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Abstract

We give algorithms for sampling several structured logconcave families to high accuracy.! We
further develop a reduction framework, inspired by proximal point methods in convex optimiza-
tion, which bootstraps samplers for regularized densities to generically improve dependences on
problem conditioning k from polynomial to linear. A key ingredient in our framework is the
notion of a “restricted Gaussian oracle” (RGO) for g : R¢ — R, which is a sampler for distribu-
tions whose negative log-likelihood sums a quadratic (in a multiple of the identity) and g. By
combining our reduction framework with our new samplers, we obtain the following bounds for
sampling structured distributions to total variation distance e.

e For composite densities exp(—f(x) — g(x)), where f has condition number x and convex

(but possibly non-smooth) g admits an RGO, we obtain a mixing time of O(xdlog® sd),
matching the state-of-the-art non-composite bound [L.ST20]. No composite samplers with
better mixing than general-purpose logconcave samplers were previously known.

e For logconcave finite sums exp(—F(z)), where F(z) = 1 >_ie[n fi(x) has condition number

Kk, we give a sampler querying 6(n + rkmax(d, vVnd)) gradient oracles” to {f;}icin)- No
high-accuracy samplers with nontrivial gradient query complexity were previously known.

e For densities with condition number x, we give an algorithm obtaining mixing time
O(kd log? £d) improving [L.ST20] by a logarithmic factor with a significantly simpler anal-

€

ysis. We also show a zeroth-order algorithm attains the same query complexity.
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"We say a sampler is “high-accuracy” if its mixing time has polylogarithmic dependence on the target accuracy e.

2For convenience of exposition, the O notation hides logarithmic factors in the dimension d, problem conditioning
K, desired accuracy ¢, and summand count n (when applicable). A first-order (gradient) oracle for f : R? — R returns
(f(z),Vf(z)) on input =, and a zeroth-order (value) oracle only returns f(x).
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1 Introduction

Since its study was pioneered by the celebrated randomized convex body volume approximation
algorithm of Dyer, Frieze, and Kannan [DFK91], designing samplers for logconcave distributions
has been a very active area of research in theoretical computer science and statistics with many
connections to other fields. In a generic form, the problem can be stated as: sample from a
distribution whose negative log-density is convex, under various access models to the distribution.

Developing efficient algorithms for sampling from structured logconcave densities is a topic that has
received significant recent interest due to its widespread practical applications. There are many
types of structure which densities commonplace in applications may possess that are exploitable
for improved runtimes. Examples of such structure include derivative bounds (“well-conditioned
densities”) and various types of separability (e.g. “composite densities” corresponding to possibly
non-smooth regularization or restrictions to a set, and “logconcave finite sums” corresponding to
averages over multiple data points).® Building an algorithmic theory for sampling these latter two
families, which are not well-understood in the literature, is a primary motivation of this work.

There are strong parallels between the types of structured logconcave families garnering recent
attention and the classes of convex functions known to admit efficient first-order optimization
algorithms. Notably, gradient descent and its accelerated counterpart [Nes83] are well-known to
quickly optimize a well-conditioned function, and have become ubiquitous in both practice and
theory. Similarly, various methods have been developed for efficiently optimizing non-smooth but
structured composite objectives [BT09] and well-conditioned finite sums [All17].

Logconcave sampling and convex optimization are intimately related primitives (cf. e.g. [BV04,
AHI16]), so it is perhaps unsurprising that there are analogies between the types of structure al-
gorithm designers may exploit. Nonetheless, our understanding of the complexity landscape for
sampling is quite a bit weaker in comparison to counterparts in the field of optimization; few lower
bounds are known for the complexity of sampling tasks, and obtaining stronger upper bounds is
an extremely active research area (contrary to optimization, where matching bounds exist in many
cases). Moreover (and perhaps relatedly), the toolkit for designing logconcave samplers is compar-
atively lacking; for many important primitives in optimization, it is unclear if there are analogs
in sampling, possibly impeding improved bounds. Our work broadly falls under the themes of (1)
understanding which types of structured logconcave distributions admit efficient samplers, and (2)
leveraging connections between optimization and sampling for algorithm design. We address these
problems on two fronts, which constitute the primary technical contributions of this paper.

1. We give a general reduction framework for bootstrapping samplers with mixing times with
polynomial dependence on a conditioning measure x to mixing times with linear dependence
on k. The framework is heavily motivated by a perspective on prozimal point methods in
structured convex optimization as instances of optimizing composite objectives, and leverages
this connection via a surprisingly simple analysis (cf. Theorem 1).

2. We develop novel “base samplers” for composite logconcave distributions and logconcave finite
sums (cf. Theorems 2, 3). The former is the first composite sampler with stronger guarantees
than those known in the general logconcave setting. The latter constitutes the first high-
accuracy finite sum sampler whose gradient query complexity improves upon the naive strategy
of querying full gradients of the negative log-density in each iteration.

Using our novel base samplers within our reduction framework, we obtain state-of-the-art samplers

3We make this terminology more precise in Section 2.1, which contains various definitions used in this paper.



for all of the aforementioned structured families, i.e. well-conditioned, composite, and finite sum,
as Corollaries 1, 2, and 3. We emphasize that even without our reduction technique, the guarantees
of our base samplers for composite and finite sum-structured densities are the first of their kind.
However, by boosting their mixing via our reduction, we obtain guarantees for these structured dis-
tribution families which are essentially the best one can hope for without a significant improvement
in the most commonly studied well-conditioned regime (cf. discussion in Section 1.1).

We now formally state our results in Section 1.1, and situate them in the literature in Section 1.2.
Section 1.3 is a technical overview of our approaches for developing our base samplers for composite
and finite sum-structured densities (Sections 1.3.1 and 1.3.2), as well as our proximal reduction
framework (Section 1.3.3). Finally, Section 1.5 gives a roadmap for the rest of the paper.

1.1 Our results

Before stating our results, we first require the notion of a restricted Gaussian oracle, whose definition
is a key ingredient in giving our reduction framework as well as our later composite samplers.

Definition 1 (Restricted Gaussian oracle). O(\,v) is a restricted Gaussian oracle (RGO) for
convex g : R* — R if it returns

1
O(\,v) « sample from the distribution with density o exp <_ﬁ |l — ng - g(:z:)) .

In other words, an RGO asks to sample from a multivariate Gaussian (with covariance a multiple
of the identity), “restricted” by some convex function g. Intuitively, if we can reduce a sampling
problem for the density o exp(—g) to calling an RGO a small number of times with a small value of
A, each RGO subproblem could be much easier to solve than the original problem. This can happen
for a variety of reasons, e.g. if the regularized density is extremely well-conditioned, or because
it inherits concentration properties of a Gaussian. This idea of reducing a sampling problem to
multiple subproblems, each implementing an RGO, underlies the framework of Theorem 1. Because
the idea of regularization by a large Gaussian component repeatedly appears in this paper, we make
the following more specific definition for convenience, which lower bounds the size of the Gaussian.

Definition 2 (n-RGO). We say O(X\,v) is an n-restricted Gaussian oracle (n-RGO) if it satisfies
Definition 1 with the restriction that parameter A is required to be always at most n in calls to O.

Variants of our notion of an RGO have implicitly appeared previously [CV18, MFWBI19], and
efficient RGO implementation was a key subroutine in the fastest sampling algorithm for general
logconcave distributions [CV18]. It also extends a similar oracle used in composite optimization,
which we will discuss shortly. However, the explicit use of RGOs in a framework such as Theorem 1
is a novel technical innovation of our work, and we believe this abstraction will find further uses.

Proximal reduction framework. In Section 3, we prove correctness of our proximal reduction
framework, whose guarantees are stated in the following Theorem 1.

Theorem 1. Let 7 be a distribution on R with ‘é—’;(x) X exp(—foracle(T)) such that foracle @S -
strongly convez, and let e € (0,1). Let n < %, T = @(#log 77%6) for some B > 1, and O be a
N-RGO for foracle- Algorithm 1, initialized at the minimizer of foracle, Tuns in T iterations, each

querying O a constant number of times, and obtains € total variation distance to .

In other words, if we can implement an n-RGO for a p-strongly convex function foracle in time Trco,

we can sample from exp(— foracle) in time 6(% - Trco). To highlight the power of this reduction



framework, suppose there was an existing sampler A for densities o exp(—f) with mixing time
O(k'v/d), where f : R? — R is L-smooth, p-strongly convex, and has condition number x = ﬁ (cf.

Section 2.1 for definitions).* Choosing 1 = % and foracle ¢ f in Theorem 1 yields a sampler whose
mixing time is O(k - Trgo), where Trgo is the cost of sampling from a density proportional to

L
exp (5 lle ~ 3 - £@))

for some v € R%. However, observe that this distribution has a negative log-density with constant

condition number %—iﬁ < 2! By using A as our RGO, we have Trgo = O(V/d), and the overall

mixing time is 9] (/i\/a) Leveraging Theorem 1 in applications, we obtain the following new results,
improving mixing of various “base samplers” which we bootstrap as RGOs for regularized densities.

Well-conditioned densities. In [LST20], it was shown that a variant of Metropolized Hamil-
tonian Monte Carlo obtains a mixing time of 6(/{(1 log® %l) for sampling a density on R? with
condition number k. The analysis of [LST20] was somewhat delicate, and required reasoning about
conditioning on a nonconvex set with desirable concentration properties. In Section 4.1, we prove

Corollary 1, improving [L.ST20] by roughly a logarithmic factor with a significantly simpler analysis.

Corollary 1. Let 7 be a distribution on R? with fl—g(az) ox exp (—f(x)) such that f is L-smooth and

w-strongly convez, and let € € (0,1), kK = % Assume access to x* = argmin,cga f(x). Algorithm 1

with n = m using Algorithm 2 as a restricted Gaussian oracle for f uses O(rdlog klog %d)
gradient queries in expectation, and obtains € total variation distance to 7.

We include Corollary 1 as a warmup for our more complicated results, as a way to showcase the use
of our reduction framework in a slightly different way than the one outlined earlier. In particular,
in proving Corollary 1, we will choose a significantly smaller value of 7, at which point a simple
rejection sampling scheme implements each RGO with expected constant gradient queries.

We give another algorithm matching Corollary 1 with a deterministic query complexity bound as
Corollary 5. The algorithm of Corollary 5 is interesting in that it is entirely a zeroth-order algo-
rithm, and does not require access to a gradient oracle. To our knowledge, in the well-conditioned
optimization setting, no zeroth-order query complexities better than roughly \/kd are known, e.g.
simulating accelerated gradient descent with a value oracle; thus, our sampling algorithm has a
query bound off by only ON(\/E) from the best-known optimization algorithm. We are hopeful this
result may help in the search for query lower bounds for structured logconcave sampling.

Composite densities with a restricted Gaussian oracle. In Section 5, we develop a sampler
for densities on R? proportional to exp(—f(x) — g(z)), where f has condition number x and g
admits a restricted Gaussian oracle O. We state its guarantees here.

Theorem 2. Let 7 be a distribution on RY with 4= (x) o exp (— f(z) — g(x)) such that f is L-smooth
and p-strongly convez, and let e € (0,1). Let n < m (where k = ﬁ), T = @(# log(%d)),
and let O be an-RGO for g. Further, assume access to the minimizer v* = argmingcpa{ f(z)+g(x)}.
There is an algorithm which runs in T iterations in expectation, each querying a gradient oracle of

f and O a constant number of times, and obtains € total variation distance to 7.

The assumption that the composite component g admits an RGO can be thought of as a measure

4No sampler with mixing time scaling as poly(m)\/ﬁ is currently known.



of “simplicity” of g. This mirrors the widespread use of a proximal oracle as a measure of simplicity
in the context of composite optimization [BT09], which we now define.

Definition 3 (Proximal oracle). O(\,v) is a proximal oracle for convex g : R — R if it returns

O(\,v)  argmin g {% o — ]2 + g(m)} .

Many regularizers g in defining composite optimization objectives, which are often used to enforce a
quality such as sparsity or “simplicity” in a solution, admit efficient proximal oracles. In particular,
if the proximal oracle subproblem admits a closed form solution (or otherwise is computable in O(d)
time), the regularized objective can be optimized at essentially no asymptotic loss. It is readily
apparent that our RGO (Definition 1) is the extension of Definition 3 to the sampling setting.
In [MFWBI19], a variety of regularizations arising in practical applications including coordinate-
separable g (such as restrictions to a coordinate-wise box, e.g. for a Bayesian inference task where we
have side information on the ranges of parameters) and ¢; or group Lasso regularized densities were
shown to admit RGOs. Our composite sampling results achieve a similar “no loss” phenomenon
for such regularizations, with respect to existing well-conditioned samplers.

By choosing the largest possible value of 7 in Theorem 2, we obtain an iteration bound of 5(/12d).
In Section 4.2, we prove Corollary 2, which improves Theorem 2 by roughly a & factor.

Corollary 2. Let 7 be a distribution on R® with Z—’;(x) o exp(—f(x)—g(x)) such that f is L-smooth
and p-strongly convex, and let € € (0,1), k = L. Assume access to x* = argmingcga{f(2) + g(z)}
and let O be a restricted Gaussian oracle for g. There is an algorithm (Algorithm 1 using Theorem 2
as a restricted Gaussian oracle) which runs in O(kd log® ﬂl) iterations in expectation, each querying

€
a gradient of f and O a constant number of times, and obtains € total variation distance to .

To sketch the proof, choosing 7 = 7 in Theorem 1 yields an algorithm running in 5(#) = O(k)
iterations. In each iteration, the RGO subproblem asks to sample from the distribution whose
negative log-density is f(x) + g(z) + % ||z — v||3 for some v € R%, so we can call Theorem 2, where
the “well-conditioned” portion f(z) +% ||z — ng has constant condition number. Thus, Theorem 2

runs in 5((1) iterations to solve the subproblem, yielding the result. In fact, Corollary 2 nearly
matches Corollary 1 in the case g = 0 uniformly. Surprisingly, this recovers the runtime of [LST20]
without appealing to strong gradient concentration bounds (e.g. [LST20], Theorem 3.2).

Logconcave finite sums. In Section 6, we initiate the study of mixing times for sampling
logconcave finite sums with polylogarithmic dependence on accuracy. We give the following result.

Theorem 3. Let 7 be a distribution on R? with ‘é—;(x) o exp(—F(z)), where F(z) = 23" | fi(x)

n
is p-strongly convex, f; is L-smooth and convex Vi € [n], k = %, and € € (0,1). Assume access to

x* = argmin,cgaF'(x). Algorithm 6 uses O (,‘<;2dlog4 "—’:d) value queries to summands { fi}icin), and
obtains € total variation distance to .

For a zeroth-order algorithm, Theorem 3 serves as a surprisingly strong baseline as it nearly matches
the previously best-known bound for zeroth-order well-conditioned sampling when n = 1; however,
when e.g. k & d, the complexity bound is at least cubic. By using Theorem 3 within the framework
of Theorem 1, we obtain the following improved result.



Corollary 3 (Improved first-order logconcave finite sum sampling). In the setting of Theorem 3,
Algorithm 1 using Algorithm 6 and SVRG [JZ13] as a restricted Gaussian oracle for F uses

0 <nlog (n_mi) + kVndlog®® <ﬁl> + kdlog® <ﬁl>> =0 <n + kK max <d, \/nd>>
€ € €

queries to first-order oracles for summands { fi}ie[n], and obtains € total variation distance to m.

Corollary 3 has several surprising properties. First, its bound when n = 1 gives yet another way of
(up to polylogarithmic factors) recovering the runtime of [LST20] without gradient concentration.
Second, up to a O(max(1, \/% )) factor, it is essentially the best runtime one could hope for without

an improvement when n = 1. This is in the sense that O(kd) is the best runtime for n = 1, and to
our knowledge every efficient well-conditioned sampler requires minimizer access, i.e. 0] (n) gradient
queries [WS16]. Interestingly, when n = 1, Algorithm 6 can be significantly simplified, and becomes
the standard Metropolized random walk [DCWY18]; this yields Corollary 5, an algorithm attaining
the iteration complexity of Corollary 1 while only querying a value oracle for f.

1.2 Previous work

Logconcave sampling is a problem that, within the theoretical computer science field, has its origins
in convex body sampling (a problem it generalizes). A long sequence of developments have made
significant advances in the general model, where only convexity is assumed about the negative
log-density, and only value oracle access is given. In this prior work discussion, we focus on more
structured cases where all or part of the negative log-density has finite condition number, and refer
the reader to [Vem05, LV06a, CV15] for an account on progress in the general case.

