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Abstract

We present an algorithm for computing approximate ¢, Lewis weights to high precision.
Given a fulltank A € R™*" with m > n and a scalar p > 2, our algorithm computes e-
approximate ¢, Lewis weights of A in O, (log(1/¢)) iterations; the cost of each iteration is linear
in the input size plus the cost of computing the leverage scores of DA for diagonal D € R™*™.
Prior to our work, such a computational complexity was known only for p € (0,4) [CP15],
and combined with this result, our work yields the first polylogarithmic-depth polynomial-work
algorithm for the problem of computing ¢, Lewis weights to high precision for all constant p > 0.
An important consequence of this result is also the first polylogarithmic-depth polynomial-work
algorithm for computing a nearly optimal self-concordant barrier for a polytope.
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1 Introduction to Lewis Weights

In this paper, we study the problem of computing the ¢, Lewis weights' of a matrix.

Definition 1. [Lew78, CP15] Given a full-rank matriz A € R™ ™ with m > n and a scalar
p € (0,00), the Lewis weights of A are the entries of the unique’ vector W € R™ satisfying the
equation

E?/p = aT(ATWI_Q/pA)*lai for all i € [m], (1.1)

)

where a; s the i’th row of matriz A and W is the diagonal matriz with vector w on the diagonal.

Motivation. We contextualize our problem with a simpler, geometric notion. Given a set of m
points {a;}"; € R™ (the rows of the preceding matrix A € R™*™), their John ellipsoid [Joh48] is the
minimum?® volume ellipsoid enclosing them. This ellipsoid finds use across experiment design and
computational geometry [Tod16] and is central to certain cutting-plane methods [Vai89, LSW15],
an algorithm fundamental to mathematical optimization (Section 1.3). It turns out that the John
ellipsoid of a set of points {a;}/", € R" is expressible [BV04] as the solution to the following convex
program, with the objective being a stand-in for the volume of the ellipsoid and the constraints
encoding the requirement that each given point a; lie within the ellipsoid:

minimizenso det(M) ™!, subject to a; Ma; < 1, for all i € [m)]. (1.2)

The problem (1.2) may be generalized by the following convex program [Woj96, CP15], the gener-
alization immediate from substituting p = oo in (1.3):

m
minimizen-o det(M) ™!, subject to Z(a?Mai)p/z <1 (1.3)
i=1

Geometrically, (1.3) seeks the minimum volume ellipsoid with a bound on the p/2-norm of the
distance of the points to the ellipsoid, and its solution M is the “Lewis ellipsoid” [CP15] of {a;}I" ;.

The optimality condition of (1.3), written using w € R™ defined as w; = (a; Ma;)?/?, is
equivalent to (1.1), and this demonstrates that solving (1.3) is one approach to obtaining the Lewis
weights of A (see [CP15]). This equivalence also underscores the fact that the problem of computing
Lewis weights is a natural £, generalization of the problem of computing the John ellipsoid.

More broadly, Lewis weights are ubiquitous across statistics, machine learning, and mathemat-
ical optimization in diverse applications, of which we presently highlight two (see Section 1.3 for
details). First, their interpretation as “importance scores” of rows of matrices makes them key to
shrinking the row dimension of input data [DMMO06]. Second, through their role in constructing
self-concordant barriers of polytopes [LS14], variants of Lewis weights have found prominence in
recent advances in the computational complexity of linear programming.

From a purely optimization perspective, Lewis weights may be viewed as the optimal solution
to the following convex optimization problem (which is in fact essentially dual to (1.3)):
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'From hereon, we refer to these simply as “Lewis weights” for brevity.

2Existence and uniqueness was first proven by D.R.Lewis [Lew78], after whom the weights are named.

3The John ellipsoid may also refer to the maximal volume ellipsoid enclosed by the set {x : |z T a;| < 1}, but in
this paper, we use the former definition.



As elaborated in [CP15, LLS19], the reason this problem yields the Lewis weights is that an appro-
priate scaling of its solution w transforms its optimality condition from w$ = a] (ATWA)~1a; to
(1.1). The problem (1.4) is a simple and natural one and, in the case of & = 1 (corresponding to
the John ellipsoid), has been the subject of study for designing new optimization methods [Tod16].

In summary, Lewis weights naturally arise as generalizations of extensively studied problems in
convex geometry and optimization. This, coupled with their role in machine learning, makes un-
derstanding the complexity of computing Lewis weights, i.e., solving (1.4), a fundamental problem.

Our Goal. We aim to design high-precision algorithms for computing e-approximate Lewis
weights, i.e., a vector w € R™ satisfying

w; . w5, for all i € [m], where W is defined in (1.1) and (1.4). (1.5)

where a ~. b is used to denote (1 —¢)a < b < (14 €)a. To this end, we design algorithms to solve
the convex program (1.4) to -additive accuracy for an appropriate € = poly(e, n), which we prove
suffices in Lemma 1.

By a “high-precision” algorithm, we mean one with a runtime polylogarithmic in e. We empha-
size that for several applications such as randomized sampling [CP15], approzimate Lewis weights
suffice; however, we believe that high-precision methods such as ours enrich our understanding of
the structure of the optimization problem (1.4). Further, as stated in Theorem 3, such methods
yield new runtimes for directly computing a near-optimal self-concordant barrier for polytopes.

We use number of leverage score computations as the complexity measure of our algorithms.
Our choice is a result of the fact that leverage scores of appropriately scaled matrices appear in
both VF(w) (see Lemma 3) and in the verification of correctness of Lewis weights. This measure
of complexity stresses the number of iterations rather than the details of iteration costs (which
depend on exact techniques used for leverage core computation, e.g., fast matrix multiplication)
and is consistent with many prior algorithms (see Table 1).

Prior Results. The first polynomial-time algorithm for computing Lewis weights was presented
by [CP15] and performed only O,(log(1/€))" leverage score computations. However, their result
holds only for p € (0,4). We explain the source of this limited range in Section 1.2.

In comparison, for p > 4, existing algorithms are slower: the algorithms by [CP15], [Leel6],
and [LS19] perform Q(n), O(1/¢), and O(y/n) leverage score computations, respectively. [CP15]
also gave an algorithm with total runtime O({nnz(A) + c,nP®)). Of note is the fact that the
algorithms with runtimes polynomial in 1/e ([Leel6, CP15]) satisfy the weaker approximation
condition @?/p ~ea, (ATWI_Q/pA)’lai, which is in fact implied by our condition (1.5).

We display these runtimes in Table 1, assuming that the cost of a leverage score computation
is O(mn?) (which, we reiterate, may be reduced through the use of fast matrix multiplication). In
terms of the number of leverage score computations, Table 1 highlights the contrast between the
polylogarithmic dependence on input size and accuracy for p € (0,4) and polynomial dependence
on these factors for p > 4. The motivation behind our paper is to close this gap.

1.1 Owur Contribution
We design an algorithm that computes Lewis weights to high precision for all p > 2 using only

5p(10g(1/5)) leverage score computations. Together with [CP15]’s result for p € (0,4), our result
therefore completes the picture on a near-optimal reduction from leverage scores to Lewis weights

for all p > 0.

4We use O, to hide a polynomial in p and O and © to hide factors polylogarithmic in p, n, and m.



