224 0.0217
acute-nephritis (Czerniak & Zarzycki, 2003) 120 6 0.0039 0.0021 0.0198 0.0192

balloons (Dua & Graff, 2017) 16 4 0.7901 0.6695 0.2693 0.1496
breast-tissue (Dua & Graff, 2017) 106 9 0.5219 0.3979 1.4082 1.0377

fertiliy (Dua & Graff, 2017) 100 9 0.125 0.1224 0.3551 0.5050
pittsburg-bridges-span (Dua & Graff, 2017) 92 7 0.1723 0.1668 1.4373 1.3112

Table 1: Training objective and test error of a three-layer architecture trained using SGD and the convex program in (12),
i.e., denoted as “Convex”, on some small scale UCI datasets with (m1,K, β, batch size) = (7, 10, 0.1, bn/8c).

upper-bounded as follows

P2 ≤ P ′2(2P1)m1 ≤ m1r2
m1+1Pm1

1

(
e(n− 1)

m1r

)m1r

≤ 22m1+1(e(n− 1))2m1r

mm1r−1
1 r2m1r−m1−1

= O(nm1r), (14)

which is polynomial in n and d since m1 and r are fixed
scalars.

Remark 4. For convolutional networks, we operate on the
patch matrices {Xb}Bb=1 instead of X, where Xb ∈ Rn×h
and h denotes the filter size. Therefore, even when the
data matrix is full rank, i.e., r = d, the number of rel-
evant hyperplane arrangements in (13) is O(nrc), where
rc := rank([X1; . . . ;XB ]) ≤ h� d. As an example, if we
consider a convolutional network withm1 3×3 filters, then
rc ≤ 9 independent of the dimension d. As a corollary, this
shows that the parameter sharing structure in CNNs signif-
icantly limits the number of hyperplane arrangements after
ReLU activation, which might be one of the key factors be-
hind their generalization performance in practice.

Remark 5. We can also compute the number of the hyper-

plane arrangements in the lth layer, i.e., Pl. We first note
that if we use the same approach for P3 then due to the mul-
tiplicative structure in (14), we have P3 ≤ P ′3(2P2)m2 ≤
O(nm2m1r). Therefore, applying this relation recursively
yields Pl ≤ O(nr

∏l−1
j=1mj ), which is also a polynomial

term in both n and d for fixed data rank r and fixed width
{mj}l−1

j=1.

2.2. Training Complexity

In this section, we analyze the computational complexity
to solve the convex problem in (12). We first note that (12)
has 4dm1P1P2 variables and 4nP1P2(m1 +1) constraints.
Thus, given the bound on the hyperplane arrangements in
(13) and (14), a standard convex optimization solver, e.g.,
an interior point method, can globally optimize (12) with
a polynomial-time complexity, i.e., O(d3m3

1n
3(m1+1)r).

This result might also be extended to arbitrarily deep net-
works as detailed below.

Corollary 1. Remark 5 shows that L-layer
architectures can be globally optimized with
O
(
d3
(∏L−2

j=1 m
3
j

)
n3r(1+

∑L−2
l=1

∏l
j=1mj)

)
complex-
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(a) CIFAR-10 (b) Fashion-MNIST

Figure 5: Accuracy of a three-layer architecture trained using the non-convex formulation (4) and the proposed convex
program (12), where we use (a) CIFAR-10 with (n, d,m1,K, β, batch size) = (5x104, 3072, 100, 40, 10−3, 103) and (b)
Fashion-MNIST with (n, d,m1,K, β, batch size) = (6x104, 784, 100, 40, 10−3, 103). We note that the convex model is
trained using (a) SGD and (b) Adam and we use the approximation in Remark 3 for the convex programs.

ity, which is polynomial in n, d for fixed rank and widths.

3. Numerical Results
In this section4, we present several numerical experiments
validating our theory in the previous section. We first con-
duct an experiment on a synthetic dataset with (n, d) =
(5, 2). For this dataset, we first randomly generate d dimen-
sional data samples {xi}ni=1 using a multivariate Gaussian
distribution with zero mean and identity covariance, i.e.,
xi ∼ N (0, Id). We then forward propagate these sam-
ples through a randomly initialized three-layer architecture
withm1 = 3 andK = 5 to obtain the corresponding labels
y ∈ Rn. We then train the three-layer architecture in (4) on
this synthetic dataset using SGD and our convex approach
in (12). In Figure 4, we plot the training objective values
with respect to the computation time taken by each algo-
rithm, where we include 5 independent initialization trials
for SGD. Moreover, for the convex approach, we plot both
the objective value of the convex program in (12) and its
non-convex equivalent constructed as described in Propo-
sition 1. Here, we observe that whenK is small, SGD trials
tend to get stuck at a local minimum. Furthermore, as we
increase the number of sub-networks, all the trials are able
to converge to the global minimum achieved by the con-
vex program. We also note that these observations are also
consistent with the landscape visualizations in Figure 2.