Well-conditioned densities. Significant recent efforts in the machine learning and statistics
communities focused on obtaining provable guarantees for well-conditioned distributions, starting
from pioneering work of [Dall7], and continued in e.g. [CCBJ18, DR18, CV19, CDWY19, DCWY18,
DM19a, DMM19, LSV18, MMW 19, SL19, LST20]. In this setting, many methods based on dis-
cretizations of continuous-time first-order processes (such as the Langevin dynamics) have been
proposed. Typically, error guarantees come in two forms: either in the 2-Wasserstein (WW3) dis-
tance, or in total variation (TV). The line [DCWY18, CDWY19, LST20] has brought the gradient
complexity for obtaining ¢ TV distance to 5(/{(1) where d is the dimension, by exploiting gradient
concentration properties. For progress in complexities depending polynomially on €', attaining
W, guarantees (typically incomparable to TV bounds), we defer to [SL.19], the state-of-the-art using
5(/1%6_% + me_%) queries to obtain Wy distance e/du~! from the target.” We note incomparable
guarantees can be obtained by assuming higher derivative bounds (e.g. a Lipschitz Hessian); our
work uses only the minimal assumption of bounded second derivatives.

Composite densities. Recent works have studied sampling from densities of the form (1), or
its specializations (e.g. restrictions to a convex set). Several [Perl6, BDMP17, Berl8] are based
on Moreau envelope or proximal regularization strategies, and demonstrate efficiency under more
stringent assumptions on the structure of the composite function g, but under minimal assumptions
obtain fairly large provable mixing times €2(d°). Proximal regularization algorithms have also been
considered for non-composite sampling [Wib19]. Another discretization strategy based on projec-
tions was studied by [BEL18], but obtained mixing time Q(d”). Finally, improved algorithms for
special constrained sampling problems have been proposed, such as simplex restrictions [HKRC18].

SHere, 1/dp~" is the effective diameter; this accuracy measure allows for scale-invariant Wa guarantees.



Method Gradient oracle complexity
11/1)/2 S 6’ M - 1 4/3 1”5/2 S 6\/dﬂ_1 2/3
SAGA-LD [CFM* 18] L T S P
SVRG-LD [CFM* 18] n SoVdindtMd | s n+ 5 4 SEMYVE
4 1.5 4
CV-ULD [CFMT18] 17} + ff_jg_ 1 n+ e
SVRG-LD [ZXC18] n 4 BEVAEMd | avnd n t BV | m/R
7/641/6 1/3 7/6
State-of-the-art, n = 1 [SL19] RFTdS + "gT i+ 25
Method Gradient oracle complexity (TV < ¢)
Corollary 3 n + kd + kvVnd
State-of-the-art, n = 1 [LST20] kd

Table 1: Complexity of sampling from e=¥(*) where F(z) = 1 Zie[n} fi(z) on R? is p-strongly

n
convex, each f; is convex and L-smooth, and k = % For relevant lines, M is the Lipschitz constant

of the Hessian V2F', which our algorithm has no dependence on. Complexity is measured in terms of
nkd

the number of calls to f; or V f; for summands {f;}c[,). We hide polylog(*£¢) factors for simplicity.

Of particular relevance and inspiration to this work is [MFWBI19]. By generalizing and adapting
Metropolized HMC algorithms of [DCWY 18, CDWY19], adopting a Moreau envelope strategy, and
using (a stronger version of) the RGO access model, [MFWB19] obtained a runtime which in the
best case scales as O (/{2d), similar to the guarantee of our base sampler in Theorem 2. However,
this result required a variety of additional assumptions, such as access to the normalization factor
of restricted Gaussians, Lipschitzness of g, warmness of the start, and various problem parameter
tradeoffs. The general problem of sampling from (1) under minimal assumptions more efficiently
than general-purpose logconcave algorithms is to the best of our knowledge unresolved (even under
restricted Gaussian oracle access), a novel contribution of our mixing time bound. Our results also
suggest that the RGO is a natural notion of tractability for the composite sampling problem.

Logconcave finite sums. Since [WT11] proposed the stochastic gradient Langevin dynamics,
which at each step stochastically estimates the full gradient of the function, there has been a
long line of work giving bounds for this method and other similar algorithms [DK19, GGZ18,
SKR19, BCM 18, NF19]. These convergence rates depend heavily on the variance of the stochastic
estimates. Inspired by variance-reduced methods in convex optimization, samplers based on low-
variance estimators have also been proposed [DRW 16, DSM*16, BFRT19, BFFN19, NDH" 17,
CWZ717, ZXG18, CEFMT18]. Although our reduction-based approach is not designed specifically
for solving problems of finite sum structure, our speedup can be viewed as due to a lower variance
estimator implicitly defined through the oracle subproblems of Theorem 1 via repeated re-centering.

In Table 1, we list prior runtimes [ZXG18, CFM ™ 18] for sampling logconcave finite sums; note these
results additionally require bounded higher derivatives (with the exception of the x* dependence),
obtain guarantees only in Wasserstein distance, and have polynomial dependences on e~!. On the
other hand, our reduction-based approach obtains total variation bounds with linear dependence
on « and polylogarithmic dependence on €. Our bound also simultaneously matches the state-of-
the-art bound when n = 1, a feature not shared by prior stochastic algorithms. To our knowledge,
no previous nontrivial® bounds were known in the high-accuracy regime before our work.

5 As mentioned previously, one can always compute the full VF in every iteration in a well-conditioned sampler.



Preliminary version. A preliminary version of this work, containing the results of Section 5,
appeared as [STL20]. The preliminary version also contained an experimental evaluation of the
algorithm in Section 5 for the task of sampling a (non-diagonal covariance) multivariate Gaussian
restricted to a box, and demonstrated the efficacy of our method in comparison to general-purpose
logconcave samplers (i.e. the hit-and-run method [LV06c]). The focus of the present version is giving
theoretical guarantees for structured logconcave sampling tasks, so we omit empirical evaluations,
and defer an evaluation of the new methods developed in this paper to interesting follow-up work.

1.3 Technical overview
1.3.1 Composite logconcave sampling

We study the problem of approximately sampling from a distribution 7 on R?, with density

dm(x)
dz

ocexp (= f(x) — g()). (1)

Here, f : RY — R is assumed to be “well-behaved” (i.e. has finite condition number), and g : R — R
is a convex, but possibly non-smooth function. This problem generalizes the special case of sampling
from exp(—f(x)) for well-conditioned f, simply by letting g vanish. Even the specialization of (1)
where g indicates a convex set (i.e. is 0 inside the set, and oo outside) is not well-understood; existing
mixing time bounds for this restricted setting are large polynomials in d [BDMP17, BEL18], and
are typically weaker than guarantees in the general logconcave setting [LV06¢, LVO6b]. This is in
contrast to the convex optimization setting, where first-order methods readily generalize to solve
problem families such as mingey f(z), where X C R is a convex set, as well as its generalization

min f (z) + g(z), where g : R — R is convex and admits a proximal oracle. (2)
zeR

We defined proximal oracles in Definition 3; in short, they are prodecures which minimize the sum
of a quadratic and g. Definition 3 is desirable as many natural non-smooth composite objectives
arising in learning settings, such as the Lasso [Tib96] and elastic net [ZH05], admit efficient proximal
oracles. It is clear that the definition of a proximal oracle implies it can also handle arbitrary sums of
linear functions and quadratics, as the resulting function can be rewritten as the sum of a constant
and a single quadratic. The seminal work [BT09] extends fast gradient methods to solve (2) via
proximal oracles, and has prompted many follow-up studies.

Motivated by the success of the proximal oracle framework in convex optimization, we study sam-
pling from the family (1) through the lens of RGOs, a natural extension of Definition 3. The main
result of Section 5 is a “base” algorithm efficiently sampling from (1), assuming access to an RGO
for g. We now survey the main components of this algorithm.

Reduction to shared minimizers. We first observe that without loss of generality, f and g share
a minimizer: by shifting f and g by linear terms, i.e. f(x) := f(x) — (Vf(z*),x), §(z) := g(z) +
(Vf(z*),x), where x* minimizes f+ g, first-order optimality implies both f and § are minimized by
#*. Moreover, implementation of a first-order oracle for f and an RGO for § are immediate without
additional assumptions. This modification becomes crucial for our later developments, and we hope
this simple observation, reminiscent of “variance reduction” techniques in stochastic optimization
[JZ13], is broadly applicable to improving algorithms for the sampling problem induced by (1).

Beyond Moreau envelopes: expanding the space. A typical approach in convex optimization



in handling non-smooth objectives g is to instead optimize its Moreau envelope, defined by

1 2
"T(y) := min )+ — ||l — . 3
) = i, {g(o) + o 1o~ 13 ®)
Intuitively, the envelope ¢" trades off function value with proximity to y; a standard exercise shows
that ¢g” is smooth (has a Lipschitz gradient), with smoothness depending on 7, and moreover that
computing gradients of ¢g" reduces to calling a proximal oracle (Definition 3). It is natural to extend
this idea to the composite sampling setting, e.g. via sampling from the density

exp (—f(z) — ¢"(x)).

However, a variety of complications prevent such strategies from obtaining rates comparable to
their non-composite, well-conditioned counterparts, including difficulty in bounding closeness of
the resulting distribution, as well as biased drifts of the sampling process due to error in gradients.

Our approach departs from this smoothing strategy in a crucial way, inspired by Hamiltonian Monte
Carlo (HMC) methods [Kra40, Neall]. HMC can be seen as a discretization of the ubiquitous
Langevin dynamics, on an expanded space. In particular, discretizations of Langevin dynamics
simulate the stochastic differential equation % = —Vf(r)+V2 %, where W} is Brownian motion.
HMC methods instead simulate dynamics on an extended space R x R%, via an auxiliary “velocity”
variable which accumulates gradient information. This is sometimes interpreted as a discretization
of the underdamped Langevin dynamics [CCBJ18]. HMC often has desirable stability properties,
and expanding the dimension via an auxiliary variable has been used in algorithms obtaining the
fastest rates in the well-conditioned logconcave sampling regime [SL19, LST20]. Inspired by this
phenomenon, we consider the density on R? x R¢

dm

E(z) ‘= exp (-f(y) —g(x) :

2
- ol y||2) where = = (z,). )

Due to technical reasons, the family of distributions we use in our final algorithms are of slightly
different form than (4), but this simplification is useful to build intuition. Note in particular that
the form of (4) is directly inspired by (3), where rather than maximizing over x, we directly expand
the space. The idea is that for small enough 1 and a set on x of large measure, smoothness of f
will guarantee that the marginal of (4) on x will concentrate y near x, a fact we make rigorous. To
sample from (1), we then show that a rejection filter applied to a sample z from the marginal of
(4) will terminate in constant steps. Consequently, it suffices to develop a fast sampler for (4).

Alternating sampling with an oracle. The form of the distribution (4) suggests a natural
strategy for sampling from it: starting from a current state (xg,yx), we iterate

2
1. Sample Y11 ~ exp (—f(y) — gy Il — y\lz)-
2. Sample x4 ~ exp <—g(m) - % |z — yk+1|]§), via a restricted Gaussian oracle.

When f and g share a minimizer, taking a first-order approximation in the first step, i.e. sampling
Y1 ~ exp(—flxg) — (Vf(zr),y — zi) — % |y — 1]|3), can be shown to generalize the Leapfrog
step of HMC updates. However, for n very small (as in our setting), we observe the first step itself
reduces to the case of sampling from a distribution with constant condition number, performable in

O(d) gradient calls by e.g. Metropolized HMC [DCWY 18, CDWY19, LST20]. Moreover, it is not
hard to see that this “alternating marginal” sampling strategy preserves the stationary distribution



exactly, so no filtering is necessary. Directly bounding the conductance of this random walk, for
small enough 7, leads to an algorithm running in O (/{2d2) iterations, each calling an RGO once,
and a gradient oracle for f roughly O (d) times. This latter guarantee is by an appeal to known
bounds [CDWY19, LST20] on the mixing time in high dimensions of Metropolized HMC for a

well-conditioned distribution, a property satisfied by the y-marginal of (4) for small 7.

Stability of Gaussians under bounded perturbations. To obtain our tightest runtime result,
we use that 1 is chosen to be much smaller than L~! to show structural results about distributions
of the form (4), yielding tighter concentration for bounded perturbations of a Gaussian (i.e. the
Gaussian has covariance %I, and is restricted by L-smooth f for n < L™!). To illustrate, let

dPx(y) 1 2
20 o exp (106 - 5y~ =12

and let its mean and mode be ¥, yi. It is standard that ||y, —yil, < +/dn, by n~l-strong
logconcavity of P,. Informally, we show that for < L=! and z not too far from the minimizer of
[, we can improve this to ||, — yz|l, = O(\/1); see Proposition 12 for a precise statement.

Using our structural results, we sharpen conductance bounds, improve the warmness of a starting
distribution, and develop a simple rejection sampling scheme for sampling the y variable in expected
constant gradient queries. Our proofs are continuous in flavor and based on gradually perturbing
the Gaussian and solving a differential inequality; we believe they may of independent interest.
These improvements lead to an algorithm running in O (/{2d) iterations; ultimately, we use our
reduction framework, stated in Theorem 1, to improve this dependence to O (kd).

1.3.2 Logconcave finite sums

We initiate the algorithmic study of the following task in the high-accuracy regime: sample z ~ 7
within total variation distance e, where Z—’;(x) x exp(—F(z)) and

Fa)= =3 fiw) )

1€[n]

all f; : R - R are convex and L-smooth, and F is p-strongly convex. We call such a distribution
7 a (well-conditioned) logconcave finite sum.

In applications (where summands correspond to points in a dataset, e.g. in Bayesian linear and
logistic regression tasks [DCWY18]), querying V F may be prohibitively expensive, so a natural goal
is to obtain bounds on the number of required queries to summands V f; for ¢ € [n]. This motivation
also underlies the development of stochastic gradient methods in optimization, a foundational tool in
modern statistics and data processing. Naively, one can complete the task by using existing samplers
for well-conditioned distributions and querying the full gradient VF' in each iteration, resulting in
a summand gradient query complexity of 6(n/-id) [LST20]. Many recent works, inspired from
recent developments in the complexity of optimizing a well-conditioned finite sum, have developed
subsampled gradient methods for the sampling problem. However, to our knowledge, all such
guarantees depend polynomially on the accuracy € and are measured in the 2-Wasserstein distance;
in the high-accuracy, total variation case no nontrivial query complexity is currently known.

We show in Section 6 that given access to the minimizer of F', a simple zeroth-order algorithm
which queries O(k?d) values of summands { fitiem) succeeds (i.e. it never requires a full value
or gradient query of F'). The algorithm is essentially the Metropolized random walk proposed



in [DCWY18] for the n = 1 case with a cheaper subsampled filter step. Notably, because the
random walk is conducted with respect to F, we cannot efficiently query the function value at any
point; nonetheless, by randomly sampling to compute a nearly-unbiased estimator of the rejection
probability, we do not incur too much error. This random walk was shown in [CDWY19] to mix in
5(/42d) iterations; we implement each step to sufficient accuracy using 6(1) function evaluations.

It is natural to ask if first-order information can be used to improve this query complexity, perhaps
through “variance reduction” techniques (e.g. [JZ13]) developed for stochastic optimization. The
idea behind variance reduction is to recenter gradient estimates in phases, occasionally computing
full gradients to improve the estimate quality. One fundamental difficulty which arises from using
variance reduction in high-accuracy sampling is that the resulting algorithms are not stateless. By
this, we mean that the variance-reduced estimates depend on the history of the algorithm, and thus
it is difficult to ascertain correctness of the stationary distribution. We take a different approach
to achieve a linear query dependence on the conditioning , described in the following section.

1.3.3 Proximal point reduction framework

To motivate Theorem 1, we first recast existing “proximal point” reduction-based optimization
methods through the lens of composite optimization, and subsequently show that similar ideas
underlying our composite sampler in Section 1.3.1 yield an analagous “proximal point reduc-
tion framework” for sampling. Chronologically, our composite sampler (originally announced in
[STL20]) predates our reduction framework, which was then inspired by the perspective given here.
We hope these insights prove fruitful for further development of proximal approaches to sampling.