Theorem 1 (Main Theorem (Parallel)). Given a full-rank matriz A € R™*™ and p > 4, we can
compute (Algorithms 1 and 2) its e-approzimate Lewis weights (1.5) in O(p®log(mp/e)) iterations’.
Each iteration computes the leverage scores of a matrix DA for a diagonal matriz D. The total
runtime is O(p*mn?log(mp/e)), with O(p?log(mp/e)log?(m)) depth.

Theorem 1 is attained by a parallel algorithm for computing Lewis weights that consists of
polylogarithmic rounds of leverage score computations and therefore has polylogarithmic-depth, a
result that was not known prior to this work.

Theorem 2 (Main Theorem (Sequential)). Given a full-rank matriz A € R™*™ and p > 4, we
can compute (Algorithms 1 and 3) its e-approximate Lewis weights (1.5) in O(pmlog(mp/e))
iterations. Each iteration computes the leverage score of one row of DA for a diagonal matriz D.
The total runtime is O(pmn?log(mp/e)).

Remark 1.1. The solution to (1.3) characterizes a “Lewis ellipsoid,” and the {~, Lewis ellipsoid
of A is precisely its John ellipsoid. After symmetrization [Tod16], computing the John ellipsoid is
equivalent to solving a linear program (LP). Therefore, computing Lewis weights in O(log(mp/e))
iterations would imply a polylogarithmic-depth algorithm for solving LPs, which, given the current
O(y/n) depth [LS19], would be a significant breakthrough in the field of optimization. We therefore
believe that it would be difficult to remove the polynomial dependence on p in our runtime.

Number of

Authors Range of p Leverage Score Total Runtime
Computations/Depth

1 log(m 1 log(m
[CP15] pe(0,4) O (17‘17]0/2‘ -log< gé )>> O <W -mn? - log<%>)
[CP15] p>4 Q(n) Q(mn? - log(2))
[CP15])* p>4 not applicable O %VA) + ¢,nO)
[Leel6]* p>4 O (% -log(m/n)) O ((nn%(A) + Z—;) : log(m/n))
[LS19] p=4 O(p? - n'/? -log(2)) O(p? - mn®3 - polylog ()
Theorem 1 p> 4 O - log(2)} O mn - log("2))

Table 1: Runtime comparison for computing Lewis weights. Results with asterisks use a
weaker notion of approximation than our paper (1.1). All dependencies on n in the running
times of these methods can be improved using fast matrix multiplication.

1.2 Overview of Approach

Before presenting our algorithm, we describe obstacles to directly extending previous work on the
problem for p € (0,4) to the case p > 4. For p € (0,4), [CP15, LS19] design algorithms that, with
a single computation of leverage scores, make constant (dependent on p) multiplicative progress on
error (such as function error or distance to optimal point), thus attaining runtimes polylogarithmic
in €. However, these methods crucially rely on contractive properties that, in contrast to our work,
do not necessarily hold for p > 4.

For example, one of the algorithms in [CP15] starts with a vector v . W, where  is the vector of
true Lewis weights and ¢ some constant. Consequently, we have (a, (ATVI=2/PA)~1g,)P/? R clp/2-1|

®Qur algorithms work for all p > 2, as can be seen in our proof in Section 3.1. However, for p € (2,4), the
algorithm of [CP15] is faster, and therefore, in our main theorems, we state runtimes only for p > 4.



(a?(ATsz/pA)_lai)p/? Due to this map being a contraction for [p/2 — 1| < 1, or equivalently,
for p € (0,4), O(log(logn)) recursive calls to it give Lewis weights for p < 4, but the contraction -
and, by extension, this method - does not immediately extend to the setting p > 4.

Prior algorithms for p > 4 therefore resort to alternate optimization techniques. [CP15] frames
Lewis weights computation as determinant maximization (1.3) (see Section D) and applies cutting
plane methods [GLS81, LSW15]. [Leel6] uses mirror descent, and [LS19] uses homotopy methods.
These approaches yield runtimes with poly(n) or poly(%) leverage score computations, and there-
fore, in order to attain runtimes of polylog(1l/e) leverage score computations, we need to rethink
the algorithm.

Our Approach. As stated in Section 1, to obtain e-approximate Lewis weights for p > 4, we
compute a w that satisfies F(w) < F(w) < F(w) + €, where F and w are as defined in (1.4) and
€ = O(poly(n,¢)). In light of the preceding bottlenecks in prior work, we circumvent techniques
that directly target constant multiplicative progress (on some potential) in each iteration.

Our main technical insight is that when the leverage scores for the current weight w € RZ
satisfy a certain technical condition (inequality (1.6)), it is indeed possible to update w to get
multiplicative decrease in function error (F(w) — F(w)), thus resulting in our target runtime. To
turn this insight into an algorithm, we design a corrective procedure that ensures that (1.6) is
always satisfied: in other words, whenever (1.6) is violated, this procedure updates w so that the
new w does satisfy (1.6), setting the stage for the aforementioned multiplicative progress. An
important additional property of this procedure is that it does not increase the objective function
and is therefore in keeping with our goal of minimizing (1.4).

Specifically, the technical condition that our geometric decrease in function error hinges on is

T(AT -1
max (A WA)” a <l+a. (1.6)

i€[m)] w?

This ratio follows naturally from the gradient and Hessian of the function objective (see Lemma 3).
Our algorithm’s update rule to solve (1.4) is obtained from minimizing a second-order approxima-
tion to the objective at the current point, and the condition specified in (1.6) allows us to relate the
progress of a type of quasi-Newton step to lower bounds on the progress there is to make, which is
critical to turning a runtime of poly(1/e) into polylog(1/¢) (Lemma 5).

The process of updating w so that (1.6) goes from being violated to being satisfied corresponds,
geometrically, to sufficiently rounding the ellipsoid £(w) = {z : 2T ATWAz < 1}; specifically, the

updated ellipsoid satisfies £(w) C {HWﬁAmHOO < V/1+ a} (see Section C), and this is the reason
we use the term “rounding” to describe our corrective procedure to get w to satisfy (1.6) and the
term “rounding condition” to refer to (1.6).

We develop two versions of rounding: a parallel method and a sequential one that has an
improved dependence on p. Each version is based on the principles that (1) one can increase those
entries of w at which the rounding condition (1.6) does not hold while decreasing the objective
value, and (2) the vector w obtained after this update is closer to satisfying (1.6).

We believe that such a principle of identifying a technical condition needed for fast convergence
and the accompanying rounding procedures could be useful in other optimization problems. Ad-
ditionally, we develop Algorithm 4, which, by varying the step sizes in the update rule, maintains
(1.6) as invariant, thereby eliminating the need for a separate rounding and progress steps.

1.3 Applications and Related Work

We elaborate here on the applications of Lewis weights we briefly alluded to in Section 1. While
for many applications (such as pre-processing in optimization [CP15]) approximate weights suffice,



solving regularized D-optimal and computing O(n) self-concordant barriers to high precision do
use high precision Lewis weights.

Pre-processing in optimization. Lewis weights are used as scores to sample rows of an input
tall data matrix so the ¢, norms of the product of the matrix with vectors are preserved. They
have been used in row sampling algorithms for data pre-processing [DMMO0O6, DMIMW12, LMP13,
CLMT"15], for computing dimension-free strong coresets for k-median and subspace approximation
[SW18], and for fast tensor factorization in the streaming model [CCDS20]. Lewis weights are also
used for £; regression, a popular model in machine learning used to capture robustness to outliers,
in: [DLS18] for stochastic gradient descent pre-conditioning, [LWYZ20] for quantile regression, and
[BDM20] to provide algorithms for linear algebraic problems in the sliding window model.