In order to validate our theory, we also perform several ex-
periments on some small scale real datasets available in
UCI Machine Learning Repository (Dua & Graff, 2017).

4Additional experiments and details on the numerical results
can be found in Section A.1 the supplementary file.

For these datasets, we consider a regression framework
with (m1,K) = (7, 10) and compare the training and test
performance of SGD and the convex program in (12). As
reported in Table 1, our convex approach achieves a lower
training objective for all the datasets. Although the con-
vex approach also obtains lower test errors for five out of
six datasets, there is a case where SGD achieves better test
performance, i.e., the fertility dataset in Table 1. We be-
lieve that this is an interesting observation related to the
generalization properties of SGD and the convex approach
and leave this as an open problem for future research.

We also conduct an experiment on CIFAR-10 (Krizhevsky
et al., 2014) and Fashion-MNIST (Xiao et al., 2017). Here,
we consider a ten class classification problem using an ar-
chitecture with (m1,K) = (100, 40), and report the test
and training accuracies. In Figure 5, we provide these val-
ues with respect to time. This experiment verifies the per-
formance boost provided by training on the convex formu-
lations.

4. Concluding Remarks
We presented a convex analytic framework to character-
ize the optimal solutions to an architecture constructed by
combining multiple deep ReLU networks in parallel. Par-
ticularly, we first derived an exact equivalent formulation
for the non-convex primal problem using convex duality.
This formulation has two significant advantages over the
non-convex primal problem. First, since the equivalent
problem is convex, it can be globally optimized by standard
convex solvers without requiring any exhaustive search to
tune hyperparameters, e.g., learning rate and initialization,
or heuristics such as dropout. Second, we proved that glob-
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ally optimizing the equivalent problem has polynomial-
time complexity with respect to the number of samples n
and the feature dimension d. Therefore, we proved the
polynomial-time trainability of regularized ReLU networks
with more than two layers, which was previously known
only for basic two-layer ReLU networks (Pilanci & Ergen,
2020). More importantly, since the equivalent problem is
convex, one can achieve further interpretations and develop
faster solvers by utilizing the tools in convex optimization.

Our approach also revealed an implicit regularization struc-
ture behind the original non-convex training problem. This
structure is known as group `1-regularization that encour-
ages sparsity between certain groups of parameters. As a
corollary, the regularization in the convex problem implies
that the original non-convex training problem achieves
sparse solutions at global minima, where sparsity is over
the number sub-networks. Our analysis also demystified
mechanisms behind empirical observations regarding the
convergence of SGD (see Figure 4) and loss landscape (see
Figure 2 and (Zhang et al., 2019; Haeffele & Vidal, 2017)).

We conclude with the limitations of this work and some
open research problems:

• The architectures studied in this work has three lay-
ers (two ReLU layers). Notice that even though we
already provided some complexity results for deeper
architectures, deriving the corresponding convex rep-
resentations still remain an open problem.

• In order to utilize convex duality, we put unit `2-norm
constraints on the first L − 2 layer weights, which do
not reflect the common practice. Therefore, we con-
jecture that weight decay regularization might not be
the proper way of regularizing deep ReLU networks.

• When the data matrix is full rank, our approach has
exponentia-time complexity, which is unavoidable un-
less P = NP as detailed in (Pilanci & Ergen, 2020).
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Tütüncü, R., Toh, K., and Todd, M. Sdpt3—a matlab soft-
ware package for semidefinite-quadratic-linear program-
ming, version 3.0. Web page http://www. math. nus. edu.
sg/mattohkc/sdpt3. html, 2001.

Veit, A., Wilber, M. J., and Belongie, S. Residual networks
behave like ensembles of relatively shallow networks. In
Advances in neural information processing systems, pp.
550–558, 2016.

Winder, R. Partitions of n-space by hyperplanes. SIAM
Journal on Applied Mathematics, 14(4):811–818, 1966.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms, 2017.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Aggre-
gated residual transformations for deep neural networks.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 1492–1500, 2017.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

Zhang, H., Shao, J., and Salakhutdinov, R. Deep neural net-
works with multi-branch architectures are intrinsically
less non-convex. In The 22nd International Conference
on Artificial Intelligence and Statistics, pp. 1099–1109,
2019.

https://openreview.net/forum?id=fGF8qAqpXXG
https://openreview.net/forum?id=fGF8qAqpXXG
http://arxiv.org/abs/1902.05040
http://arxiv.org/abs/1902.05040
https://projecteuclid.org:443/euclid.pjm/1103040253
https://projecteuclid.org:443/euclid.pjm/1103040253