Proximal point methods as composite optimization. Proximal point methods are a well-
studied primitive in optimization, developed by [Roc76]; cf. [PB14] for a modern survey. The
principal idea is that to minimize convex F : R? — R, it suffices to solve a sequence of subproblems

. 1
TRl ¢ GrEmIn cpe {F(w) AT xkué} . (6)
Intuitively, by tuning the parameter A > 0, we trade off how regularized the subproblems (6) are
with how rapidly the overall method converges. Smaller values of A result in larger regularization
amounts which are amenable to algorithms for minimizing well-conditioned objectives.

For optimizing functions of the form (5) via stochastic gradient estimates to e error, [JZ13, DBL14,
SRB17] developed variance-reduced methods obtaining a query complexity of O(n + ). To match
a known lower bound of O(n + y/nk) due to [WS16], two works [LMH15, FGKS15] appropriately
applied instances of accelerated proximal point methods [Gul92] with careful analyses of how ac-
curately subproblems (6) needed to be solved. These algorithms black-box called the O(n + k)
runtime as an oracle to solve the subproblems (6) for an appropriate choice of A, obtaining an
accelerated rate.” To shed some light on this acceleration procedure, we adopt an alternative view
on proximal point methods.® Consider the following known composite optimization result.

Proposition 1 (Informal statement of [BT09]). Let f : R — R be L-smooth and u-strongly convez,
and g : R — R admit a prozimal oracle O(\,v) (cf. Definition 3). There is an algorithm taking
O(V/k) iterations for k = % to find an e-approximate minimizer to f + g, each querying V f and O

a constant number of times. Further, A = % i all calls to O.

"We note that an improved runtime without extraneous logarithmic factors was later obtained by [A1l17].
8This perspective can also be found in the lecture notes [Leel8].
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Ignoring subtleties of the error tolerance of O, we show how to use an instance of Proposition 1 to
recover the O(n + \/nk) query complexity for optimizing (5). Let f(z) = £ |z||3, and g = F — f.
For any A > p, f is both p-strongly convex and A-smooth. Moreover, note that all calls to the
proximal oracle O for g require solving subproblems of the form

: K 2 A 2
angin o { Fe) = el + 5 o = o1} )
The upshot of choosing a smoothness bound A > p is that the regularization amount in (7) increases,
improving the conditioning of the subproblem, which is A-strongly convex and L + A-smooth. The
algorithm of e.g. [JZ13] solves each subproblem (7) in O(n + LTJFA) gradient queries, leading to an
overall query complexity (for Proposition 1) of

o (-2)

Optimizing over A > p, i.e. taking A = max(pu, %), yields the desired bound of 6(71 + V/nkK).

Applications to sampling. In Sections 5 and 6, we develop samplers for structured families with
quadratic dependence on the conditioning k. The proximal point approach suggests a strategy for
accelerating these runtimes. Namely, if there is a framework which repeatedly calls a sampler for a
regularized density (analogous to calls to (6)), one could trade off the regularization with the rate
of the outer loop. Fortunately, in the spirit of interpreting proximal point methods as composite
optimization, the composite sampler of Section 5 itself meets these reduction framework criteria.

We briefly recall properties of our composite sampler here. Let 7 be a distribution on R¢ with
Z—g(az) o exp(— fwe(T) — foracle(7)),” where fy. is well-conditioned (has finite condition number )
and foracle admits an RGO, which solves subproblems of the form

1
O(n,v) ~ the density proportional to exp <—2— |l — v||§ - forade(:n)> . (8)
n

The algorithm of Section 5 only calls O with a fixed 7; note the strong parallel between the RGO
subproblem and the proximal oracle of Proposition 1. For a given value of > 0, our composite
sampler runs in O(#) iterations, each requiring a call to O. Smaller 1 improve the conditioning of
the negative log-density of subproblem (8), but increase the overall iteration count, yielding a range
of trade-offs. The algorithm of Section 5 has an upper bound requirement on 7 (cf. Theorem 2);
in Section 3, we observe that this may be lifted when fy. = 0 uniformly, allowing for a full
range of choices. Moreover, the analysis of the composite sampler becomes much simpler when
fwe = 0, as in Theorem 1. We give the framework as Algorithm 1, as well as a full (fairly short)
convergence analysis. By trading off the regularization amount with the cost of implementing (8)
via bootstrapping base samplers, we obtain a host of improved runtimes.

Beyond our specific applications, the framework we provide has strong implications as a generic
reduction from mixing times scaling polynomially in x to improved methods scaling linearly in k.
This is akin to the observation in [LMH15] that accelerated proximal point methods generically
improve poly(x) dependences to \/k dependences for optimization. We are optimistic this insight
will find further implications in the logconcave sampling literature.

9To disambiguate, we sometimes also use the notation fwec + foracie rather than f + ¢ in defining instances of our
reduction framework or composite samplers, when convenient in the context.
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1.4 Erratum, and a word of warning for o(d) mixing

The initial version of this paper, presented at COLT 2021, had an incorrect proof of Theorem 1.
This was due to our reliance on the average conductance (“spectral profile”) technique of [LK99]
for bounding mixing. Roughly speaking, the mistake was caused by a misunderstanding that for
stationary measures satisfying p-log isoperimetry (for example, u-strongly logconcave densities) and
with transition distributions of A-close points having constant overlap, [LK99] provides mixing time
bounds of the form (where § is a warmness parameter of the starting distribution)

/2 L <t /é L s~ L 1oglog 8 )
1 sP(s)2 ™ pA? 1 slog(s)  pA? 8085

B

Here, ®(s) is the s-conductance of the Markov chain, which can typically be lower bounded by
Q(/plog(s)A) under a stationary density exhibiting log-isoperimetry. However, the trivial bound
®(s) < 1 demonstrates that there is an additive log(3) term in (9). This is a bottleneck towards
mixing times scaling as o(d) for distributions where only an exp(§2(d))-warm start is feasible; in
particular, the conductance actually scales as min(1, Q(y/plog(s)A)), causing this additive term.
In settings where uA% > d=! (such as our reductions, where this term often scales as a condition
number of the problem), this additive term log(/3) = Q(d) may dominate. This observation (and
the fix) came out of conversations with Sinho Chewi; we are immensely greatful for his help.

For the particular structure of the algorithm in Theorem 1, we are able to give an alternative
analysis going through W5 convergence bounds, preserving the correctness of the theorem. However,
this bottleneck is a general phenomenon which may cause future attempts to use Metropolized
algorithms from exponentially warm starts to be stuck at €2(d) iterations, which merits further
investigation. We write this section as a word of warning to future researchers aiming at sublinear
dimension dependences in Metropolized algorithms, and as a suggested open research direction.

1.5 Roadmap

We give notations and preliminaries in Section 2. In Section 3 we give our framework for boot-
strapping fast regularized samplers, and prove its correctness (Theorem 1). Assuming the “base
samplers” of Theorems 2 and 3, in Section 4 we apply our reduction to obtain all of our strongest
guarantees, namely Corollaries 1, 2, and 3. We then prove Theorems 2 and 3 in Sections 5 and 6.

2 Preliminaries
2.1 Notation

General notation. For d € N, [d] refers to the set of naturals 1 < ¢ < d; ||-||, is the Euclidean
norm on R? when d is clear from context. N(u, ) is the multivariate Gaussian of specified mean
and variance, I is the identity of appropriate dimension when clear from context, and =< is the
Loewner order on symmetric matrices.

Functions. We say twice-differentiable function f : R¢ — R is L-smooth and pu-strongly convex
if uI < V2f(z) < LI for all x € RY it is well-known that L-smoothness implies that f has an
L-Lipschitz gradient, and that for any z,y € R,

F@) + (VF @)y — ) + 5 ly — o3 < Fo) < 7@) + (VT @)y - 2) + o ly - 2l
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If f is L-smooth and u-strongly convex, we say it has a condition number k := % We call a zeroth-

order oracle, or “value oracle”, an oracle which returns f(x) on any input point € R?; similarly,
a first-order oracle, or “gradient oracle”, returns both the value and gradient (f(z),V f(z)).

Distributions. We call distribution 7 on R? logconcave if Z—”(az) = exp(—f(x)) for convex f; m
is p-strongly logconcave if f is p-strongly convex. For A C R® A€ is its complement, and we let
m(A) := [ o4 dr(z). We say distribution p is f-warm with respect to  if ‘jl—”(a:) < B everywhere,
and define the total variation |7 — p||y := supscga 7(A4) — p(A). We will frequently use the fact
that |7 — p||p is also the probability that  ~ 7 and 2’ ~ p are unequal under the best coupling of
(m, p); this allows us to “locally share randomness” when comparing two random walk procedures.
We define the expectation E, and variance Var, with respect to distribution 7 in the standard way,

E;[h(x)] = /h(l‘)dﬂ'(l‘), Var,[h(x)] := E, [(h(m))2] — (I[*Zw[h(x)])2

Structured distributions. This work considers two types of distributions with additional struc-
ture, which we call composite logconcave densities and logconcave finite sums. A composite log-
concave density has the form exp(—f(x) — g(x)), where both f and g are convex. In this context
throughout, f will either be uniformly 0 or have a finite condition number (be “well-conditioned”),
and g will represent a “simple” but possibly non-smooth function, as measured by admitting an
RGO (cf. Definition 1). We will sometimes refer to the components as f and g as fwe and foracle
respectively, to disambiguate when the functions f and g are already defined in context. In our
reduction-based approaches, we have additional structure on the parameter A which an RGO is
called with (cf. Definition 2). Specifically, in our instances typically A=! > L (or some other “nice-
ness” parameter associated with the negative log-density); this can be seen as heavily regularizing
the negative log-density, and often makes the implementation simpler.

Finally, a logconcave finite sum has density of the form exp(—F(z)) where F(z) = %Zie[n} fi(zx).
When treating such densities, we make the assumption that each constituent summand f; is L-
smooth and convex, and the overall function F' is u-strongly convex. We measure complexity of
algorithms for logconcave finite sums by gradient queries to summands, i.e. V f;(x) for some i € [n].

Optimization. Throughout this work, we are somewhat liberal with assuming access to mini-
mizers to various functions (namely, the negative log-densities of target distributions). We give a
more thorough discussion of this assumption in Appendix A, but note here that for all function
families we consider (well-conditioned, composite, and finite sum), efficient first-order methods ex-
ist for obtaining high accuracy minimizers, and this optimization query complexity is never the
leading-order term in any of our algorithms assuming polynomially bounded initial error.

2.2 Technical facts
We will repeatedly use the following results.

Fact 1 (Gaussian integral). For any A > 0 and v € R?,

/eXp (—% |l — UH§> do = (27‘1’)\)%.

Fact 2 ([DCWY18], Lemma 1). Let 7 be a u-strongly logconcave distribution, and let x* minimize
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its negative log-density. Then, for x ~ 7 and any ¢ € [0, 1], with probability at least 1 — ¢,

. d 1/log(1/0) [log(1/9)
Hx—aszg\/;<2+2max<\/ gd ,\/ gd ))

Fact 3 ([Har04], Theorem 1.1). Let 7 be a pi-strongly logconcave density. Let dy,(x) be the Gaussian
density with covariance matriz p= 1. For any convex function h,

Ex[h(z = Exlz])] < Eq, [A(z = By, [2])]-

Fact 4 ([DM19a], Theorem 1). Let m be a p-strongly logconcave distribution, and let x* minimize
its negative log-density. Then, E.[||lx — x*||§] < %.

3 Proximal reduction framework

The reduction framework of Theorem 1 can be thought of as a specialization of a more general
composite sampler which we develop in Section 5, whose guarantees are reproduced here.

Theorem 2. Let 7 be a distribution on R? with ‘é—;(x) x (13Xp (=f(z) —g(x)) zuch that f Zf L-sm(()ioth
— — K
32Lkdlog(x/€) (’where k= ﬁ)’ T= @(w 10g(?))7
and let O be an-RGO for g. Further, assume access to the minimizer x* = argmin,cpa{ f(x)+g(z)}.
There is an algorithm which runs in T iterations in expectation, each querying a gradient oracle of

f and O a constant number of times, and obtains € total variation distance to .

and p-strongly convex, and let € € (0,1). Let n <

Our main observation, elaborated on more formally for specific applications in Section 4, is that a
variety of structured logconcave densities have negative log-densities foracle, where we can implement
an efficient restricted Gaussian oracle for fo.ce Via calling an existing sampling method. Crucially,
in these instantiations we use the fact that the distributions which O is required to sampled from are
heavily regularized (restricted by a quadratic with large leading coefficient) to obtain fast samplers.
We further note that the upper bound requirement on 7 in Theorem 2 can be lifted when the “well-
conditioned” component is uniformly 0. Instead of setting f = 0 and g = foracle in Theorem 2,
and refining the analysis for this special case to tolerate arbitrary 7, we provide a self-contained
proof here. This particular structure (the composite setting where fy. is uniformly zero and foracle
is strongly convex) admits significant simplifications from the more general case, so using slightly
different proof techniques, we are able to obtain stronger convergence guarantees for this particular
problem allowing for mixing in fewer than d iterations from a feasible start (see Section 1.4).

Theorem 1. Let 7 be a distribution on R with ‘é—’;(x) X exp(—foracle(X)) such that foracle S -
strongly convez, and let € € (0,1). Let n < %, T = @(#log 77%6) for some B > 1, and O be a
N-RGO for foracle- Algorithm 1, initialized at the minimizer of foracle, Tuns in T iterations, each

querying O a constant number of times, and obtains € total variation distance to .

For simplicity of notation, we replace foracle in the statement of Theorem 1 with g throughout just
this section. Let 7 be a density on R? with 9% (z) oc exp(—g(z)) where g is pu-strongly convex
(but possibly non-smooth), and let O be a restricted Gaussian oracle for g. Consider the joint
distribution # supported on an expanded space z = (z,y) € R x R? with density, for some 7 > 0,

di 1 ,
) e (~ate) - 5 e —ulR).
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Note that the z-marginal of 7 is precisely 7, so it suffices to sample from the z-marginal. We consider
a simple alternating Markov chain for sampling from 7, described in the following Algorithm 1.

Algorithm 1 AlternateSample(g,n,T)

Input: p-strongly convex g : R? — R, >0, T € N, 29 = min, g(z).
1: for k € [T] do

2: Sample y;, ~ 7, ,, where for all z € RY, ddiyﬂ”(y) X exp <—% |z — Z/H%)

d
3: Sample @y, ~ m, , where for all y € RY, 72 (2) o exp <—g(x) - % |z — Z/H%)
4: end for

5. return xr

By observing that the distributions 7, and 7, in the above method are precisely the marginal dis-
tributions of 7 with one variable fixed, it is straightforward to see that 7 is a stationary distribution
of the process. We make this formal in the following lemma.

Lemma 1 (Alternating marginal sampling). Let & be a density on two blocks (x,y). Sample
(x,y) ~ @, and then sample & ~ 7 (-,y), y ~ 7(Z,-). Then, the distribution of (Z,y) is . Moreover,
the alternating marginal sampling Markov chain on either marginal is reversible.

Proof. The density of the resulting distribution at (Z,y) is proportional to the product of the
(marginal) density at y and the conditional distribution of Z | y, which by definition is 7. Therefore,
(Z,y) is distributed as 7, and the argument for 7 follows symmetrically. To see reversibility on the
x marginal, it suffices to note that the probability we move from x to 2’ is proportional to

[ e vy,

Y

which is a symmetric function of x and x’. A similar argument holds for the y marginals. O

We also state a simple observation about alternating schemes such as Algorithm 1, which will
be useful later. Let P, be the density of y; after one step of the above procedure starting from
rip_1 = x, and let T, be the resulting density of xy.

Observation 1. For any two points z, 2’ € RY, | Ty — Tullpy < 1P — Par ||y -

Proof. This follows by the coupling characterization of total variation (see e.g. Chapter 5 of
[LPWO09]). Per the optimal coupling of y ~ P, and 3’ ~ P/, whenever the total variation sets
y =3’ in Line 2 of AlternateSample, we can couple the resulting distributions in Line 3 as well. [

In order to prove Theorem 1, we first show that the random walk in Algorithm 1 converges rapidly
in the 2-Wasserstein distance (denoted W5 in this section).

Lemma 2. Let my be the starting distribution of x in Algorithm 1. Let 7y be the distribution of xy,
and w be the x-marginal of 7. For all k > 0,
1

T2
(1 + ,’7#)2 W2 (ﬂ-kvﬂ-)'

W22 (ﬂ-k-i-lv 7T) <
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Hence, for any n < %, inT =0 (# log u%) iterations, the random walk mizes to
W2(7TT’7 7T) < A.
Proof. Let I';, be the optimal coupling between xj, ~ 7, and £ ~ 7 according to the W distance.