John ellipsoid and D-optimal design. As noted in Remark 1.1, a fast algorithm for Lewis
weights could yield faster algorithms for computing John ellipsoid, a problem with a long history of
work [Kha96, SF04, KY05, DAST08, CCLY19, ZF20]. It is known [Tod16] that the John ellipsoid
problem is dual to the (relaxed) D-optimal experiment design problem [Puk06]. D-optimal design
seeks to select a set of linear experiments with the largest confidence ellipsoid for its least-square
estimator [AZLSW17, MSTX19, SX20].

Our problem (1.4) is equivalent to pf s-regularized D-optimal design, which can be interpreted
as enforcing a polynomial experiment cogt: viewing w; as the fraction of resources allocated to

p—2

experiment ¢, each w; is penalized by w/ ~. This regularization also appears in fair packing and
fair covering problems [MSZ16, DFO20] from operations research.

Self-concordance. Self-concordant barriers are fundamental in convex optimization [NN94],
combinatorial optimization [LS14], sampling [KN09, LLV20], and online learning [AHRO08]. Al-
though there are (nearly) optimal self-concordant barriers for any convex set [NN94, BE15, LY 18],
computing them involves sampling from log-concave distributions, itself an expensive process with a
poly(1/¢) runtime. [LS14] shows how to construct nearly optimal barriers for polytopes using Lewis
weights. Unfortunately, doing so still requires polynomial-many steps to compute these weights;
[LS14] bypass this issue by showing it suffices to work with Lewis weights for p ~ 1. In this paper,
we show how to compute Lewis weights by computing leverage scores of polylogarithmic-many ma-
trices. This gives the first nearly optimal self-concordant barrier for polytopes that can be evaluated
to high accuracy with depth polylogarithmic in the dimension.

Theorem 3 (Applying Theorem 1 to [LS19, Section 5]). Given a non-empty polytope P = {x €
R™ | Az > b} for full rank A € R™ ™, there is a O(nlog®m)-self concordant barrier + for P
such that for any ¢ > 0 and x € P, in O(mn®~log® mlog(m/e))-work and O(log® mlog(m/e))-
depth, we can compute g € R™ and H € R™™ with ||g — Vi (z)||g2p(z)-1 < € and VZ(z) < H =<
O(logm)V2(z). With an additional O(m“+t°M) work, H € R™™ with (1 — €)V3)(z) < H <
O(1+ €)V2y(z) can be computed as well.

1.4 Notation and Preliminaries

We use A to denote our full-rank m x n (m > n) real-valued input matrix and w € R™ to denote
the vector of Lewis weights of A, as defined in (1.1) and (1.4). All matrices appear in boldface
uppercase and vectors in lowercase. For any vector (say, o), we use its uppercase boldfaced form
(X) to denote the diagonal matrix ¥;; = 0;. For a matrix M, the matrix M® is the Schur product
(entry-wise product) of M with itself. For matrices A and B, we use A > B to mean A — B is
positive-semidefinite. For vectors a and b, the inequality a < b applies entry-wise. We use ¢; to
denote the 7’th standard basis vector. We define [n] = {1,2,...,n}. As in (1.4), since we defined

a™ ])%2’ the ranges of p € (2,4) and p > 4 translate to a > 1 and « € (0, 1], respectively. From
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hereon, we work with a. We also define & = max{1, a}. For a matrix A € R"*" and w € RZ,, we
define the projection matrix P(w) < W/2A(ATWA)TATWY/2 € R™*™_ The quantity P(w);
is precisely the leverage score of the i’th row of W1/2A.:

oi(w) £ w; - a] (ATWA) g, (1.7)
Fact 1.1 ([L514]). For all w € RYy we have that 0 < oj(w) <1 for all i € [m], 3 i 0i(w) < m,

and 0 < P(w)? < Z(w).
2 Our Algorithm

We present Algorithm 1 to compute an e-additive solution to (1.4). We first provide the following
definitions that we frequently refer to in our algorithm and analysis. Given o > 0 and w € RZ,,
the 7’th coordinate of p(w) € R™ is

pilw) 2 7). (2.1)

Based on this quantity, we define the following procedure, derived from approximating a quasi-
Newton update on the objective F from (1.4):

pi(w) —1
pi(w) +1

Using these definitions, we can now describe our algorithm. Depending on whether the following
condition (“rounding condition”) holds, we run either Descent( - ) or Round( - ) in each iteration:

[Descent(w,C,n)];, = w; |1+ - for all i € C C {1,2,...,m}. (2.2)

Prmax(w) & max pi(w) < 1+ . (2.3)

1€[m)|

Specifically, if (2.3) is not satisfied, we run Round( - ), which returns a vector that does satisfy
it without increasing the objective value. We design two versions of Round( - ), one parallel
(Algorithm 2) and one sequential (Algorithm 3), with the sequential algorithm having an improved
dependence on «, to update the coordinates violating (2.3). We apply one extra step of rounding to
the vector returned after Tiota1 iterations of Algorithm 1 and transform it appropriately to obtain
our final output. In the following lemma (proved in Section B), we justify that this output is indeed
the solution to (1.5).

Lemma 1 (Lewis Weights from Optimization Solution). Let w € RZ; be a vector at which the

. L~ . . . ~ 8 _4 . -
objective (1.4) zi g-suboptimal in the additive sense for € = (25m(\/ﬁfa§(a+a*1))4’ i.e., F(w) <
F(w) < F(w)+e. Further assume that w satisfies the rounding condition: pmax(w) < 14+a. Then,
the vector W defined as w; = (aiT(ATWA)*lai)l/a satisfies W; ~. W; for alli € [m], thus achieving

the goal spelt out in (1.5).

2.1 Analysis of Descent( - )
We first analyze Descent( - ) since it is common to both the parallel and sequential algorithms.

Lemma 2 (Iteration Complexity of Descent( - )). Each iteration of Descent( -) (described in
(2.2)) decreases the value of F. Assuming that Round( - ) does not increase the value of the
objective in (1.4), for any given accuracy parameter 0 < € < 1, the number of Descent( - ) steps
that Algorithm 1 performs before achieving F(w) < F(w) + € is given by the following bound:

Tiotal = O(max(a_l, Oé) lOg(m/g))



Algorithm 1 Lewis Weight Computation Meta-Algorithm

Input: Matrix A € R™*" parameter p > 2, accuracy &
Output: Vector w € RY} that satisfies (1.5)
( ) _

For all i € [m], initialize w, .
8
Set a = p%a a = maX(av 1)7 €= (25m(v/n+ oj(a—i— —T))> and Teotal = O(max( )log(m/g))
for k=1,2,3,..., Tiota do
@*)  Round(w®*~ D A, «a) > Invoke Algorithm 2 (parallel) or 3 (sequential)

w*) « Descent(w*), [m], 1) > See (2.2) and Lemma 2
end
Set wr + Round(w(Ten) | A o)
Return w € RZ,, where w; = ( T(ATWRA) La) /e > See Section B