Coupling the Gaussian random variable generating yx41 ~ 7., and § ~ m; gives a coupling I
between y;1 and g such that

Yk+1

Er,,,, |l = 913] = Er,, [lle - 213 (10)

Then, let 7, be the distribution of x4 in a run of Line 3 of Algorithm 1 starting from y,11 = v,
and 7; be the distribution of # in Line 3 starting from {), respectively. Since 7y is p + % strongly

log-concave, 7; satisfies a log-Sobolev inequality with constant ,u—l—% (Theorem 2 of [OV00]). Hence,

W3 (my, m5) < ——dxu(my||my)

T
n
1 2
<! g Hmog_ ]
i
1 2
< —— |y —19l5-
(1 + np)? 2

The first step used the Talagrand transportation inequality (Theorem 1 of [OV00]). The second
step used the log-Sobolev inequality. The third step used

exp(—g(2) — & [le — yl3) [, exp(—g(a) — & = — §13)de’

Vlogﬂy—(m) = Vlog

my(x) exp(—g(x) = 5 |z = 9[13) [, exp(—g(x) — 5 |l& — y|[3)da’
1 12 2\ _ 1 -
:—V<x—y —lz—y >:—y—y. 11
o ¥ e =3l = llz = yllz) = 2 (v = 9) (11)
Taking expectation over I'y, ., and using (10) shows that
W22(7Tk+1777) < %Wg(ﬂ-kvﬂ')'
(14 mp)

Algorithm 1 starts from the distribution 7y = 0.+, where z* = min, g(x). Since 7 is p-strongly
logconcave, we have (see e.g. Proposition 1 of [DM19b])

W(mo, m) = Es [Ilo* — 2’| <

=

Then, for n < —, W <1-—" soafter T = O(# log uiA) iterations, Wy (mpr, m) < A. O

Next, we bound the KL divergence between the output of Algorithm 1 and the target distribution
m. We need the following standard lemma regarding KL divergences of marginal distributions.

Lemma 3. Let P, and Q. be distributions supported on X indexed by z, a random variable dis-
tributed as 7. Let P be the joint distribution of (x,z) for x ~ P, and z ~ 7, and Q be the joint
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distribution of (x,2) as x ~ Q, and z ~ 7,. Let P and @ be the marginal distribution of P and é
on x, averaged over z. Then,

dxr(P||Q) < Eenr. [dxr(P2]|Q2)] -

Proof. By the definition of dkr,,

dkL(P(|Q) =K, 5 [lo

P(z,z)
e z)]

log §($’ ?) ”
Q(z,z)
=E.ur, [ExNPz [log Fx(z) ]

Q=(z)
= Ezwnz [dKL(PzHQz)] .

— EZNT('Z Emez

Finally, by the data processing inequality,

dxL(PlQ) < dkL(P|Q) = Eznr, [dxr(P:]Q:)].

O

The following lemma shows that a 2-Wasserstein distance bound on the distribution at iteration k
implies a KL divergence bound on iteration k + 1.

Lemma 4. Let 7 be the distribution of xj, for some k such that Wo(mp,m) < A and 7 be the
z-marginal of 7. Then,

2
dgr(mey1m) < o

Proof. As in Lemma 2, let I';, be the optimal coupling between x, ~ 7, and & ~ 7, which yields

a coupling I'y, | between yx1 and y such that

B s =] =B, [ =51 < o2 "
Then,
dxr (T ™) < E(yk+1,ﬁ)~ryk [dKL(WkaHWg)}
1 12 A?
< mﬂz(yk+h@)~ryk+l |:||yk+1 — yH2:| < %

The first inequality followed from Lemma 4 by taking P = mx11, @ = 7 and 2z = (yg+1,y). The
second inequality used the log-Sobolev inequality and (11). The last inequality used (12). O

Finally, putting the pieces together, Theorem 1 follows from Lemma 2 and Lemma 4.
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1
Irr = wllzy < \/5dia(alim) = e

We note that Theorem 1 is robust to a small amount of error tolerance in the sampler O. Specifically,
if O has tolerance 7, then by calling Theorem 1 with desired accuracy 5 and adjusting constants
appropriately, the cumulative error incurred by all calls to O is within the total requisite bound
(formally, this can be shown via the coupling characterization of total variation). We defer a more

formal elaboration on this inexactness argument to Appendix A and the proof of Proposition 5.

Proof of Theorem 1. By Lemma 2 and Lemma 4, there is T' = O (i log ﬁ) so that dkr,(mp||m) <
2¢2. By Pinsker’s inequality,

O

4 Tighter runtimes for structured densities

In this section, we use applications of Theorem 1 to obtain simple analyses of novel state-of-
the-art high-accuracy runtimes for the well-conditioned densities studied in [DCWY18, CDWY 19,
LST20], as well as the composite and finite sum densities studied in this work. We will assume the
conclusions of Theorems 2 and 3 respectively in deriving the results of Sections 4.2 and 4.3.

4.1 Well-conditioned logconcave sampling: proof of Corollary 1

In this section, let 7 be a distribution on R? with density proportional to exp(—f(z)), where f
L

is L-smooth and p-strongly convex (and k = ﬁ) and has pre-computed minimizer z*. We will
instantiate Theorem 1 with foracle(z) = f(z), and choose n = m. We now require an n-RGO
O for foracle = f to use in Theorem 1.

Our implementation of O is a rejection sampling scheme. We use the following helpful guarantee.

Lemma 5 (Rejection sampling). Let m, 7 be distributions on R? with 9= (z) oc p(x), & (z) o p(z).
Suppose for some C > 1 and all x € R?, Z(—z) < C. The following is termed “rejection sampling”:
repeat independent runs of the following procedure until a point is outputted.

1. Draw x ~ 7.

2. With probability C’,’Igmi), output x.

C [ p(x)dz

To@yds TUNS in expectation, and the output distribution is m.

Rejection sampling terminates in

Proof. The second claim follows from Bayes’ rule which implies the conditional density of the output
point is proportional to p(z) - %“8) x p(x), so the distribution is 7. To see the first claim, the

probability any sample outputs is

/ p(z) () = 1 N p(az)dazdw(:p) _ [, p(x)dx
» OD(2) CJy [, plz)dx C [, plx)dz’

The conclusion follows by independence and linearity of expectation. O

We further state a concentration bound shown first in [LST20] regarding the norm of the gradient
of a point drawn from a logsmooth distribution.
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Proposition 2 (Logsmooth gradient concentration, Corollary 3.3, [LST20]). Let 7 be a distribution

on R? with ‘;—g(aj) o exp(—f(x)) where f is convex and L-smooth. With probability at least 1 — k™%,

V), < 3V Ldlog k for z ~ . (13)

By the requirements of Theorem 1, the restricted Gaussian oracle O only must be able to draw
samples from densities of the form, for some y € RY,

exp (o) = 5l =913 ) = xp (~£(2) — 4L y13) . (14)

We will use the following Algorithm 2 to implement O.

Algorithm 2 XSample(f,y,n)

Input: L-smooth, u-strongly convex f: R4 - R, y € RY n >0
1: if |[V£(y)|l, < 3VLdlogk then
2: while true do

Draw z ~ N(y — V f(y), nI)

7 ~ Unif[0, 1]

if 7 <exp(f(y) +(Vf(y),z—y)— f(z)) then

return z
end if
end while
end if
10: Use [CDWY19] to sample x from (14) to total variation distance m using O(d log %d)
queries to Vf (Theorem 1, [CDWY19], where (14) has constant condition’ number)
11: return x

Lemma 6. Letn = Wog(ﬁ), and suppose y satisfies the bound in (13), i.e. |V f(y)|l, < 3v/Ldlog k.
Then, Line 8 of Algorithm 2 runs an expected 2 times, and Algorithm 2 samples exactly from (14),
whenever the condition of Line 1 is met.

Proof. Note that when the assumption of Line 1 is met, Algorithm 2 is an instantiation of rejection
sampling (Lemma 5) with

ple) = exp (~ 1) = 5 llo ol )

pe) = exp (~10) — (VF)x =) = 5 e —ol?).
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By convexity, we may take C' = 1. Next, by applying Fact 1 twice and L-smoothness of foacle,

2
dx
2

o= [ (=)~ @10 - - oyl )

T

—exp (1) + g IVS0IR) [ e (—1 e AR e ALl

—exp (1) + g IV S0 ) (%) ,

[tz = exp (~1)+ 3195 0)13) 2

which implies the desired bound (recalling Lemma 5 and our assumed bound on ||V f(y)]|5)

[ p(z)dx n .
Tp@dz = &P <<§ - m) HW(@/)II%) (1+nL)

n?L 2
< 1l5exp <m HVf(y)Ib) <2.

a
2

We are now equipped to prove our main result concerning well-conditioned densities.

Corollary 1. Let 7 be a distribution on R? with fl—g(:n) x exp (—f(x)) such that f is L-smooth and

w-strongly convez, and let € € (0,1), kK = % Assume access to x* = argmin,cga f(x). Algorithm 1

with n = m using Algorithm 2 as a restricted Gaussian oracle for f uses O(kdlog klog %d)
gradient queries win expectation, and obtains € total variation distance to .

Proof. By applying Theorem 1 with the chosen 7, and noting that the cumulative error due to all
calls to Line 10 cannot amount to more than § total variation error throughout the algorithm, it
suffices to show that Algorithm 2 uses O(1) gradient queries each iteration in expectation. This
happens whenever the condition in Line 1 is met via Lemma 6, so we must show Line 10 is executed
with probability O((dlog %4)~1).

To show this, note that combining Proposition 2 with the warmness of the start xg in Algorithm 2,
this event occurs with probability at most k™% in the first iteration.!’ Since warmness is monotoni-
cally decreasing'' throughout using an exact oracle in Algorithm 1, and the total error accumulated
due to Line 10 throughout the algorithm is O((dlog %d)_l), we have the desired conclusion. O

We show a bound nearly-matching Corollary 1 using only value access to f, and with a deterministic
iteration complexity (rather than an expected one), as Corollary 5 in Section 4.3.

4.2 Composite logconcave sampling: proof of Corollary 2

In this section, let 7 be a distribution on R¢ with density proportional to exp(—f(z) — g(z)),
where f is L-smooth and p-strongly convex (and k = %), and ¢ is convex and admits a restricted

“Formally, Line 2 of Algorithm 1 has y1 ~ N (zo,nI), but by smoothness ||V f(y1)ll, < [[Vf(zo)lly + L[z —yll,
and L ||z —yl|, < 5(L\/ﬁ) with high probability, adding a negligible constant to the bound of Proposition 2.

"This is a standard fact in the literature, and can be seen as follows: each transition step in the chain is a convex
combination of warm point masses, preserving warmness.
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Gaussian oracle O. Without loss of generality, we assume that f and g share a minimizer z* which
we have pre-computed; if this is not the case, we can redefine f(x) « f(x) — (Vf(z*),z) and
g(x) « g(z) + (Vf(x*),z); see Section 5.1 for this reduction.

We will instantiate Theorem 1 with foracle = f + g, which is a p-strongly convex function. Our
main result of this section follows directly from Theorem 1 and using Theorem 2 as the required
oracle O, stated more precisely in the following.

Corollary 2. Let 7 be a distribution on R® with Z—g(x) x exp(—f(z)—g(x)) such that f is L-smooth
and p-strongly convez, and let e € (0,1), kK = % Assume access to x* = argmingcpa{f(z) + g(z)}
and let O be a restricted Gaussian oracle for g. There is an algorithm (Algorithm 1 using Theorem 2
as a restricted Gaussian oracle) which runs in O(kdlog3 %l) iterations in expectation, each querying
a gradient of f and O a constant number of times, and obtains € total variation distance to 7.

Proof. As discussed at the beginning of this section, assume without loss that f and g both are
minimized by z*. We apply the algorithm of Theorem 1 with n = % to the p-strongly convex
function f + g, which requires one call to O to implement. Thus, the iteration count parameter in
Theorem 1 is T = O(r log 4).

Recall that we chose n = % To bound the total complexity of this algorithm, it suffices to give an
n-RGO OT for sampling from distributions with densities of the form, for some y € R?,

exp (=1(0) — o) = -l = 1B ) = exp (1) — o) ~ £ 1o~ ol

to total variation distance ﬁ (see discussion at the end of Section 3). To this end, we apply

Theorem 2 with the well-conditioned component f(x) + é |z — y\l%, the composite component

g(x), and the largest possible choice of 7. Note that we indeed have access to a restricted Gaussian

oracle for g (namely, @), and this choice of well-conditioned component is 2L-smooth and L-strongly

convex, so its condition number is a constant. Thus, Theorem 2 requires O(allog2 “—Cl) calls to O and
1

€

gradients of f to implement the desired O on any query y (where we note @(ET) =

poly(k,d,e~ 1) )-
Combining these complexity bounds yields the desired conclusion. O

4.3 Sampling logconcave finite sums: proof of Corollary 3

In this section, let 7 be a distribution on R¢ with density proportional to exp(—F(x)), where
F(z) = %Zie[n} fi(z) is p-strongly convex, and for all i € [n], f; is L-smooth (and k = %) We will
instantiate Theorem 1 with foracle(z) = F(x), and Theorem 3 as an n-RGO for some choice of 7.
More precisely, Theorem 3 shows that given access to the minimizer z*, only zeroth-order access to
the summands of F' is necessary to obtain the iteration bound. In order to obtain the minimizer to
high accuracy however, variance reduced stochastic gradient methods (e.g. [JZ13]) require Q(n+ k)
gradient queries, which amounts to ((n+r)d) function evaluations. We state a convenient corollary
of Theorem 3 which removes the requirement of accessing x*, via an optimization pre-processing
step using the method of [JZ13] (see further discussion in Appendix A). This is useful to us in
proving Theorem 3 because in the sampling tasks required by the RGO, the minimizer changes
(and thus must be recomputed every time).

Corollary 4 (First-order logconcave finite sum sampling). In the setting of Theorem 3, using
[JZ13] to precompute the minimizer =* and running Algorithm ¢ uses O(n log%d + w2dlog? %1)
first-order oracle queries to summands { fi}icin) and obtains € total variation distance to .
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We now apply the reduction framework developed in Section 2 to our Algorithm 6 to obtain an
improved query complexity for sampling from logconcave finite sums.

Corollary 3 (Improved first-order logconcave finite sum sampling). In the setting of Theorem 3,
Algorithm 1 using Algorithm 6 and SVRG [JZ13] as a restricted Gaussian oracle for F uses

(@) <nlog <nT/<;d> + H\/@log?"5 <%l> + kdlog® <%l>> =0 (n + Kk max (d, M))

queries to first-order oracles for summands { fi}ie[n]; and obtains € total variation distance to m.

Proof. We apply Theorem 1 with p-strongly convex forace = F(z), using Algorithm 6 as the
required 7-RGO O for sampling from distributions with densities of the form

e (~F@) -1 12—l

for some y € R%, to total variation % (see Section 3) for T the iteration bound of Algorithm 1.
We apply Theorem 3 to the function F(z) = F(z) + %Hx —y||3; we can express this in finite

sum form by adding % |z — y||§ to every constituent function, and the effect on gradient oracles is

L(z —y). Note F has condition number O(1 4 nL). For a given 7, the overall complexity is

n
log &4
o8 ¢ (n log (ﬁl) + dlog* <ﬁl> + (nL)%*dlog* <@>>
N € € €

Here, the inner loop complexity uses Corollary 4 to also find the minimizer (for warm starts), and
the outer loop complexity is by Theorem 1. The result follows by optimizing over 1, namely picking

n= max(%, Wmd/ﬁ))’ and that Algorithm 1 always must have at least one iteration. O

Note the only place that Corollary 3 used gradient evaluations was in determining minimizers of
subproblems, via the first step of Corollary 4. Consider now the n = 1 case. By running e.g.
accelerated gradient descent for smooth and strongly convex functions, it is well-known [Nes83]
that we can obtain a minimizer in O(y/k) iterations, each querying a gradient oracle, where & is
the condition number. By smoothness, we can approximate every coordinate of the gradient to
arbitrary precision using 2 function evaluations, so this is a O(y/kd) value oracle complexity.

Finally, for every optimization subproblem in Corollary 3 where n = (L-polylog%d)_l, the condition

number is a constant, which amounts to a 5(d) value oracle complexity for computing a minimizer.
This is never the dominant term compared to Theorem 3, yielding the following conclusion.

Corollary 5. In the setting of Corollary 1, Algorithm 1 using Algorithm 6 as a restricted Gaussian
oracle uses O(kdlog? %d) value queries and obtains € total variation distance to .

We note that the polylogarithmic factor is significantly improved when compared to Corollary 3
by removing the random sampling steps in Algorithm 6. A precise complexity bound of the result-
ing Metropolized random walk, a zeroth-order algorithm mixing in O(x2dlog ’%d) for a logconcave
distribution with condition number &, is given as Theorem 2 of [CDWY19].

Finally, in the case n > 1, we also exhibit an improved query complexity in terms of an entirely
zeroth-order sampling algorithm which interpolates with Corollary 5 (up to logarithmic factors).
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By trading off the 5(nd + kd) zeroth-order complexity of minimizing a finite sum function [JZ13],
and the O(k?d) zeroth-order complexity of sampling, we can run Theorem 1 for the optimal choice

of n= 5(#) The overall zeroth-order complexity can be seen to be O(nd + v/nkd).
5 Composite logconcave sampling with a restricted Gaussian oracle

In this section, we provide our “base sampler” for composite logconcave densities as Algorithm 3,
and give its guarantees by proving Theorem 2. Throughout, fix distribution 7 with density

d
d—w(:n) x exp (—f(z) — g(x)) ,where f: RY — R is L-smooth, p-strongly convex, (15)
x
and ¢ : RY — R admits a restricted Gaussian oracle O.
We will define x := £, and assume that we have precomputed z* := argmin,cga {f(z) + g(z)}.

Our algorithm proceeds in stages following the outline in Section 1.3.1.

1. Composite-Sample is reduced to Composite-Sample-Shared-Min, which takes as input a
distribution with negative log-density f + g, where f and ¢ share a minimizer; this reduction
is given in Section 5.1, and the remainder of the section handles the shared-minimizer case.

2. The algorithm Composite-Sample-Shared-Min is a rejection sampling scheme built on top of
sampling from a joint distribution # on (z,y) € R? x R? whose 2-marginal approximates 7.
We give this reduction in Section 5.2.

3. The bulk of our analysis is for Sample-Joint-Dist, an alternating marginal sampling algo-
rithm for sampling from 7. To implement marginal sampling, it alternates calls to O and a
rejection sampling algorithm YSample. We prove its correctness in Section 5.3.

We put these pieces together in Section 5.4 to prove Theorem 2. We remark that for simplicity, we
will give the algorithms corresponding to the largest value of step size 1 in the theorem statement;
it is straightforward to modify the bounds to tolerate smaller values of 7, which will cause the
mixing time to become correspondingly larger (in particular, the value of K in Algorithm 5).

Algorithm 3 Composite-Sample(w,x*,¢€)

Input: Distribution 7 of form (15), * minimizing negative log-density of m, € € [0, 1].
Output: Sample z from a distribution 7’ with ||7" — 7|y < e.

1 f(2) « f(z) = (Vf(2"),2), §(2) < g(z) + (Vf(z"),2)

2: return Composite-Sample-Shared-Min(w, f, g, z",¢€)

5.1 Reduction from Composite-Sample to Composite-Sample-Shared-Min
Correctness of Composite-Sample is via the following properties.
Proposition 3. Let f and § be defined as in Composite-Sample.

1. The density  exp(—f(x) — g(x)) is the same as the density x exp(—f(z) — §(x)).

2. Assuming first-order (function and gradient evaluation) access to f, and restricted Gaussian
oracle access to g, we can implement the same accesses to f, g with constant overhead.

3. f and § are both minimized by x*.
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Algorithm 4 Composite-Sample-Shared-Min(w, f, g, 2%, ¢€)
Input: Distribution 7 of form (15), where f and g are both minimized by z*, € € [0, 1].
Output: Sample z from a distribution 7’ with ||7" — 7|y < e.

1: while true do
2: Define the set

log(2
L
3: T < Sample-Joint-Dist(f,g,2", O, {5)
4: if z € Q) then
5: T~ Unif[O, 1]
6: y < YSample(f,z,7n)
2
r oo () — (V@ —a)— & ly— 2l + 9@ + 2z —a})
~ d

5 0 exp (= (@) = 9(2) + 5ty IV S @) (1+nL)Fa
9: if 7 < ¢ then
10: return x
11: end if
12: end if

13: end while

Proof. For f and g with properties as in (15), with * minimizing f + g, define the functions

f(x) = f(z) = (Vf(z"),z), §(z) := g(x) +(Vf(z"),2),

and observe that f+§ = f + ¢ everywhere. This proves the first claim. Further, implementation of
a first-order oracle for f and a restricted Gaussian oracle for § are immediate assuming a first-order
oracle for f and a restricted Gaussian oracle for g, showing the second claim; any quadratic shifted
by a linear term is the sum of a quadratic and a constant. We now show f and g have the same
minimizer. By strong convexity, f has a unique minimizer; first-order optimality shows that

V@) =Vf(z") = V(") =0,
so this unique minimizer is z*. Moreover, optimality of z* for f + ¢ implies that for all z € RY,
(0g(x*) + Vf(z"), 2" —x) <0.
Here, dg is a subgradient. This shows first-order optimality of =* for g also, so £* minimizes g. [

5.2 Reduction from Composite-Sample-Shared-Min to Sample-Joint-Dist

Composite-Sample-Shared-Min is a rejection sampling scheme, which accepts samples from sub-
routine Sample-Joint-Dist in the high-probability region €2 defined in (16). We give a general
analysis for approximate rejection sampling in Appendix B.1.1, and Appendix B.1.2 bounds rela-
tionships between distributions 7 and 7, defined in (15) and (17) respectively (i.e. relative densities
and normalization constant ratios). Combining these pieces proves the following main claim.

Proposition 4. Let n = m, and assume Sample-Joint-Dist(f,g,x*,O,0) samples
within & total variation of the x-marginal on (17). Composite-Sample-Shared-Min outputs a
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Algorithm 5 Sample-Joint-Dist(f,g,z*,1,O,?)

Input: f, g of form (15) both minimized by z*, § € [0,1], n > 0, O restricted Gaussian oracle for
g.

Output: Sample z from a distribution @’ with |7’ — 7| < d, where we overload 7 to mean the
marginal of (17) on the x variable.

1
L1 = rrdlog(i6r/9)
2: Let 7 be the density with
dn 1 L?
T e (=10 - glo) — 5 Iy — ol - 2 o = 2”3 (")
3: Call O to sample xy ~ mgpart, for
ATtstart (T L+ nL? N
R e () (18)

4: K —22;';00 log (7&0%1(; 6”)) (see Remark 1)

5: for k € [K] do
6: Call YSample <f, Th_1,7, W) to sample yi, ~ 7, , (Algorithm 7), for

Og(T)
dmy 1
) e (1) - 5 1y al) (19)
7: Call O to sample x}, ~ m,, , for
dm 1 nL? .
) xexp (~9(0) — 5y ol - "5 o = 2”1 (20)

end for
9: return g

®

sample within total variation € of (15) in an expected O(1) calls to Sample-Joint-Dist.

5.3 Implementing Sample-Joint-Dist

Sample-Joint-Dist alternates between sampling marginals in the joint distribution 7, as seen by
definitions (19), (20). We showed that marginal sampling attains the correct stationary distribution
as Lemma 1. We bound the conductance of the induced walk on iterates {z;} by combining
an isoperimetry bound with a total variation guarantee between transitions of nearby points in
Appendix B.2.1. Finally, we give a simple rejection sampling scheme YSample as Algorithm 7 for
implementing the step (19). Since the y-marginal of 7 is a bounded perturbation of a Gaussian
(intuitively, f is L-smooth and ~! > L), we show in a high probability region that rejecting from
the sum of a first-order approximation to f and the Gaussian succeeds in 2 iterations.

Remark 1. For simplicity of presentation, we were conservative in bounding constants throughout;
in practice, we found that the constant in Line 4 is orders of magnitude too large (a constant < 10
sufficed), which can be found as Section 4 of [STL20]. Several constants were inherited from prior
analyses, which we do not rederive to save on redundancy.
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We now give a complete guarantee on the complexity of Sample-Joint-Dist.

Proposition 5. Sample-Joint-Dist outputs a point with distribution within § total variation
distance from the x-marginal of 7. The expected number of gradient queries per iteration is constant.

5.4 Putting it all together: proof of Theorem 2

We show Theorem 2 follows from the guarantees of Propositions 3, 4, and 5. Formally, Theo-
rem 2 is stated for an arbitrary value of 1 which is upper bounded by the value in Line 1 of
Algorithm 5; however, it is straightforward to see that all our proofs go through for any smaller
value. By observing the value of K in Sample-Joint-Dist, we see that the number of total it-
erations in each call to Sample-Joint-Dist O <$ log(%)) =0 (/{2d10g2 (%i)) Proposition 5
also shows that every iteration, we require an expected constant number of gradient queries and
calls to O, the restricted Gaussian oracle for g, and that the resulting distribution has § total
variation from the desired marginal of 7. Next, Proposition 4 implies that the number of calls
to Sample-Joint-Dist in a run of Composite-Sample-Shared-Min is bounded by a constant, the
choice of ¢ is O(e), and the resulting point has total variation e from the original distribution 7.
Finally, Proposition 3 shows sampling from a general distribution of the form (1) is reducible to
one call of Composite-Sample-Shared-Min, and the requisite oracles are implementable.

6 Logconcave finite sums

In this section, we provide our “base sampler” for logconcave finite sums as Algorithm 6, and give
its guarantees by proving Theorem 3. Throughout, fix distribution m with density

Z—Z(az) x exp(—F(z)), where F(x) = % Z fi(x) is p-strongly convex,

1€[n]

and for all ¢ € [n], f; is L-smooth.

We will define x := £ and assume that we have precomputed z* := argmin, cga{F(z)}. We will also
assume explicitly that V f;(z*) = 0 for all i € [n] throughout this section (i.e. all f; are minimized
at the same point); this is without loss of generality, by a similar argument as in Proposition 3.

Algorithm 6 is the zeroth-order Metropolized random walk of [DCWY 18] with an efficient, but
biased, filter step; the goal of our analysis is to show this bias does not incur significant error.

6.1 Approximate Metropolis-Hastings
We first recall the following well-known fact underlying Metropolis-Hastings (MH) filters.

Proposition 6. Consider a random walk on R? with proposal distributions {Py},cra and accep-
tance probabilities {o(x,2")}, wepa conducted as follows: at a current point ,

1. Draw a point ' ~ P,.

2. Mowve the random walk to =’ with probability a(x,z’), else stay at x.

Suppose Py(x) = Py (x) for all pairs x,x' € RY, and further 4 (z)a(z,3") = 4 (2")a(a’, ). Then,
T is a stationary distribution for the random walk.

Proof. This follows because the walk satisfies detailed balance (reversibility) with respect to 7. [
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Algorithm 6 FiniteSum-MRW(F, h,xq,p, K)
Input: F(z) = %Zie[n} fi(z), step size h > 0, initial x¢, p € [0, 1], iteration count K € N
1: for 0 <k < K do
2: Draw & ~ N(O, I)
3 Ypy1 < Tk + V2RE,
4: Draw Sk C [n] by including each i € Sy independently with probability p
5 For each i € [n],

’y;i“ - % (\/GXP (=2 filyngr) + L fiap)) — 1) +1 i€S
1 1 & Sy
6: T ’y,(;), 7 ~ Unif0, 1]
7: if 7 < 24 and |Sy| < 2pn then
8: Th41 < Yk+1
9: else
10: Tpy1 < Tk
11: end if
12: end for

13: return zx.

We propose an algorithm that applies a variant of the Metropolis-Hastings filter to a Gaussian
random walk. Specifically, we define the following algorithm, which we call Inefficient-MRW.

Definition 4 (Inefficient-MRW). Consider the following random walk for some step size h > 0:
for each iteration k at a current point xj € R,

1. Set ypy1 < xp + V2hE, where & ~ N(0,1).
2. Tpi1 < Yg+1 with probability oz, yk+1) (otherwise, i1 < xy ), where

SB(F)) - 4

1 exp(—F(x)) 37

(o) = {3, /G 3 < [mCIGL <y o)
exp(=F(y)) exp(=F(y) _ 3
oxp(—F(2)) oxp(—F(2) < 1

Lemma 7. Distribution ™ with Z—g(:n) x exp(—F(x)) is stationary for Inefficient-MRW.

Proof. Without loss of generality, assume that 7 has been normalized so that 4% (z) = exp(—F(z)).
We apply Proposition 6, dropping subscripts in the following. It is clear that P,(y) = Py(x) for

3 «  /exp(=F())

1 <\ s (CF ) < %, this follows from

any x, vy, so it suffices to check the second condition. When

O (w)a(r,a') = /e F() ~ F) = o (o')ala’, ).

The other case is similar (as it is a standard Metropolis-Hastings filter). O

In Algorithm 6, we implement an approximate version of the modified MH filter in Definition 4,
where we always assume the pair z, y are in the second case of (21). In Lemma 8, we show that

27



if a certain boundedness condition holds, then Algorithm 6 approximates Inefficient-MRW well.
We then show that the output distributions of Inefficient-MRW and our Algorithm 6 have small
total variation distance in Lemma 9.

Lemma 8. Suppose that in an iteration 0 < k < K of Algorithm 6, the following three conditions
hold for some parameters R;, C¢, Cp € R>q:

1. ||z — x|y < Ry.

2. |l&xlly < Cev.
3. For alli € [n], |V fi(zx) &l < Oy IV fi(xr) |-

Then, for any

1
h < 22
= G8C2I2RZ 1 TLOA (22)

3< 70);5&?1%;:)1))) % Moreover, we have E [y;] = 70);}2&_1:}3&5))), and when |Sk| < 2pn, v < %.
Proof. We first show E [y;] = %. Since each ¢ € S, is generated independently,
=1}
i€[n]

- H [ (l <\/exp _lfi(yk 1)+ lfz-(:c,.c) — 1> +1>
i€[n] p < n i n )

- H €xXp <_%fi(yk+1) T %ﬂ'(%)) = \/GXP(_F(%H)).

icin] exp(—F(xy))

Next, for any i € [n], we lower and upper bound — f;(yx+1) + fi(xg). First,

—filypsr) + filzn) < Vii(ep) " (21 — ypar)
< V2hC, ||V filzh)|ly < V2RO, LR,.

The first inequality followed from convexity of f;, the second from yiy1 — zp = V2hE, and our
assumed bound, and the third from smoothness and V f(z*) = 0. To show a lower bound,

L
filurt1) — fi(zr) < Vfilze) " (Yrrr — 1) + 5 lyes1 — i3
< V2hCpLR, + hLCZd.

The first inequality was smoothness. Repeating this argument for each i € [n] and averaging,

— V2hCy LRy — hLCEd < —F (yj41) + F(x1) < V2hCoLR,. (23)
1
Then, When h S W,

z < \/ez}lz;(__igz(/;;))) < %’ and for all i € [n], —fi(yp+1) + fi(zr) <

=
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Thus, we can bound each 7,(:):

3\ <

1 1

Finally, when |Sk| < 2pn, v, < (1 + 7?%”)27’" < 2 as desired. O

D=

Lemma 9. Draw zo ~ N (z*, %I) Let 7 be the output distribution of the algorithm of Definition 4

for K steps starting from xg, and let T be the output distribution of Algorithm 6 starting from xg.

12K
For any § € [0,1], let p = 510%

log § K dlog *K
Ce=0 141/ ,C’x:O<\/lognT>, and Ry = O ,/% ,

so that when h <

in Algorithm 6. There exist

m, we have ||Tg — Tk ||py < 6.

Proof. By the coupling definition of total variation, it suffices to upper bound the probability that
the algorithms’ trajectories, sharing all randomness in proposing points yxi1, differ. This can
happen for two reasons: either we used an incorrect filtering step (i.e. the pair (x, yx+1) did not lie
in the second case of (21)), or we incorrectly rejected in Line 7 of Algorithm 6 because |Sg| > 2pn.
We bound the error due to either happening over any iteration by ¢, yielding the conclusion.