Algorithm 2 RoundParallel(w, A, «)

Input: Vector w € RT, matrix A € R"*", parameter o > 0
Output: Vector w € R} satisfying (2.3)
Define p(w) as in (2.1)
while C = {i | p;(w )>1+04}7é(2)d0
| w <+ Descent(w,C, 5-1) > See Section 3
end
Return w

Algorithm 3 RoundSequential(w, A, «)

R’H’LXTL

Input: Vector w € RZ;, matrix A €
Output: Vector w € RY} satisfying (2.3)
Define p(w) as in (2.1) and o(w) as in (1.7)
Define C = {i | p;(w) > 1}
for i € Cdo
| w; < w;(1 4 6;), where &; solves p;(w) = (1 + §;0(w))(1 + ;)* > see Section 4
end
Return w

, parameter o > 0

As is often the case to obtain such an iteration complexity, we prove Lemma 2 by incor-
porating the maximum sub-optimality in function value (Lemma 5) and the initial error bound
(Lemma 4) into the inequality describing minimum function progress (Lemma 6). The assumption
that Round( - ) does not increase the value of the objective is justified in Lemma 7.

Since our algorithm leverages quasi-Newton steps, we begin our analysis by stating the gradient
and Hessian of the objective in (1.4) as well as the error at the initial vector w® | as measured against
the optimal function value. The Hessian below is positive semidefinite when a > 0 (equivalently,
when p > 2) and not necessarily so otherwise. Consequently, the objective is convex for o > 0, and
we therefore consider only this setting throughout.

Lemma 3 (Gradient and Hessian). For anyw € R, the objective in (1.4), F(w) = —log det(ATWA)+

Hl_oél—r w'T, has gradient and Hessian given by the following expressions.

[VFw)], = w; L - (wt® — o3(w)) and V2F(w) = WIP(w)PW 4 awe L,

)



Lemma 4 (Initial Sub-Optimality). At the start of Algorithm 1, the value of the objective of (1.4)
differs from the optimum objective value as F(w®)) < F(w) + nlog(m/n).
2.1.1 Minimum Progress and Maximum Sub-optimality in Descent( -)

We first prove an upper bound on objective sub-optimality, necessary to obtain a runtime polylog-
arithmic in 1/e. Often, to obtain such a rate, the bound involving objective sub-optimality has a
quadratic term derived from the Hessian; our lemma is somewhat non-standard in that it uses only
the convexity of F. Note that this lemma crucially uses (2.3).

Lemma 5 (Objective Sub-optimality). Suppose w € RY and pmax(w) < 14 «. Then the value of
the objective of (1.4) at w differs from the optimum objective value as follows.

_ w; e pi(w)\ o pslt2) 17
f@o—fﬁwfi§%1+a<ﬁ+O{)(m()—w <5mm41a1%§%wH_,m()+1'

Proof. Since g(w) = —log det(ATWA) is convex and [Vg(w)]; = —w; 'o;(w), we have

6(m) > g(w) + Vo(w) (@ — w) = glw) + 3 (—”“”“’ n m(w))) ,

and therefore,

(a0 VT 1
> 3" o where ¢ & ~ZWT o T o) |
> ¢; where ¢; o + oi(w) + 1+ a ([@]; w; %)

To prove the claim, it suffices to bound each ¢; from below. First, note that

1+L 14
. v-o;\Ww « ag;\w @ w;
C; > 151;61_ uj( ) + al(w) + 1_'_7@ (Ul-i-a — wilJrOl) — _1_1_70( (7'15})> + az(w) — 1 i'_ o
= 1 1
1+«
w; 1
zl;a[ﬂmmea+u+ammm—@ (2.4)

where the first equality used that the minimization problem is convex and the solutions to —o; (w)w; '+
v® = 0 (i.e. where the gradient is 0) is a minimizer, and the second equality used p;(w)
oi(w)/w; e Applying pi(w) <14, 1+ 2 < expz, and expz < 1+ + 22 for z < 1 yields

=

|

pi(w) = (1= (1= pi(w))* < exp(L(piw) ~ 1)) <1+ = (piw) — 1) + (i) ~ 1% (25)

Combining (2.5) with (2.4) yields that
.>E£ﬁ<_ ORI s A IR
G = 14+« api(w a « QP
w; e pi(w) w, pi(w)
= 1+ 2p5(w) — pi(w)? = P20 (pi(w) — 1)2| = ——— (14 2220 - (pi(w) — 1)°
1+a[ +2pi(w) — pi(w) o (pi(w) )] 1+a<+ a)(p(w) )



The claim then follows from the fact that for p;(w) < 1 + «, we have (Hpi(w)oﬁz(Hm(w))

<
et 24+ 14142 <5max{l,a '} -

Lemma 6 (Function Decrease in Descent( - )). Let w,n € R7 with n; € [0,5=] for all i € [m].
Further, let wt = Descent(w, [m],n), where Descent is defined in (2.2). Then, wt € R7 with
the following decrease in function objective.

+ M 14a (Pi(w) — 1)°
Fw )S]—"(w)—'z oW o 1
1€[m]

The proof of this lemma resembles that of quasi-Newton method: first, we write a second-
order Taylor approximation of F(w™) around w and apply Fact 1.1 to Lemma 3 to obtain the
upper bound on Hessian: V2F(w) = W_IP(@)(2)W_1 +aWel < W_IE(@)W_I +aWel We
further use the expression for VF(w) in this second-order approximation and simplify to obtain
the claim, as detailed in Section A.

2.1.2 TIteration Complexity of Descent( - )

Proof of Lemma 2. Since Algorithm 1 calls Descent( - ) after running Round( - ), the requirement
Pmax(w) < 1+ « in Lemma 5 is met. Therefore, we may combine Lemma 5 alongwith Lemma 6
and our choice of n; = 3% in Algorithm 1 to get a geometric decrease in function error as follows.

m (w) — 2
Fw?) = F(@) < F(w) = F(@) = s maxl(a 3 sz-”“(p[j,((w)) +11)
) i=1 7

< 1 ! ) (Ftw) - 7). (2.6)

" 30max(1, @) - max(1,a"1)

We apply this inequality recursively over all iterations of Algorithm 1, while also using the as-
sumption that Round( - ) does not increase the objective value. Setting the final value of (2.6)
to £, bounding the initial error as F(w) — F(w) < nlog(m/n) < m? by Lemma 4, observing
max(1,a)-max(1,a” ') = max(a, ™ !), and taking logarithms on both sides of the inequality gives
the claimed iteration complexity of Descent( - ). O

3 Analysis of Round( - ): The Parallel Algorithm

The main export of this section is the proof of our main theorem about the parallel algorithm
(Theorem 1). This proof combines the iteration count of Descent( - ) from the preceding section
with the analysis of Algorithm 2 (invoked by Round( - ) in the parallel setting), shown next. In
Lemma 7, we show that RoundParallel( - ) decreases the function objective, thereby justifying
the key assumption in Lemma 2. Lemma 7 also shows an upper bound on the new value of p after
one while loop of RoundParallel( - ), and by combining this with the maximum value of p for
termination in Algorithm 2, we get the iteration complexity of RoundParallel(-) in Corollary 1.

Lemma 7 (Outcome of RoundParallel( - )). Let wt € RY, be the state of w € R, at the end
of one while loop of RoundParallel( -) (Algorithm 2). Then, F(w™) < F(w) and pmax(w™) <

(1 + m)iapmaX(w)'

Proof. Each iteration of the while loop in RoundParallel( - ) performs Descent(w, C %1) over
the set of coordinates C = {i : p;(w) > 1+ a}. Lemma 6 then immediately proves F(w™) < F(w),
which is our first claim.



To prove the second claim, note that in Algorithm 2, for every i € C

n w; [ pi(w) —1 - w; o o
Ll I I S T D YT I I
Wi =wit g [pi(w)—i—l St sy Trigal ™ +3d(2—i—a) ’

where the second step is by the monotonicity of x — % for x > 1. Combining it with w,f = w;
for all i ¢ C implies that wt > w. Therefore, for all i € C, we have

plwh); = [w} ] [A(ATWTA)TAT]; < [1 +

)

3a<2+a)] ~w; [AATWA) AT (3.1)

O

Corollary 1. Let w be the input to RoundParallel( -). Then, the number of iterations of the

while loop of RoundParallel( -) is at most O <(1 +a72) log(%’@)).

Proof. Let w® be the value of w at the start of the i’th execution of the while loop of RoundParallel(-

). Repeated application of Lemma 7 over k executions of the while loop gives pmax(w(k)) <
—ak —ak

Pmax (W) (1 + m) . We set pmax(w) (1 + m) < 1+ « in accordance with the ter-

mination condition of RoundParallel( - ). Next, applying 1 + = < exp(x), and taking logarithms
on both sides yields the claimed limit on the number of iterations, k. O

Lemma 8. Over the entire run of Algorithm 1, the while loop of RoundParallel( -) runs for at
most O (ﬁotal a2 log (ﬁ)) iterations if a € (0,1] and O (ﬁotal -« - log (ﬁ)) iterations
ifa>1.

Proof. Note that pmax(;7) < (%)HO‘; consequently, in the first iteration of Algorithm 1, there are
at most O((a + a=2)log(m/(n(1 + a)))) iterations of the while loop of RoundParallel( - ) by
Corollary 1. Note that between each call to RoundParallel( - ), for all i € [m],

- [pi(w) —1 : ~1 1
3a | pi(w)+1 3a |[1+1+4a« (3a)(2+ )
where the first inequality is by using the fact that the output w of RoundParallel( - ) satisfies
Pmax(w) < 1+ a. Therefore, applying the same logic as in (3.1), we get that between two calls to

—(14a)
RoundParallel( - ), the value of p;(w) increases by at most (1 - m) = 0O(1) for all
i € [m]. Combining this with Corollary 1 and the total initial iteration count and observing that
Ttotal is the total number of calls to RoundParallel( -) finishes the proof. O

3.1 Proof of Main Theorem (Parallel)

Proof. (Proof of Theorem 1) First, we show correctness. Note that, as a corollary of Lemma 2,
F(wTeta)) < F(w) 4+ . By the properties of Round as shown in Lemma 7, we also have that
F(wr) < F(W) + & and puax(wr) < 1+ a for wg = Round(w(Teta)| A o). Therefore, Lemma 1

e +‘f)€(: oy We conclude that w € R™ defined as

W; = (a (ATWRA) 'a;)"/® satisfies @; ~. w; for all i € [m]. Combining the iteration counts of
Descent(-) from Lemma 2 and of RoundParallel(-) from Lemma 8 yields the total iteration count

_ . . . . 2
as O(a3log(m/(ea))) if a < 1 and O(a?log(m/¢c)) if a > 1. As stated in Section 1.4, o = o5

is applicable, and by the choice of € =

10



and so translating these rates in terms of p gives O(p?log(mp/e)) for p > 4 and O(p~2log(mp/e))
for p € (2,4), thereby proving the stated claim. The cost per iteration is O(mn?)® for multiplying
two m X n matrices. O

4 Analysis of Round( - ): Sequential Algorithm
We now analyze Algorithm 3. Note that these proofs work for all o > 0.

Lemma 9 (Coordinate Step Progress). Given w € RZ,, a coordinate i € [m], and §; € R, we have

1+«
w:
F(w + dwie;) = F(w) —log(1 + d;04(w)) + Tra l—ka((l + o) —1).
Proof. By definition of F, we have
T T 1 1+ wil o 1+a

Recall the matrix determinant lemma: det(A +uv') = (1 +v"A7'u)det(A). Applying it to
det (AT diag(w + 5iwiei)A) in the preceding expression for F(w + d;w;e;) proves the lemma.

O

Lemma 10 (Coordinate Step Outcome). Given w € R”) and C = {i : pi(w) > 1}, let w™ =
w + djwie; for any i € C, where §; = argmins [— log(1 + do;(w)) + ﬁwipra((l + o)t — 1)}
Then, we have F(w™) < F(w) and p;(w™) < 1.

Proof. We note that ming [— log(1 + 0o (w)) + ﬁw}*o‘((l +§)lte - 1)} < 0. Then, Lemma 9
implies the first claim. Since the update rule optimizes over F coordinate-wise, at each step the
optimality condition given by p;(w™) = 1 is met for each i € C. The second claim is then proved by
noting that for j # i, wj-' = w; and by the Sherman-Morrison-Woodbury identity, p;(w™) < p;(w):

(ajT (ATWA)_laj)2
"1+ 6wia] (ATWA) g,

aj (ATWTA)aj = a] (ATWA) 'a; — dw <a; (ATWA) 'a;.

O]

Lemma 11 (Number of Coordinate Steps). For any 0 < & < 1, over all Tioiq iterations of Algo-
rithm 1, there are at most O(mmax(a, o~ 1) log(m/2)) coordinate steps (see Algorithm 3).

Proof. There are at most m coordinate steps in each call to Algorithm 3. Combining this with the
value of Tioal in Algorithm 1 gives the count of O(ma~!log(m/g)) coordinate steps. O

4.1 Proof of Main Theorem (Sequential)

We now combine the preceding results to prove the main theorem about the sequential algorithm
(Algorithm 1 with Algorithm 3).

5This can be improved to O(mn“~!) using fast matrix multiplication.

11



Proof. (Proof of Theorem 2) The proof of correctness is the same as that for Theorem 1 since the
parallel and sequential algorithms share the same meta-algorithm. Computing leverage scores in the
sequential version (Algorithm 1 with Algorithm 3) takes O(m max(a, a~!)log(m/(ag))) coordinate
steps. The costliest component of a coordinate step is computing a; (AT (W +8;w;ee) )A)La;. By
the Sherman-Morrison-Woodbury formula, computing this costs O(n?) for each coordinate. Since
the initial cost to compute (ATWA)~! is O(mn?), the total run time is O(max(c, a1 )ymn? log(m/<)).
When translated in terms of p, this gives O(pmn?log(mp/e)) for p > 4 and O(p~tmn?log(mp/e))
for p € (2,4). O

5 A “One-Step” Parallel Algorithm

We conclude our paper with an alternative algorithm (Algorithm 4) in which each iteration avoids
any rounding and performs only Descent( - ).