Incorrect filtering. Consider some iteration k. Lemma 8 shows that as long as its three condi-
tions hold in iteration k, we are in the second case of (21), so it suffices to show all conditions hold.
By Fact 2 and as & is independent of all {V fi(x)}ic[n), With probability at least 1 — %, both of

the conditions [|&x||ly < CeV/d and'? |V fi(zy) T€k| < Co |V fi(21)]|, for all 4 € [n] hold for some

log &
Ce=0|1+ Ogd5 ,C’x:O<\/log%).

Next, g ~ N (z*, %I) is drawn from a k% warm start for 7. By Fact 2, we have ||zg — 2*||, < R,

for x¢ drawn from 7 with probability at least 1 — % . lﬁl_g, for some

R -0 | dlog =K
7

Since warmness of the exact algorithm of Definition 4 is monotonic, as long as the trajectories have
not differed up to iteration k, ||z — 2*||, < R, also holds with probability > 1 — %. Inductively,

the total variation error caused by incorrect filtering over K steps is at most %.

Error due to large |S;|. Supposing all the conditions of Lemma 8 are satisfied in iteration k, we
show that with high probability, Inefficient-MRW and Algorithm 6 make the same accept or reject

decision. By Lemma 8, Inefficient-MRW (21) accepts with probability o} = % %. On

2We recall that the distribution of v" ¢ for &€ ~ N(0,1) is the one-dimensional A(0, [|v||3).
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the other hand, Algorithm 6 accepts with probability

3
i = {E [ | 15| < 2pn] - Pr{|Si| < 2pm).

The total variation between the output distributions is |oy — «}|. Further, since by Lemma 8,

3
/
)
Qg 1 [Vk]

3
= 7 EDw [ 1Skl < 2pn] - Pr|Sk] < 2Zpn] + E [y | [Sk[ > 2pn] - Pr|Sk| > 2pn])

3
=qp + ZE[% | |Sk| > 2pn] - Pr[|Sk| > 2pn],

5log —126K
n

it suffices to upper bound this latter quantity. First, by Lemma 10, when p = , we have

Pr[|Sk| > 2pn] < %. Finally, since each i € S}, is generated independently,

Elve | |Sk] >2pn] < max E H Vl(ci) | S C 8,
S/Z|S/|:2pn [n]

<o | I[ | =2,| T ew (-1t + 2o <2

i€[n]\S’ [n]\S”

Here, we used Lemma 8 applied to the set S’, and the upper bound (23) we derived earlier.
Combining these calculations shows that the total variation distance incurred in any iteration k
due to | S| being too large is at most %, so the overall contribution over K steps is at most %. O

We used the following helper lemma in our analysis.

Lemma 10. Let S C [n] be formed by independently including each i € [n] with probability p.
Then,

Pr[|S| > 2pn]| < exp 3 .
14
Proof. For i € [n], let 1;cs be the indicator random variable of the event ¢ € S, so E [1;e5] = p and

Var [Lies — p|] = p(1 — p)* + (1 — p)p* < 2p.

By Bernstein’s inequality,

1,.2
ST
Pr Zliegznp—kr §exp<—27>.

1
il 2np + 3T
In particular, when r = pn, we have the desired conclusion. O

6.2 Conductance analysis

We next bound the mixing time of Inefficient-MRW, using the following result from prior work.
We remark that (see Section 1.4) in our application, the log 5 term is non-dominant.
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Proposition 7 (Lemma 1, Lemma 2, [CDWY19)]). Let a random walk with a p-strongly logconcave
stationary distribution © on r € R? h(we transition distributions {Ty},ecra. For some € € [0,1], let

conver set @ C RY have w() > 1 — 252
be initialized at xo ~ Tstart- Suppose for any x,z' € Q with ||z — 2’|, < A,

Let mgtart be a B-warm start for w, and let the algorithm

7
I7: = Torly < 5 (24

Then, the random walk mizes to total variation distance within € of m in O(log 5 + ﬁ
iterations.

Consider an iteration of Inefficient-MRW from z; = x. Let P, be the density of yx.1, and let T,
be the density of z;,; after filtering. Define a convex set Q C RY parameterized by Rq € R>:

Q={reR?: ||z — 2", < Ro}.

We show that for two close points z, 2’ C €, the total variation between 7, and T,/ is small.

I\I

Lemma 11. For some h = O(m) and z,2’' C Q with ||z —2'|l, < VA, |To — Tllry < 3
Q

Proof. By the triangle inequality of total variation distance,
1T = Tellvw < 1 Te = Pallpy + 1P = Perllpy + 1 Ter = Parllpy -
First, by Pinsker’s inequality and the KL divergence between Gaussian distributions,

”33_55,”2

V2h

When |z — 2/||, < VA, [Py — Pullry < 3. Next, we bound || T, — Py||py: by a standard calcula-
tion (e.g. Lemma D.1 of [LST20]), we have

3 exp (—F (yk+1))
1Tz = Pollpy =1 = 1 Eep, [\/ = (= Flak) ] |

We show that || T, — Pyllpy < %. It suffices to show that Eg, [\/exp (=F(yrs1) + F(ak))| = 2.

[Pe = Parllpy < V2KL(Pe|[Prr) =

Slnce exp ( ) > % it suffices to show that with probability at least 16 over the randomness
of €111, ~ Flyenr) + Flay) > — o AS §1 ~ N(0,1), by applying Fact 2 twice,

1
Pr {kaﬁ-l“g > 36d] < exp(—4) < 5
25)
2 1 (
Pr UVF(xk)TEkH‘ > 36 HVF(xk)Hg] < 35

31



We upper bound the term F(yxy1) — F(zx) by smoothness and Cauchy-Schwarz:

L
F(yes1) — Fazp) < VF(p)" (Yo — zi) + 3 Yr1 — zill3

< V2K |VF(z1) " &psr| + hL|| &t l3-

Then, since |VF(zy)|| < LRq when z € Q, it is enough to choose h = O( so that

)
L2R%+Ld

1
—Fyrr1) + Flar) 2 — 46

as long as the events of (25) hold, which occurs with probability at least %. Similarly, we can show
that || 7, — Py|lpy < 2. Combining the three bounds, we have the desired conclusion.

O

Theorem 3. Let 7 be a distribution on R? with ‘é—;(x) o exp(—F(z)), where F(z) = 23" | fi(x)

n
is p-strongly convex, f; is L-smooth and convex Vi € [n], k = %, and € € (0,1). Assume access to

x* = argmin,cgaF'(x). Algorithm 6 uses O (,‘<;2dlog4 "—’:d) value queries to summands { fi}icin), and
obtains € total variation distance to .

Proof. First, N(z*, +1I) yields a 3 = K2 -warm start for 7 (see e.g. [DCWY18]). For this value of

B, by Fact 2 it suffices to choose
dlog &
Ro=0| %228
1

Letting 0 = 5, we will choose the step size h and iteration count K so that

1 =0 <L/£allog2 nmd) , K =0 </<;2dlog3 @>

h e €

€2

for () > 1— 35

have constants compatible with Lemma 9. Note that this choice of h is also sufficiently small to
apply Lemma 11 for our choice of Rgn. By applying Proposition 7 to the algorithm of Definition 4,
and using the bound from Lemma 11, in K iterations Inefficient-MRW will mix to total variation
distance ¢ to w. Furthermore, applying Lemma 9, we conclude that Algorithm 6 has total variation
distance at most 20 = € from 7.

It remains to bound the oracle complexity of Algorithm 6. Note in every iteration, we never compute

more than 4pn values of {fi}ic[n), since we always reject if |Sx| > 2pn, and we only compute values

nkd
€

for indices in Si. For the value of p in Lemma 9, this amounts to O(log 22¢) value queries. O
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A Discussion of inexactness tolerance

We briefly discuss the tolerance of our algorithm to approximation error in two places: computation
of minimizers, and implementation of RGOs in the methods of Sections 3 and 5.

Inexact minimization. For all function classes considered in this work, there exist efficient op-
timization methods converging to a minimizer with logarithmic dependence on the target accuracy.

Specifically, for negative log-densities with condition number «, accelerated gradient descent [Nes83]
converges at a rate O(y/k) with logarithmic dependence on initial error and target accuracy (we
implicitly assumed in stating our runtimes that one can attain initial error polynomial in problem
parameters for negative log-densities; otherwise, there is additional logarithmic overhead in the
quality of the initial point to optimization procedures). For composite functions fyc + foracle Where
fwe has condition number &, the FISTA method of [BT09] converges at the same rate with each
iteration querying V fw. and a proximal oracle for f, .ce Once; typically, access to a proximal oracle
is a weaker assumption than access to a restricted Gaussian oracle, so this is not restrictive. Finally,
for minimizing finite sums with condition number «, the algorithm of [All17] obtains a convergence
rate linearly dependent on n++/nk < n+ k; alternatively, [JZ13] has a dependence on n+ . In all
our final runtimes, these optimization rates do not constitute the bottleneck for oracle complexities.

The only additional difficulty our algorithms may present is if the function requiring minimization,
say of the form forace(x) + % le —y ||§ for some y € R? where we have computed the minimizer

* 10 foracle, has ||y — a:*Hg very large (so the initial function error is bad). However, in all our
settings y is drawn from a distribution with sub-Gaussian tails, so ||y — :E*Hg decays exponentially
(whereas the complexity of first-order methods increases only logarithmically), negligibly affecting
the expected oracle query complexity for our methods.

Finally, by solving the relevant optimization problems to high accuracy as a subroutine in each of our
methods, and adjusting various distance bounds to the minimizer by constants (e.g. by expanding
the radius in the definition of the sets  in Algorithm 4 and Section 6.2), this accomodates tolerance
to inexact minimization and only affects all bounds throughout the paper by constants. The only
other place that z* is used in our algorithms is in initializing warm starts; tolerance to inexactness
in our warmness calculations follows essentially identically to Section 3.2.1 of [DCWY18].

Inexact oracle implementation. Our algorithms based on restricted Gaussian oracle access
are tolerant to total variation error inverse polynomial in problem parameters for the restricted
Gaussian oracle for g. We discussed this at the end of Section 3, in the case of RGO use for our
reduction framework. To see this in the case of the composite sampler in Section 5, we pessimisti-
cally handled the case where the sampler YSample for a quadratic restriction of f resulted in total
variation error in the proof of Proposition 5, assuming that the error was incurred in every iteration.
By accounting for similar amounts of error in calls to O (on the order of 4, where T" is the number
of times an RGO was used), the bounds in our algorithm are only affected by constants.

B Deferred proofs from Section 5

B.1 Deferred proofs from Section 5.2

B.1.1 Approximate rejection sampling

We first define the rejection sampling framework we will use, and prove various properties.

Definition 5 (Approximate rejection sampling). Let w be a distribution, with ‘é—’;(x) x p(x). Sup-
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pose set Q has () =1 — €, and distribution & with %(m) x p(x) has for some C' > 1,

< C for all z € Q, andM<1

[p(z)dx =

Suppose there is an algorithm A which draws samples from a distribution 7', such that |7’ — 7|y <
1—9. We call the following scheme approximate rejection sampling: repeat independent runs of the
following procedure until a point is outputted.

1. Draw x via A until x € Q.

2. With probability c’flgmi), output x.

Lemma 12. Consider an approximate rejection sampling scheme with relevant parameters defined
as in Definition 5, with 26 < 166 . The algorithm terminates in at most

1
26)
=0 (
.
calls to A in expectation, and outputs a point from a distribution =" with ||7" — ||y < € + 1252

Proof. Define for notational simplicity normalization constants Z := [ p(z)dz and 7 = [ p(z)dz.
First, we bound the probability any particular call to A returns in the scheme:

P@) i) > / ) ) — PE) i) — div(z))

vcq Op(x) en Cp(x) zeN Cp(x)
= a m(x) — p(z) () — dit(x
N /mGQ cz ™ @) = ||, Tpiy (4 @) — 4R ))‘ (27)

1—¢€ 1—¢

> — di'(x) — d(z)| >
> 15— [l @) - i) >

— 20.

The second line followed by the definitions of Z and Z, and the third followed by triangle inequality,
the assumed lower bound on Z/Z, and the total variation distance between #’ and 7. By linearity
of expectation and independence, this proves the first claim.

Next, we claim the output distribution is close in total variation distance to the conditional distri-
bution of 7 restricted to 2. The derivation of (27) implies

p(x) .. 1-¢ p(x) . .
——dn(x) > , - di'(x) — dm(x))| < 26,
veq CP(x) )=~z zeq CP(@ (@ () (=)
z) ga 28
_,,_2C Jrco Bit5di! (@) L, (28)
L=€ 7 fcadgmdi@) — 1€
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Thus, the total variation of the true output distribution from 7 restricted to € is

1 / dr () Bk di ()
2Jeea |1 =€ € cp;zgz) 7’ (x)
1 / dr(z) (@) L1 / Gihdi'(@)  Fhdr (@)
T2l |l [ Bdi(@)| 2 een | [, g Bibdi(m) [ cq dukdi(a)
1 dr(z) Sy (@) 5C 1 [ dn(x)|. ¥ 5C
§§ 1—¢ p(@) g4 +1—e’:§ 1—6’1_dfr(x) 1—¢°
z€Q Jren Cﬁ(x)d (x) z€Q

The first inequality was triangle inequality, and we bounded the second term by (28). To obtain
the final equality, we used

22) () = | = dn(z) = L =Z

ven Cp(x) ea CZ cZ
o) g ; y
_, __O@ () _ p(z) AZ 1 . di () = dﬂ'(:l?? ' d7i ().
Joeq C{’é@) i (z) Z  p(x) 1—c¢ 1—¢ dn

We now bound this final term. Observe that the given conditions imply that Z—g(x) is bounded by
C everywhere in €. Thus, expanding we have
C

1 dr(z) . ~
- < — d —d < —.
2/xeﬂl_€, T 2(1-¢) /xEQ‘ #) Tl < 1—¢

Finally, combining these guarantees, and the fact that restricting = to € loses ¢ in total variation

dn’

1—- %(95)

distance, yields the desired conclusion by triangle inequality. O
Corollary 6. Let é(x) be an unbiased estimator for %, and suppose é(a:) < C with probability

1 for all x € Q. Then, implementing the procedure of Definition 5 with acceptance probability %ﬂf)

has the same runtime bound and total variation guarantee as given by Lemma 12.

Proof. Tt suffices to take expectations over the randomness of 6 everywhere in the proof of Lemma 12.
O

B.1.2 Distribution ratio bounds

We next show two bounds relating the densities of distributions 7 and 7. We first define the
normalization constants of (15), (17) for shorthand, and then tightly bound their ratio.

Definition 6 (Normalization constants). We denote normalization constants of m and 7 by
2 i= [ exp(~1(a) ~ gla)) da.
xr
1 nL? N
Zei= [ o (<10~ o)~ 5 by alf - B o~ 713 ) o
w’y

2n 2
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Lemma 13 (Normalization constant bounds). Let Z, and Z; be as in Definition 6. Then,

d d

2 2\ "2 .
() (1) F L ey
1+nL 0

Proof. For each z, by convexity we have

[esn (=10 = ote) 5y o1 = 25 o 1)
< exp (~ato) = %5 e = 1) [ exp (=100~ 95y =) - by~ alf)

— 77L2 * 12 n
= exp (=) = g(e) = B e =a*13) [ exp (FIV @)= 5= Iy =+ aV @3 ) o
y
d n nL?
~ ) exp (1) — g ex (LIVI @I~ L= o2 ||§)
d
< (2mn)2 exp (= f(x) — g(x)) -
Integrating both sides over z yields the upper bound on ZZ. Next, for the lower bound we have a

similar derivation. For each x, by smoothness

1 nL? N
[exw (=00~ @) = - Iy = el = T o~ 13
y n

2
> exp (~£(0) ~ o) = "5l =" ) [ exp (T fta)a—5) = 250 = ol )y
Yy

o ()=o)~ B o=+ i) (£

2(1 + 1+ 9L
d
nL? a2 (2 \?
> _ _ I e —
exp (~1(0) - ta) = I o — 1) (222

Integrating both sides over = yields

é>< - > Joexp (~f(@) = g(@) = B o — 2[3) dw2< -
n

Zr — \1+nL [, exp (= f(z) — g(x)) dx

The last inequality followed from Proposition 11, where we used f + g is u-strongly convex. O

—
+
™~
N——
Nl
7N
—_
_|_
3
= |5
no
N——
l\.’):@.

Lemma 14 (Relative density bounds). Let n = W@%H/E). For all x € Q, as defined in (16),
dw( x) < 2. Here, 7T( ) denotes the marginal density of #. Moreover, for all x € RY, Z—g(:n) > 1.