Algorithm 4 One-Step Algorithm

Input: Matrix A € R™*" parameter p > 2, accuracy &

Output: Vector w € RY that satisfies (1.5)
For all ¢ € [m], initialize w,fo) =1. Set a = 1%‘ Set € = (2m(\/ﬁ+otf)5(1+a_l))4'
O(a3log(mp/g)) if a € (0,1]

O(a?log(mp/2)) a>1

Set 8 = Wloo min(a?,1) and Tigtal = {
for k=0,1,2,3,..., Tiota1 — 1 do

L if p; k)Y > 1
Let %) € R™ where for all i € [m] we let 77("3) —J3a 1 pi(w'™) >
Z 38 if pi(w®) <1

w* )« Descent(w®, [m],n*) > See (2.2) and Lemma 2
end
Return @ € R7, where @; = (a; (AT W(Tiota) A)~1g,;)1/e, > See Section B

Theorem 4 (Main Theorem (One-Step Parallel Algorithm)). Given a full rank matriz A € R™*"
and p > 4, we can compute e-approvimate Lewis weights (1.5) in O(p®log(mp/e) iterations. Each
iteration computes the leverage score of one row of DA for some diagonal matriz D. The total
runtime is O(p3mn? log(mp/e)).

We first spell out the key idea of the proof of Theorem 4 in Lemma 12 next, which is that (2.3)
is maintained in every iteration through the use of varying step sizes, without explicitly invoking
rounding procedures. Since (2.3) always holds, we may use Lemma 5 in bounding the iteration
complexity.

Lemma 12 (Rounding Condition Invariance). For any iteration k € [Tiotar — 2| in Algorithm /, if
pmax (W) <1+ a, then ppax (WD) <1+ a.

Proof. By the definition of Descent( - ) in (2.2) and choice of m(k) in Algorithm 4, we have,

()Y —
(1) _ 00 g ) (Pl ) =1 5.1
Wi Wi T (pi(w(k‘))—i—l (5.1)
> w® (1 - ) > w® (1 - f) - (5.2)
(6%

12



Applying this inequality to the definition of p(w) in (2.1), for all i € [m], we have

o) w* 1 T A T (E4D) B\ wEFD "
pi(w ) = L a; (AW A) < (1 — ) v pi(w'™).
s Mwors )Ll -

3 2

Plugging (5.2) into (5.3) when p;(w®)) < 1 and using the upper bound on 3 yields that

) ( 6)-(1-5-04)
pi(w™) < (1 <l+4a.

 3a

If p;(w®)) > 1, then (5.3), the equality in (5.2), the bound on 3, and p;(w®)) < 1 + o imply that
pi(wk 1)) < 1_£_ 1_}_i_ M
3a 3a \ pi(w®) +1

Proof of Theorem /. By our choice of wgo) =1 for all 7 € [m], we have that p;(w®) = ¢;(w(?) < 1
by Fact 1.1. Then applying Lemma 12 yields by induction that pmax(w(k)) < 1+ «a at every
iteration k. We may now therefore upper bound the objective sub-optimality from Lemma 5; as
before, combining this with the lower bound on progress from Lemma 6 (noticing that »;
yields

pi(w®) <1+ a.

O]

B
> 33)

— = a pz 1)2
') = Fw) < Flw) = F@) - g2 3wt iﬂ

1SS g\m

<[([1-
- < 30 max(1, o) max(1,a~1)

) (F(w) — F(@). (5.4)

Thus, Descent(-) decreases F. Using F(w)—F(w) < nlog(m/n) < m? from Lemma 4 and setting
(5.4) to  gives an iteration complexity of O(8~ta~tlog(m/g)) = O(a3log(m/g)) if a € (0,1] and
O(ap~tlog(m/g)) = O(alog(m/€)) otherwise. As in the proofs of Theorems 1 and 2, we can then
invoke Lemma 1 to construct the vector that is e-approximate to the Lewis weights. ]
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Appendices

We start with a piece of notation we frequently use in the appendix. For a given vector x € R™,
we use Diag(x) to describe the diagonal matrix with z on its diagonal. For a matrix X, we use
diag(X) to denote the vector made up of the diagonal entries of X. Further, recall as stated in

Section 1.4, that given any vector x, we use its uppercase boldface name X S Diag(x).
A Technical Proofs: Gradient, Hessian, Initial Error, Minimum Progress

Lemma 3 (Gradient and Hessian). For anyw € R, the objective in (1.4), F(w) = —log det(ATWA)+
1+LoélTwH“", has gradient and Hessian given by the following expressions.

[VFw)], = w; L - (wt® = o3(w)) and V2F(w) = WIP(w)PW1 4 oW L,

7

Proof. The proof essentially follows by combining Lemmas 48 and 49 of [LS19]. For completeness,
we provide the full proof here. Applying chain rule to the log det function and then the definition
of p(w) from (2.1) gives the claim that

—oi(w)

ViF(w) = —(AATWA) AT + wf = —af (ATWA) La; + wf = + w?.

Wy
def

We now set some notation to compute the Hessian: let M = A(ATWA)"'AT, let h € R™ be any

def

arbitrary vector, and let H = Diag(h). For f : R” — R and for z, h € R™ we let D, f(x)[h] denote
the directional derivative of f at z in the direction h, i.e., D, f(z)[h] = limy—o(f(x +th) — f(x))/t.
Then we have,

Dy (h, — Diag(A(ATWA)"'AT))[h] = (h, — Diag(AD,(ATWA)~'[a]AT))
= (h, Diag(A(A"WA)"'D,(ATWA)[hH]JATWA)'AT))
= (h, Diag(MHM))
= hihjM;My; = hihi M3,

1, .3
where the last step follows by symmetry of M. This implies
T(AT —1, 2 e
2 _{ (a; (A_WA)"q;) if i # j
VigF(w) = { (a] (ATWA) 1a;)?2 + aw?™!  otherwise

Y

which, in shorthand, is V2F(w) = M o M + aW% !, We may express this Hessian as in the
statement of the lemma by writing M in terms of P(w). O

Lemma 4 (Initial Sub-Optimality). At the start of Algorithm 1, the value of the objective of (1.4)
differs from the optimum objective value as F(w®)) < F(w) + nlog(m/n).

Proof. We study the two terms constituting the objective in (1.4). First, by choice of w® = -1,
we have

~ log det (ATW(O)A) = — log det ((n /m)ATA). (A.1)

Next, since leverage scores always lie between zero and one, the optimality condition for (1.4),
o(w) = (W), implies w < 1, which in turn gives W < I. This implies ATWA < ATA.
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Therefore,
~log det (ATA) < —log det (ATWA). (A.2)

Combining (A.1) and (A.2) gives
— log det (ATW(O)A> < —logdet (ATWA> + nlog(m/n). (A.3)

Next, observe that 1T (w(®)1** = m . (n/m)1** and 17 (w)'** = 37 0;(W) = n, where we
invoked Fact 1.1. By now applying m > n, we get

1T(w(0))1+a < 1T(E)1+a. <A4)
Combining (A.3), (A.4), and the definition of the objective (1.4) finishes the claim. O

Lemma 6 (Function Decrease in Descent( - )). Let w,n € R7 with n; € [0,5=] for all i € [m].
Further, let wt = Descent(w, [m],n), where Descent is defined in (2.2). Then, wt € R7 with
the following decrease in function objective.