Proof. We first show the upper bound. By Lemma 13,

d7f () = exp (—f(z) — g(z)) Zx
a0 fexp (<)~ 9(0) = &y — 2l = B e - 2¥|3) dy )
< €xp (—f(l’) —g(.Z')) (27_”7)%

— 2 !
fyexp (£ () = 9(@) = &5 ly = 213 = 25 o = *113) dy
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We now bound the first term, for z € Q. By smoothness, we have

exp (—f(y) — g(x))
exp (—f(z) — g(x))

so applying this for each y,

> exp (V). =) = £y~ ol2).

fyexp (=£(0) = 9(@) = & ly = I3 = 25l = *113) dy
exp (—f(z) — 9(a))

2
> exp (Lo —°13) [ exo (1950 -0 - 52 Iy~ ol )
Y

- e S 2 R
—exp< 5 Il w|!2+2(1+77L)HVf(x)H2>/yexp< on |FY 1+nLVf(w)

2 d d
> exp _nL” 16dlog(288r/¢) 2y 1\ 2 > 3 ( 2mn \? .
2 1 1+ 1L A\1+9L

In the last line, we used that z € Q implies ||z — 3:*||§ <

16d log(288k/¢)
“w
Combining this bound with (30), we have the desired

, and the definition of 7.

(1+nL)% <2

wl»-lk

() <

Next, we consider the lower bound. By combining (29) with Lemma 13, we have the desired

dr exp (—/ (@) — g(a) Zi

" (@) = 2
i fexp( ) = g(@) = 3 Iy - all3 = 5 o — *[3) dy Z=

d d
_a 27 nL2>_§ < 1 >5 _
(2mn)~ 2 1+ — = 1+nLk
) 1+17L> < L Tror) (ks

Nl

B.1.3 Correctness of Composite-Sample-Shared-Min

Proposition 4. Let n = m, and assume Sample-Joint-Dist(f,g,x*,O0,0) samples
within § total variation of the xz-marginal on (17). Composite-Sample-Shared-Min outputs a
sample within total variation € of (15) in an expected O(1) calls to Sample-Joint-Dist.

Proof. We remark that n =
d = €/18, as in Composite-Sample-Shared-Min. First, we may apply Fact 2 to conclude that the
measure of set 0 with respect to the p-strongly logconcave density 7 is at least 1 — ¢/3. The
conclusion of correctness will follow from an appeal to Corollary 6, with parameters

W@%W is precisely the choice of 77 in Sample-Joint-Dist where

€
024 /:— 5:—
76 37

260

Note that indeed we have ¢’
of calls (26) is clearly bounded by a constant as well

. Moreover, the expected number
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We now show that these parameters satisfy the requirements of Corollary 6. Define the functions
p(z) = exp(—f(z) — g(x)),

d 1 L?
o) i= 2o [[exp (=100~ o) = - Iy = ol — B o — 13 iy
Yy

and observe that clearly the densities of m and 7 are respectively proportional to p and p. Moreover,
define Z = [ p(z)dx and Z = [ p(xz)dz. By comparing these definitions with Lemma 13, we have

Z =12, and Z = (27177)_%Z7}, so by the upper bound in Lemma 13, Z/Z < 1. Next, we claim that

the following procedure produces an unbiased estimator for %.

1. Sample y ~ 7, where d”j—;y) X exp (—f(y) - % ly — a;Hg)
2. 0 exp (F() ~ (V(@).y— ) — &Iy~ all3 + a(a) + 227 o — 2°]3)
3. Output 0(z) « exp (= f(2) = g(2) + 5Ly VS @) (1+ L)’

(07

To prove correctness of this estimator é, define for simplicity

1 nL? \
Zoi= [ (1) = 900) = o Iy = ol = %~ o~ 71 ) .
y n

— F ) —g(x)— 2 y— |2 — 22 | — |2
We compute, llSiIlg dwgy(y) _ exp(—f(y)—g(x) zng?: |3 2 |lx—x ||2)7 that

2
Er,fo] = [ exp (1)~ (V@b =) = 5 Iy = ol + 900 + - o = 2°13) )

! L , 1 )
- 7 [ (< 91y =) = 5 sl = 5l =13 ) dy

_ 1 _ Ui 2 2mn 2
-2 exp< e \\Vf<x>u2) (1 +nL)

This implies that the output quantity

o) = exp (=10~ 9(0) + 55 VS ) (14 n) o

is unbiased for % = exp(—f(z) — g(a:))Zx‘l(%n)%-

definition of f(z), by using f(y) — f(z) — (Vf(z),y — x) — Ly - z||3 < 0 via smoothness, we have

Finally, note that for any y used in the

[N

(07

b0 = exp (=10~ 9l0) + 5= V@I ) (14 )

[:4 n 2 77L2 *12
< )t e (s IVA@IE + 75 o - 271
< (1+0L)s exp (nL2||o - o*[3) <4

Here, we used the definition of 7 and L? ||z — :17*H§ < 16Lkdlog(288k/€) by the definition of Q. [
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B.2 Deferred proofs from Section 5.3

Throughout this section, for error tolerance ¢ € [0, 1] which parameterizes Sample-Joint-Dist, we
denote for shorthand a high-probability region 25 and its radius Rs by

dlog(16x/5
Qs := {z | |z — 2*||, < Rs}, for Rs := 4 %. (31)

The following density ratio bounds hold within this region, by simply modifying Lemma 14.
Corollary 7. Let n = WM, and let T be parameterized by this choice of n in (17). For
all x € Q5, as defined in (31), g—g(x) < 2. Moreover, for all x € RY, Z—g(x) > 1.

The following claim follows immediately from applying Fact 2.

Lemma 15. With probability at least 1 — ﬁ, T ~ 7 lies in Q.
Finally, when clear from context, we overload 7 as a distribution on z € R to be the z component
marginal of the distribution (17), i.e. with density

dr 1 2 nk? %2
o) [ exp (=) —o(0) = g by ol = B o =1} .

We first note that 7 is stationary for Sample-Joint-Dist; this follows immediately from Lemma 1.
In Section B.2.1, we bound the conductance of the walk. We then use this bound in Section B.2.2
to bound the mixing time and overall complexity of Sample-Joint-Dist.

B.2.1 Conductance of Sample-Joint-Dist

We bound the conductance of this random walk, as a process on the iterates {zj}, to show the
final point has distribution close to the marginal of 7 on x. To do so, we break Proposition 7 into
two pieces, which we will use in a more white-box manner to prove our conductance bound.

Definition 7 (Restricted conductance). Let a random walk with stationary distribution & on x € RY
have transition densities T, and let Q C R%. The Q-restricted conductance, for v € (0, %ﬁ'(Q)), 18

— 1 m Ccy . / AP !
Qo (v) = fr(snlﬂn)fe(o,v} POk where Tg(S€) := . To(2")d7 (x)da'.

Proposition 8 (Lemma 1, [CDWY19]). Let mstart be a S-warm start for &, and let xog ~ Tsart-

For some 6 > 0, let Q C R? have #(Q) > 1 — %2‘. Suppose that a random walk with stationary
distribution 7 satisfies the Q-restricted conductance bound

P (v) > 1/ Blog <%>, for allv e [%, H .

Let xx be the result of K steps of this random walk, starting from xo. Then, for

64 log
> -
K_Blog< 55 >,

the resulting distribution of xx has total variation at most % from .
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We state a well-known strategy for lower bounding conductance, via showing the stationary distri-
bution has good isoperimetry and that transition distributions of nearby points have large overlap.

Proposition 9 (Lemma 2, [CDWY19]). Let a random walk with stationary distribution & on
z € R have transition distribution densities T, and let Q C R?, and let 7o be the conditional
distribution of & on Q. Suppose for any z,z' € Q with ||z — 2|, <A,

17z = Tarllpy <

N =

Also, suppose Tq satisfies, for any partition Si, S2, S3 of Q, where d(S1,S2) is the minimum
Euclidean distance between points in S1, So, the log-isoperimetric inequality

. 1 o . 1
779(53) = ﬂd(Sh 52) S (TFQ(SI)’ WQ(SQ)) ‘ \/log <1 - min ('ﬁ-ﬂ(sl)y 7%9(52)) > ‘ (32)

Then, we have the bound for all v € (0, %]

$q(v) > min <1, % log <%>> .

To utilize Propositions 8 and 9, we prove the following bounds in Appendices C.1, C.2, and C.3.

d
2

Lemma 16 (Warm start). For n < 74, Tsare defined in (18) is a 2(1 + )2 -warm start for #.

Lemma 17 (Transitions of nearby points). Suppose nL < 1, 77L2R§ < %, and 400d%n < Rg. For a
point x, let T, be the density of xy, after sampling according to Lines 6 and 7 of Algorithm 5 from

zp—1 =x. For z,2' € Qs with ||z — 2|, < ‘1/—(7)_7, for Qs defined in (31), we have || Ty — To|lpy < 3.

Lemma 18 (Isoperimetry). Density 7 and set Q5 defined in (17), (31) satisfy (32) with ¢ = 8,u_%.

We note that the parameters of Algorithm 5 and the set s in (31) satisfy all assumptions of
Lemmas 16, 17, and 18. By combining these results in the context of Proposition 9, we see that
the random walk satisfies the bound for all v € (0, 3:

Plugging this conductance lower bound, the high-probability guarantee of {25 by Lemma 15, and
the warm start bound of Lemma 16 into Proposition 8, we have the following conclusion.

Corollary 8 (Mixing time of ideal Sample-Joint-Dist). Assume that calls to YSample are exact
in the implementation of Sample-Joint-Dist. Then, for any error parameter §, and

2
Ko 220100 log (dlog(th@)) ,
np 40

the distribution of xx has total variation at most % from .
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B.2.2 Complexity of Sample-Joint-Dist
We first state a guarantee on the subroutine YSample, which we prove in Appendix C.4.

Lemma 19 (YSample guarantee). For d € [0,1], define Rs as in (31), and let n = Wg(wn/é)'
For any x with ||x — z*||, < \/kdlog(16k/0) - Rs, Algorithm 7 (YSample) draws an exact sample y

from the density proportional to exp <—f(y) - % lly — ng) i an expected 2 iterations.

We also state a result due to [CDWY19], which bounds the mixing time of 1-step Metropolized HMC
for well-conditioned distributions; this handles the case when |z — z*||, is large in Algorithm 7.

Proposition 10 (Theorem 1, [CDWY19]). Let 7 be a distribution on R? whose negative log-
density is convexr and has condition number bounded by a constant. Then, Metropolized HMC
from an explicit starting distribution mizes to total variation 0 to the distribution 7 in O(dlog(%))
iterations.

Proposition 5. Sample-Joint-Dist outputs a point with distribution within § total variation
distance from the x-marginal of 7. The expected number of gradient queries per iteration is constant.

Proof. Under an exact YSample, Corollary 8 shows the output distribution of Sample-Joint-Dist
has total variation at most % from 7. Next, the resulting distribution of the subroutine YSample
is never larger than ¢/(2Kd log(%”“)) in total variation distance away from an exact sampler. By
running for K steps, and using the coupling characterization of total variation, it follows that
this can only incur additional error §/(2dlog(%)), proving correctness (in fact, the distribution is
always at most O((dlog(dr/6))~!) away in total variation from an exact YSample).

Next, we prove the guarantee on the expected gradient evaluations per iteration. Lemma 19 shows
whenever the current iterate zj, has ||z — z*||, < /kdlog(16k/J) - Rs, the expected number of
gradient evaluations is constant, and moreover Proposition 10 shows that the number of gradient
evaluations is never larger than O(dlog(%)), where we use that the condition number of the
log-density in (19) is bounded by a constant. Therefore, it suffices to show in every iteration
0 < k < K, the probability ||z —z*|, > /rkdlog(16r/d) - Rs is O((dlog(dr/5))~!). By the
warmness assumption in Lemma 16, and the concentration bound in Fact 2, the probability xg
does not satisfy this bound is negligible (inverse exponential in xd?log(x/d)). Since warmness is
monotonically decreasing with an exact sampler,'® and the accumulated error due to inexactness of
YSample is at most O((dlog(dr/5))~1) through the whole algorithm, this holds for all iterations. [

C Mixing time ingredients

We now prove facts which are used in the mixing time analysis of Sample-Joint-Dist. Throughout
this section, as in the specification of Sample-Joint-Dist, f and g are functions with properties
as in (15), and share a minimizer z*.

C.1 Warm start

We show that we obtain a warm start for the distribution 7 in algorithm Sample-Joint-Dist via
one call to the restricted Gaussian oracle for g, by proving Lemma 16.

Lemma 16 (Warm start). For n < 74, Tgare defined in (18) is a 2(1 + ﬂ)%—warm start for 7.

13This fact is well-known in the literature, and a simple proof is that if a distribution is warm, then taking one
step of the Markov chain induces a convex combination of warm point masses, and is thus also warm.

46



Proof. By the definitions of 7 and mrgtart in (17), (18), we wish to bound everywhere the quantity

drgan o Zo o (gl el - o) -
Ao D fexp (<£(9) = g@) = & Iy = ol — % o —*13) dy

Here, Z; is as in Definition 6, and we let Zgar¢ denote the normalization constant of mwggart, i.€.

L . L? .
Zawi= [ (=5 o= "1 - B o =13 - g(0) ) d
x
Regarding the first term of (33), the earlier derivation (29) showed

d
/eXp <—f(y) —g(x) — 5= IIy —zf3 - - H:U - Hz) dy < (2mn)2 exp (—f(z) — g(x)).
y
Then, integrating, we can bound the ratio of the normalization constants

Zr exp (~f(z) — g(x)) da
Zraar ~ [ exp (_gugg_x*ug nL? g — 2|3 — (3:)) dx
)

exp (—f(ﬂf*) — 5z~ x*”z - 9(9”)> dz (34)

The second inequality followed from f is u-strongly convex and nL? < u by assumption. The last
inequality followed from Proposition 11, where we used & ||z — x*”% + g(x) is p-strongly convex.
Next, to bound the second term of (33), notice first that

2 qL2 2 2
exp (~& o = 273 - 25 llo - 27|13 — g()) exp (% llo — a*I13)

Syexo (<£) = g() = £y — ol — B2 llo —2*13) dy  J, exp (—£(0) — & lly — 2l3) d

It thus suffices to lower bound exp (é |z — x*”%) fy exp (—f(y) — % lly — xH%) dy. We have

L 1
exp (5 e =18 | exp (=100 = 5 Il ) dy
> exp (~1@)+ 5 le—a'1B) [ (~(0r@hu—a) = (545 ) lo—al}) dy
Y
L omn \?
—ep (1) + 5 lo-'8) (o ) e (5 I94@IB)

> exp(—f(z *))<1Tzn>

(35)

The first and third steps followed from L-smoothness of f, and the second applied the Gaussian
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integral (Fact 1). Combining the bounds in (34) and (35), (33) becomes

dTstart

g (x) < <1+§>g(1+Ln)

d d
2 2

<2(1+k)2,

where z € R? was arbitrary, which completes the proof. O

C.2 Transitions of nearby points

Here, we prove Lemma 17. Throughout this section, 7 is the density of x}, according to the steps
in Lines 6 and 7 of Sample-Joint-Dist (Algorithm 5) starting at zx_; = z. We also define P,
to be the density of y, by just the step in Line 6. We first make a simplifying observation: by
Observation 1, for any two points z, 2/, we have

”7;0 - 7;’”TV < pr - Pﬂc’”TV :

Thus, it suffices to understand [P, — Py ||y for nearby z,2’ € Q5. Our proof of Lemma 17
combines two pieces: (1) bounding the ratio of normalization constants Z,, Z, of P, and P, for
nearby x, 2’ in Lemma 22 and (2) the structural result Proposition 12. To bound the normalization
constant ratio, we state two helper lemmas. Lemma 20 characterizes facts about the minimizer of

1 2
f(y)+% ly — |5 (36)

Lemma 20. Let f be convex with minimizer x*, and y, minimize (36) for a given x. Then,

L lyz — ym’”2 <z - 33/”2-
2. For any z, ys — 2 < Ilo — 2* .

3. For any x with ||x —z*||, < R, || — yz|ly < nLR.
Proof. By optimality conditions in the definition of 1,
NV f(Yz) = & = Yo

Fix two points z, 2/, and let z; := (1 — t)z + ta’. Letting J,(y,) be the Jacobian matrix of y,,

= ya) = 12 () Ta ()@ — ) = (L~ Tuy)) (o — )

ian (Yz,) = o
= Jo(Ye,) (@' — 2) = T+ 0V?f(ya,)) " (&' — ).

dt

We can then compute

1 d 1 1 3
ym’_y:c:/o nytdtZ/O Jx(yxt)(x'—w)dt=/0 T+ V2 f(y,) (&' — z)dt.

By triangle inequality and convexity of f, the first claim follows:

1
I el < [0 0921 o =l < o7 =<
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The second claim follows from the first by y,+ = «*. The third claim follows from the second via

Iz = vyello = IV F()lla < 0Ly — 27|, < nLR.

Next, Lemma 21 states well-known bounds on the integral of a well-conditioned function h.

Lemma 21. Let h be a Lj-smooth, py,-strongly convex function and let y; be its minimizer. Then

d

d d
(2nLy 1) % exp (—h(yp)) < /exp(—h(y)) < (2mp, ') ® exp (=h(y;)) -
y
Proof. By smoothness and strong convexity,

* Ly, * * Lh *
exp (=h(oi) = G-Iy =il ) < exp(=h(n) < exp (~h0si) ~ 5 Iy = iF).

The result follows by Gaussian integrals, i.e. Fact 1. O

We now define the normalization constants of P, and P, :

1 )
Ty = - — - dy,
/yeXp< f(y) o ly :v||2> Yy

1 )
Dt = - — ly— dy.
/yeXp< f(w) 2 ly — H2> y

We apply Lemma 20 and Lemma 21 to bound the ratio of Z, and Z,..

Lemma 22. Let f be p-strongly convex and L-smooth. Let z, 2" € Qs, for Qg defined in (31), and
let ||z — 2’|, < A. Then, the normalization constants Zy and Zy in (37) satisfy

LAZ?

Z
Z < 1.05exp <3LRA + T) .
x/

Proof. First, applying Lemma 21 to Z, and Z,s yields that the ratio is bounded by

g o (1 -l alf) (2r (ur ) )
exp (~ )~ o o18) (2 (24 8) )

1
< 1.05exp <f(y:v’) — ) + 5 (Hym’ — |l = llys — x\\§)> :

Here, we used the bound for n~! > 32Ld that
/2
L+1
4 < 1.05.
pt g
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Regarding the remaining term, recall z, 2’ both belong to Qs, and ||z — 2/||, < A. We have
1 112 2
Flwe) = Fa) + 5 (Il = 'll; = e — 1)

L 1
< (VF(ya) o = ) + 5 llyar — Yalls + 2 (Yo — 2" + Yo — @,y — Yo+ — )

LA?
<LRA+ =+ o (ny = @lly + [y — 2'|,) (lyar = velly + |2 — =|,)
2 2
< LRAS % 2B s — gl + ! ) < 30RA+ T2

The first inequality was smoothness and expanding the difference of quadratics. The second was by
IV f(yz)llo < Lllye — x*||y < LR and ||ye — yz|ly < A, where we used the first and second parts of
Lemma 20; we also applied Cauchy-Schwarz and triangle inequality. The third used the third part
of Lemma 20. Finally, the last inequality was by the first part of Lemma 20 and ||2’ — z||, < A. O

We now are ready to prove Lemma 17.

Lemma 17 (Transitions of nearby points). Suppose nL < 1, 77L2R(2; , and 400d%n < R2 For a
point x, let T, be the density of xy after sampling according to Lines 6 and 7 of Algomthm from
zp—1 =x. For z,2' € Qs with ||z — 2|, < ‘1/—(7)_7, for Qs defined in (31), we have || Ty — To|lpy < 3.

Proof. First, by Observation 1, it suffices to show ||P; — Pyl < 3. Pinsker’s inequality states

1
Hpgc _PQCIHTV < §dKL (nypm’)a

where dkp, is KL-divergence, so it is enough to show dky, (Py, Pyr) < % Notice that

/ exp (—f(y) — 2 Iy — Il3
dicr, Py, Por) = log (Z—:”> + /Pz(y) log ( 2:7 22)
v exp (=) = 35 Iy~ 1)

By Lemma 22, the first term satisfies, for A := %77
T LAZ2
]og < Z ) < 3LRA + T + lOg(l 05)

To bound the second term, we have

exp (~£(y) = % lly = [13) /7»

Pu(y) log Hy—wH —|ly — =[l3) dy
/y exp (=f(y) = o Iy — /113 ’ )

:Q_W/ym(y)@—xcz(y—xw(m—w’>>dy

<_ -
_277-1-

/zﬂ’x(y)dy -z

Y

2
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Here, the second line was by expanding and the third line was by ||z —2/[|, < A and Cauchy-
Schwarz. By Proposition 12,

fy yP(y)dy — xH2 < 2nLR, where by assumption the parameters
satisfy the conditions of Proposition 12. Then, combining the two bounds, we have
LA%Z A2 LA A2

When A = %, nL <1, and nL?R? < %, we have the desired

VLR Ly 1
L log(1.05) <
5 T 300 T 200 T 08(1.0%) <

N —

dk1, (Py, Pyr) <

C.3 Isoperimetry

In this section, we prove Lemma 18, which asks to show that 7o, satisfies a log-isoperimetric
inequality (32). Here, we define 7o, to be the conditional distribution of the & z-marginal on set
Qs. We recall this means that for any partition S7, So, S3 of {5,

. 1 o . 1
aal50) 2 (S, 52) - min (Fas(51). T, (52)- \/ ot (14 e A )

The following fact was shown in [CDWY19].

Lemma 23 ([CDWY19], Lemma 11). Any p-strongly logconcave distribution m satisfies the log-

isoperimetric inequality (32) with ¢ = p~z.

Observe that 7o, the restriction of 7 to the convex set {15, is y-strongly logconcave by the definition
of m (15), so it satisfies a log-isoperimetric inequality. We now combine this fact with the relative
density bounds Lemma 14 to prove Lemma 18.

Lemma 18 (Isoperimetry). Density 7t and set Qg defined in (17), (31) satisfy (32) with 1) = 8y s

Proof. Fix some partition Sy, Sg, S3 of 25, and without loss of generality let 7o, (S1) < 7q,(S2).

First, by applying Corollary 7, which shows Z—g(x) € [%, 2] everywhere in 5, we have the bounds

1 . 1 . . 1
§7T95(51) < 71-95(51) < 27795(51)’ §7T95(S2) < 795(52) < 27795(52)’ and 71-95(53) > 57795(53)-
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Therefore, we have the sequence of conclusions

1

705 (S3) > 57795(53)

. w - min (mq, (S1), T, (S2)) - \/log (1 + 1 )

min (7o, (S1), Tos(S2))
d(S1,5) Vi !
> % 70, (S1) - \/log <1 + m)

d(S1,52)VIE . 1
> %'TQJ(SI)'\/IOg <1+m>'

Here, the second line was by applying Lemma 23 to the p-strongly logconcave distribution moy,

and the final line used 4/log(1 + o) < 24/log(1 + ) for all a > 0. O

C.4 Correctness of YSample

In this section, we show how we can sample y efficiently in the alternating scheme of the algorithm
Sample-Joint-Dist, within an extremely high probability region. Specifically, for any z with
|z —a*||y, < \/kdlog(16k/6) - Rs, where Rs is defined in (31), we give a method for implementing

1
draw y o< exp <—f(y) T lly — ng) dy.

The algorithm is Algorithm 7, which is a simple rejection sampling scheme.

Algorithm 7 YSample(f,x,n,0)

Input: L-smooth, u-strongly convex f : R? — R with minimizer z*, n > 0, § € [0,1], » € R%
Output: If ||z — 2*||, < \/rdlog(16k/0) - Rs, return exact sample from distribution with density
x exp(—f(y) — % ly — z||3) (see (31) for definition of Rs). Otherwise, return sample within § TV

from distribution with density o exp(—f(y) — % ly — z||3)-

L if ||z — 2*|, < \/kdlog(16k/J) - Rs then

2: while true do

3: Draw y ~ N (xz —nV f(z),nI)

4: 7 ~ Unif[0, 1]

5: if 7 <exp(f(z)+ (Vf(z),y—x)— f(y)) then
6: return y

7: end if

8: end while

9: end if

10: return Sample x within TV § from density o exp(—f(y) — % |y — z||3) using [CDWY19]

We recall that we gave guarantees on rejection sampling procedures in Lemma 5 (an “exact” version
of Lemma 12 and Corollary 6). We now prove Lemma 19 via a direct application of Lemma 5.

Lemma 19 (YSample guarantee). For ¢ € [0,1], define Rs as in (31), and let n = m.
For any x with || — x*||, < \/kdlog(16k/0) - Rs, Algorithm 7 (YSample) draws an exact sample y
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from the density proportional to exp (—f(y) — % ly — ng) in an expected 2 iterations.
Proof. For ||z — x*||, < y/kdlog(16k/0) - Rs, YSample is a rejection sampling scheme with

p() = exp [~ 1) — = lly—2l2) . Dy) = exp | —F(2) — (VS (@)ry —2) — o= lly — 2|2
2n 21

It is clear that p(y) < p(y) everywhere by convexity of f, so we may choose C' = 1. To bound the
expected number of iterations and obtain the desired conclusion, Lemma 5 requires a bound on

Jyexp (= (2) = (Vf(2),y — 2) = & lly — =3) dy

(38)
Jyexp (=£@) = 25 lly = =ll3) dy

the ratio of the normalization constants of p and p. First, by Fact 1,

1 d
[exw (~1@) = (Vs @)y =) = 5l = 213) dy = exp (<) + § 191 @IB) 2m?.
y
Next, by smoothness and Fact 1 once more,

[esn (<0 =55 v =o18) v > [ exp (<) = 91601y~ a) = 52 by 013

—exp (~1(0)+ g IV SR ) (ﬁzL)%

Taking a ratio, the quantity in (38) is bounded above by

e (3 3rgs ) IV/@IB) 1 -+0m)

2

< 15exp <L IIVf(w)II§>

Nl

2(1+nL)
273 21002
< 1.5exp <n2L ‘ <16/<;d log (16%/6))) <o
w

The first inequality was (1 + nL)% < 1.5, the second used smoothness and the assumed bound on
|z — 2*||5, and the third again used our choice of 7. O

D Structural results

Here, we prove two structural results about distributions whose negative log-densities are small
perturbations of a quadratic, which obtain tighter concentration guarantees compared to naive
bounds on strongly logconcave distributions. They are used in obtaining our bounds in Section C
(and for the warm start bounds in Section 4), but we hope both the statements and proof techniques
are of independent interest to the community. Our first structural result is a bound on normalization
constant ratios, used throughout the paper.

Proposition 11. Let f : R? = R be p-strongly convex with minimizer x*, and let A > 0. Then,

J exp(—f(x))dw 1)
[ exp (—f(x) — o |z — x*Hg) dx = <1 i ,U/\>
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Proof. Define the function

 Jexp (<f(@) = s o —27I13) de

R(a) = .
Jexp (—f(@) = Sl — 2*]3) de

Let dm,(x) be the density proportional to exp (—f(:n) - ﬁ |l — 3:*H§> dx. We compute

— |3 de

J exp (—f(2) = g o — 23
2o file) =/ ( 2 22> 2)\1 5 Il
o Jexp (= f(@) = 5 o — a*[3) do 22
) o (—£@) = gz e =213 Il — 2"
2Xa? fexp (—f(a:) — ﬁ |z — :E*H%) dx

R(a) o Rla) d
- _ < . )
W/u:c o Rdra(e) < B L

dx

Here, the last inequality was by Fact 4, using the fact that the function f(z) + ﬁ ||z — :E*||§ is

W+ %—strongly convex. Moreover, note that R(1) = 1, and

Ay (e N_ 1o oA 1
da 8 pra+1) o pra+1l  pra?+a

Solving the differential inequality

d dR(ar) 1 d 1
el — - 2=
do log(F(a)) do R(a) — 2

)
we obtain the bound for any « > 1 (since log(R(1)) = 0)

d d

d HA A+ o pAo+ o\ 2 1\?2

1 <-lg(H——) = Rlo)< [FF——) <(14+—=) .
og(R(e) < 5 Og<,ma+1> (O‘)—<um+1> —< +,m>

Taking a limit o — oo yields the conclusion.

O

Our second structural result uses a similar proof technique to show that the mean of a bounded
perturbation f of a Gaussian is not far from its mode, as long as the gradient of the mode is small.
We remark that one may directly apply strong logconcavity, i.e. a variant of Fact 4, to obtain a
weaker bound by roughly a v/d factor, which would result in a loss of Q(d) in the guarantees of

Theorem 2. This tighter analysis is crucial in our improved mixing time result.

Before stating the bound, we apply Fact 3 to the convex functions h(z) = (8T x)? and h(z) = ||3:H‘21

to obtain the following conclusions which will be used in the proof of Proposition 12.
Corollary 9. Let w be a p-strongly logconcave density. Then,

1. Ex[(07 (z — E[2]))?] < pu~L, for all unit vectors 6.
2. Ex[|lz — Erfz]|ly) < 3d?u~2.
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Proposition 12. Let f : R — R be L-smooth and convex with minimizer z*, let x € R with
|z —z*||, < R, and let dmy(y) be the density proportional to exp (—f(y) - % ly — xH%) dy. Sup-

pose that n < min < STZRZ 45%22). Then,
[Er, ]~ ol < 2oL
Proof. Define a family of distributions 7#® for v € [0, 1], with

dn () ox exp (—a () = 1)~ (V7(@)y =)~ F(2) = (V) — ) = o - :cué) dy.

In particular, 7! = m,, and 7¥ is a Gaussian with mean z — nV f(z). We define g, := E_[y], and

% . 1
Yo := argmin, {a (f(y) = f(@) = (V(x),y =) + fz) +(Vf(2),y — ) + o ly — 35”3} :
Define the function D(a) := ||yo — ||y, such that we wish to bound D(1). First, by smoothness

D(0) = [Erely] — zll, = [V F (@)l < nLE.

d Ya — T Ao Ao
D _Ja Tt < || 2o
do (o) = <Hya —zly’ da > B H dav ||,

) fix a unit vector 6. We have

Next, we observe

dya

In order to bound H

(52.0) = = { [ -aart.0)

- / (- 2.0) (f(x) + (VF(@).y — ) — F@))dn°(y)

(39)
\// —x,0))%dr(y \// (2),y — x) = f(y))2dr(y)
< \/ / <<y—w,e>>2dwa<y>\/ [ 5= alibdnety).

The third line was Cauchy-Schwarz and the last line used smoothness and convexity, i.e.

L
=5 lly = zll3 < f(2) + (VF(2),y —2) = fy) 0.
We now bound these terms. First,

/ ((y — 2, 6))%dn(y) < 2 / (4 — s 0))%dm°(y) +2 / (o — .0)2dn® ()
<204 2|0 — 2|3 = 217 + 2D()?.

(40)

Here, we applied the first part of Corollary 9, as 7@ is n~!-strongly logconcave, and the definition
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of D(a). Next, using for any a,b € R?, [|a + bll5 < (|lally + [|b]ly)* < 16||al|3 + 16 ||b]|3, we have

L2 o — (6% — (0%
[ Sl —aliane) < [ar?ly - mallan) + [ 422 o - galliane (0
< 12L%d%0* + 4L2D()*.

(41)

Here, we used the second part of Corollary 9. Maximizing (39) over 6, and applying (40), (41),

Do | < VBIRr+ DlaP) B + D))

2
< AL(y/n + D(a)) - max(2nd, D(a)?). (42)

%D(oo < H

Assume for contradiction that D(1) > 2nLR, violating the conclusion of the proposition. By
continuity of D, there must have been some @ € (0,1) where D(@) = 2nLR, and for all 0 < a < @,
D(a)) < 2nLR. By the mean value theorem, there then exists 0 < & < & such that

dDdgi) _ D(@) = DO rn

On the other hand, by our assumption that 2nL2R? < 1, for any d > 1 it follows that
2nd > 4n*L*R? > D(&)?, \/2n > 2nLR > D(a&).
Then, plugging these bounds into (42) and using /n + D(&) < % mas V2 < 2,

d 5 d
- A) < . — . = —_ < .
daD(a) <A4L 2\/7_7 2nd 20\/ﬁR nLR <nLR

We used n < % in the last inequality. This is a contradiction, implying D(1) < 2nLR. O
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