W rea (i) ~ 1)
P £ 70 = 3 St S

Proof. By the remainder form of Taylor’s theorem, for some ¢ € [0,1] and w = tw + (1 — t)w™
1 ~
Flwt) = F(w) + (VF(w),w’ —w) + §(w+ —w) V2F () (wh — w). (A.5)

We prove the result by bounding the quadratic form of V2F(w) from above and leveraging the
structure of w* and VF(w). Lemma 3 and Fact 1.1 imply that

V2F(@) = W'P(@) W 4+ oW < WIS(@)W ! + oW (A.6)

Further, the positivity of w; and o;(w) and the non-negativity of n and p imply that (1— ||| )w; <

w;” < (1+ ||nl|oo)wi for all i € [m]. Since ||n||,, < 5=, this implies that

(1—yw; <wy < (1+ =) w; forall i€ [m].

3a
Consequently, for all i € [m], we bound the first term of (A.6) as

N — — N N 1 N
[W_IE(fD)W_I] =] WIZAATWA) IATW 2, = — o] (ATWA) g,
1 ws

<(1- L_)*liaj(AT{va)flai < i)*QiaZ(ATWA)*lai
Wy Wy

3a T 3a
=(1-3)?[W'S(w)W™] <3 [W'S(w)W ] (A7)
Further, when a € (0, 1], we bound the second term of (A.6) as
Wa—l j (1 _ %)a_lwa_l j (1 _ 3%)_1Wa_1 j 3wa—1’ (AS)
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and when « > 1, we have

_ 1 1
Worl < (14 Ly twert < exp<a3a )WO‘ T = exp<043a>wa_1 <3We L (A.9)

Using (A.7), (A.8), and (A.9) in (A.6), we have that in all cases
V2F(w) 2 3[W'S(w)W +aW* ] <3aW ™! [S(w) + WITe] W

Applying to the above Loewner inequality the definition of w™ gives

() — 1)\ 2
(wh —w) ' VF@)(wh —w) < Y 3a- (w T+ oi(w)) - (m . /%(H)

i€[m] pi(w) +1
. _ 1)2
= 3a - E-w.l*a-w. A.10

Next, recall that by Lemma 3, [VF(w)]; = w; - (w} ™ — oi(w)) for all i € [m]. Consequently,

Z ni-w l+oa pl( ) 1) (All)

w),wh —w) = wit® — o (w))- L
(VFw)wt —w) = 3 (W= ay(w)) (m e ) by -1

i€[m]

Combining (A.5), (A.10), and (A.11) yields that

3012\ 1ia (pilw) = 1)?
Flwt) < Fw) + % <—m ; 2) e =0

The result follows by plugging in 7; € [0, (3&)~!], as assumed. O

B From Optimization Problem to Lewis Weights

The goal of this section is to prove how to obtain e-approximate Lewis weights from an e-approximate
solution to the problem in (1.4). Our proof strategy is to first utilize the fact that the vector wgr ob-
tained after the rounding step following the for loop of Algorithm 1 satisfies the properties of being
e-suboptimal (additively) and also the rounding condition (2.3). In Lemma 1, the e-suboptimality
is used to show a bound on [|o(wr) — wk*||ee. Coupled with the rounding condition, we then show
in Lemma 13 that wr constructed as per the last line of Algorithm 1 then satisfies approximate
optimality, o(@) ~5 @'*®, for some small § > 0. In Lemma 14, we finally relate this approxi-
mate optimality to coordinate-wise multiplicative closeness between w and the vector of true Lewis
weights. Finally, in Lemma 1, we pick the appropriate approximation factors for each of the lemmas
invoked and prove the desired approximation. Since the vector w7ttal obtained at the end of the
for loop of Algorithm 4 also satisfies the aforementioned properties of wgr, the same set of lemmas
apply to Algorithm 4 as well. We begin with some technical lemmas.

B.1 From Approximate Closeness to Approximate Optimality

Lemma 13. Let w € R? such that |lo(w)—w'™*||« < & for some parameter 0 < & < m
and also let pmax(w) < 14 a. Define @; = (a] (ATWA) la)/*.  Then, for the parameter
§ = 20vEm(a + a~t), we have that o()~sw'+e.

Proof. Our strategy to prove o(@) ~s w'T® involves first noting that this is the same as proving
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@ ! o(w) ~5 W* and, from the definition of @ in the statement of the lemma, to instead prove
ATWA ~; ATWA.

To this end, we split W into two matrices based on the size of its coordinates, setting the
following notation. Define W<, to be the diagonal matrix W with zeroes at indices corresponding
to w > n, and ngn to be the diagonal matrix W with zeroes at indices corresponding to w > 7.
We first show that ATWanA and ATngnA are small compared to ATWA and can therefore
be ignored in the preceding desired approximation. We then prove that for w > n, we have w =5 .
This proof technique is inspired by Lemma 4 of [Vai&9].

First, we prove that ATwwgnA is small as compared to ATWw>77A. Since (2.3) is satisfied,
it means

ai (ATWA) la; = o3(w) - w;

)

L<(1+a)ud.

Combining this with the definition of w; as in the statement of the lemma, we may use non-

negativity of a to derive
05 < (14 a)w; < 3w;. (B.1)

We apply this inequality in the following expression to obtain
Tr (AT Wy A)ATWA) ) = 37 @ila] (ATWA) )
w;i<n
= > (af (ATWA)la)! /e

w; <n

< (14 )t Z w; T

w; <n

< 3(1 4 a)ymn*te. (B.2)

This implies that” -
AW, o, A < 3(1+ a)mn' T*ATWA. (B.3)

Our next goal is to bound ATww>nA in terms of ATWA, which we do by first bounding
it in terms of ATWw>77A and then bounding ATWw>77A in terms of ATWA. By definition,
@¢ = o;(w) - w; . Further, by assumption, ||o(w) — w!'™®| s < &. Therefore, for any w; > n

@ < (w4 E) w < (L) w T T = (L E/n T,

and

G > (w; T = 8) wit > (1= /) = (1 -E/n T

By our choice of &, for w; > n, we have

2z 2z
(1 - 5) w; < @i < <1 + 5) w. (B.4)

anlte anlte
Further, we have the following inequality:

ATW,-,A < ATWA. (B.5)

"Given X,Y = 0, we have Y'/2XY'/2 = 0. Then, if Tr(XY) < 1, we have Tr(Yl/QXYl/Q) < 1, and combining
these with the previous matrix inequality, we conclude that Y/2XY /2 < I which implies that X < Y 1.
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Hence, we can combine (B.5), (B.4), and (B.3) to see that
ATWA =AW, A+ AW, A
<1 + 772 ) ATWosrA +3(1 + a)mp' " ATWA
2e

< ATWA (1 + +3(1+ a)mnHa) .

Set n'T® = /£ for the upper bound.
For the lower bound, we bound ATWMST,A and, therefore, also ATWw>nA. Observe that

Tr<(ATWw§n J(ATWA)™ ) 3 wia] (ATWA) gy = 3 oy(w)
wi<n wi<n
<Y (T 4E) <m(n' 4 2),
w;<n

1+a||

where the second step is by ||o(w) — w s < E, as assumed in the lemma. This implies that

AW, A <m(n'T® +2)ATWA,

and therefore that
ATW,opA = (1 —m(n'™ +2))ATWA.

Repeating the method for the upper bound then finishes the proof. O

B.2 From Approximate Optimality to Approximate Lewis Weights

In this section, we go from the previous notion of approximation to the one we finally seek in (1.5).
Specifically, we show that if o(w) ~5 w'™®, then w Ro((8/a)ym) W- To prove this, we first give a
technical result. We recall notation stated in Section 1.4: for any projection matrix P(w) € R"™*™
we have the vector of leverage scores o(w) = diag(P(w)).

Claim 1. For any projection matriz P(w) € R™*™ « > 0, and vector x € R™, we have that

H[P(w)@)wﬁ(w)}_ S| < —fall, + QHxHE < (”\NO‘) ol

[e.9]

Proof. Let y & [P(w)(z) +a2(w)]71 ¥(w)z. Since 0 < P(w)® < 2(w) (Fact 1.1), we have
that X(w) < 2 [P(w)(Q) + aX(w)] and P(w)® +aX(w))™' < a2 (w)~!. Consequently, taking
norms in terms of these matrices gives

¥l = | [P0 + 03] 2wia|

1
\/>H2( ) ||[P(w)(2)+a2(w)]_1 < EH‘T”E(w) :
(B.6)

Next, since by Lemma 47 of [LS19], HE(w)_lP(w)(Q)zHOO < |[2llg () for all z € R™, we see that
HP(w)(Q)y]i‘ < oi(w) ||yl 5@y for all @ € [m], and since by definition of y, we have [(P(w)® +
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aX(w))yl; = oi(w)x; for all i € [m], we have that

1 1 1 1
191l max i max | i+ {P(W) yu < el + S 19llsw) - (B.7)
Combining (B.6) and (B.7) and using that 3., 0i(w) < n yields the claim. O

Lemma 14. Let w € RY, be a vector that satisfies approzimate optimality of (1.4) in the following
sense: .
o(®) = Wiy, for exp(—p)1 < v < exp(u)1.

Then, w is also coordinate-wise multiplicatively close to W, the true vector of Lewis weights, as
formalized below.

1
«o

exp <—;(1 + ﬂ/a)u) T < @ < exp < (14 \/ﬁ/a),u> o

Proof. For all t € [0,1], let [v]; = [v}] so that v; = v and vy = 1. Further, for all ¢ € [0,1], let w;
be the unique solution to

e 1
wy = argmin fi(w) £ —log det (ATWA) + n Z [vg) 07 T (B.8)

weRT,

Then we have the following gradients.

Vuwft(w) = —W_lcr(w) + W%, ,

d d
Vw(aft)(w) = Wa%vt = W% In(v) (B.9)
V2. fi(w) = W [P(w)® + aWitev| w, (B.10)

Consequently, by optimality of w; as defined in (B.8), we have 0 = V,, fi(w;) = —W; Lo (w;)+ W,
Rearranging the terms of this equation yields that

O'(U}t> = Wt1+a1)t, (Bll)

and therefore w; = w and wg = w. To prove the lemma, it therefore suffices to bound

1

/) = ot fwo) = [ [ )]t =

d
Wt | =w, | dt. B.12
=0 ¢ [dtwt] ( )

t=0
To bound (B.12), it remains to compute %wt and apply Claim 1. To do this, note that

d

0= avw [ft(wt)] = vw(%ft)(wt) + V?Uwft(wt) . %wt '

Using that P(wt)@) + WtHO‘Vt > 0, we have, by rearranging the above equation and applying
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(B.9) and (B.10) that

Dy = — (V2,0 fo(wi)] - [vw(d ft)(wt)] - W, [P(wt)@) + awtlﬂvt} T W, In(o)

dt dt
(B.13)
Applying (B.11) to (B.13), we have that

o Liwt} . [P(wt)@) + aZ(wt)} TS () n(v).

Applying Claim 1 to the above equality, substituting in (B.12) and |[In(v)||,, < p therefore yields

L7
e [dwt] ’ dt g/ (W) pdt .
%) t=0

dt
B.3 From Optimization Problem to Approximate Lewis Weights

1

In(@/@) |, = [In(ws /wo)ll, < /

t=0

Lemma 1 (Lewis Weights from Optimization Solution). Let w € RZ, be a vector at which the

objective (1.4) zi g-suboptimal in the additive sense for € = (25m(\/ﬁfa§(a+a*1))4’ i.e., F(w) <
F(w) < F(w)+E&. Further assume that w satisfies the rounding condition: pmax(w) < 14 a. Then,
the vector @ defined as @; = (a] (ATWA) ™ a;)V/* satisfies ©; ~. W; for alli € [m)], thus achieving

the goal spelt out in (1.5).

Proof. We are given a vector w € R™ satisfying F(w) < F(w) < F(w) + &. Then by Lemma

X _ o 14an2
5, we have that ((:-(gﬂw)) +u:;_1+a) < ¢ for each i € [m]|. This bound implies that w; < 3 for all ¢
because, if not, then because of o;(w) € [0,1] and the decreasing nature of (z — a)?/(x + a) over
i _ o 1+ay2 _ o, l4an2
€ [0,1] for a fixed a > 3, we obtain (oi(w) wiHa) > (1w, +a) > 1, a contradiction. Therefore
o (w)+w; 14w;

|o(w) — w0 < 2vZ. Coupled with the provided guarantee pmax(w) < 1+ a, we see that the

g & and Algorithm 1 therefore
= @mlata 1)) g

guarantees a W satisfying o(@) ~z @'*®. Therefore, we can now apply Lemma 14 with y = &, and

a2

a++/n

requirements of Lemma 13 are met with £ = 2v/Z, for

choosing £ = ¢ lets us conclude that w; =, w;, as claimed. O]

C A Geometric View of Rounding

At the end of Algorithms 2 and 3, the iterate w satisfies the condition ppax(w) < 1+ a. We
now show the geometry implied by the preceding condition, thereby provide the reason behind the
terminology “rounding.”

Lemma 15. Given w € RZ, such that pmax(w) < 1+ a. Define the ellipsoid E(w) = {x :
T ATWAz < 1}. Then, we have that

Ew) C{z eR" | [W™2Az|lo < V1+a}.
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Proof. Consider any point x € £(w). Then, by Cauchy-Schwarz inequality and ppax(w) < 1+ «,

W2 Ao = m[aﬁ e] W2 Az = max eZTW_O‘/QA(ATWA)_%(ATWA)%x
1€|lm

1€[m]

< max \/e;-'—W_O‘/ZA(ATWA)_1ATW_°‘/26iV rTATWAz

i€[m]
S—— 7 _ o;i(w)
< max/e] W=/2A(ATWA)"1ATW—2/2¢; = max <1+ a.
7 1+«
i€[m)] iem] || w;

D Explanations of Runtimes in Prior Work

The convex program (1.3) formulated by [CP15] has a variable size of n2. Therefore, by [LSW15],
the number of iterations to solve it using the cutting plane method is O(n? log (nafl), each iteration
computing a;rMai for ¢ € [m]. This can be computed by multiplying an n x n matrix with an n xm
matrix, which costs between O(mn) (at least the size of the larger input matrix) and O(mn?) (each
entry of the resulting m x n matrix obtained by an inner product of length n vectors). Further,
there is at least a total of O(n%) additional work done by the cutting plane method. This gives us
a cost of at least n?(mn + n*). The runtime of [Leel6] follows from Theorem 5.3.4.
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