
Published as a conference paper at ICLR 2021 Workshop of Hardware Aware Efficient Training

ON-FPGA TRAINING WITH ULTRA MEMORY REDUC-

TION: A LOW-PRECISION TENSOR METHOD

Kaiqi Zhang1, Cole Hawkins2, Xiyuan Zhang3, Cong Hao4, Zheng Zhang1

1 Department of ECE, UC Santa Barbara. E-mail: {kzhang70, zzhang01}@ucsb.edu
2Department of Mathematics, UC Santa Barbara. E-mail: colehawkins@ucsb.edu

3Department of ECE, Carnegie Mellon University. E-mail: xiyuanzh@andrew.cmu.edu
4School of ECE, Georgia Institute of Technology. E-mail: callie.hao@gatech.edu

ABSTRACT

Various hardware accelerators have been developed for energy-efficient and real-
time inference of neural networks on edge devices. However, most training is
done on high-performance GPUs or servers, and the huge memory and comput-
ing costs prevent training neural networks on edge devices. This paper proposes
a novel tensor-based training framework, which offers orders-of-magnitude mem-
ory reduction in the training process. We propose a novel rank-adaptive tensorized
neural network model, and design a hardware-friendly low-precision algorithm to
train this model. We present an FPGA accelerator to demonstrate the benefits
of this training method on edge devices. Our preliminary FPGA implementation
achieves 59× speedup and 123× energy reduction compared to embedded CPU,
and 292× memory reduction over a standard full-size training.

1 INTRODUCTION

Modern neural networks consume huge memory and computing resources during both training and
inference. This challenge is compounded by increasing demands for on-device training to preserve
data privacy (Teerapittayanon et al., 2017) and to increase energy efficiency. Energy-efficient and
low-latency inference with limited hardware resources have been well studied at both the algo-
rithm (LeCun et al., 1990; Neklyudov et al., 2017; Lebedev et al., 2014; Hinton et al., 2015; Han
et al., 2015; Zhou et al., 2017) and hardware levels (Chen et al., 2016; 2019; Zhang et al., 2015;
Hao et al., 2019; Xu et al., 2020). However, training on resource-constrained hardware remains
an open challenge. Most on-device training algorithms utilize low-precision optimization (Cour-
bariaux et al., 2015; Hubara et al., 2017) to reduce the computing and memory cost per parameter
in the training process. However, the cost reduction is limited to a single order of magnitude even if
the most recent ultra low-precision 4-bit training (Sun et al., 2020) is employed.

Paper Contributions. This paper presents, for the first time, an end-to-end neural network training
framework on FPGA with orders-of-magnitude memory reduction. This is achieved by developing a
low-precision tensorized training framework. We propose a rank-adaptive tensorized training model,
which employs a Bayesian method for automatic tensor rank determination and model compression
in the training process. We further reduce the memory by employing low-precision computation
to train the tensorized model. We use our algorithm to train a two-layer neural network on a Xil-
inx MPSoC, which stores all model parameters on chip, achieves 59× speedup and 123× energy
reduction compared to embedded CPU, and 292× memory reduction compared to original model.

2 PRELIMINARY

We use Tensor-Train Matrix (TTM) decomposition (Oseledets, 2011) to compactly represent the
neural network parameters in the training process.

Definition 1. Let W ∈ R
J×I be the weight matrix in a fully connected layer and let I =

∏d
n=1 In, J =

∏d
n=1 Jn be a factorization of its dimensions. We reshape W into a tensor W

with dimensions J1×· · ·×Jd× I1×· · ·× Id (Novikov et al., 2015). The tensor-train matrix (TTM)
factorization expresses each data element of W as a series of matrix products.

W (j1, . . . , jd, i1, . . . , id) = G1(: j1, i1, :)G2(:, j2, i2, :) · · · Gd(:, jd, id, :)

1

Published as a conference paper at ICLR 2021 Workshop of Hardware Aware Efficient Training

Each TT-core factor Gn ∈ R
Rn−1×Jn×In×Rn is an order 4-tensor, and R0=Rd= 1. The vector R =

(R0, R1, · · · , Rd) is called the TT-rank. This TTM format requires
∑d

n=1 Rn−1JnInRn parameters
to represent W, which is much smaller than the original number of variables

∏

n JnIn. We may
expect huge memory reduction if the TTM format can be employed in training, but it is challenging
to decide the TT rank R in practice. Existing methods often use a fixed-rank training (Novikov
et al., 2015; Calvi et al., 2019; Khrulkov et al., 2019) which require combinatoral rank searches and
multiple training runs. Therefore, they are not suitable for one-shot on-device training.

3 LOW-PRECISION RANK-ADAPTIVE TENSORIZED NEURAL NETWORK

To enable memory-efficient, one-shot and on-device training, this section proposes a rank-adaptive
tensorized training method with low-precision optimization.

3.1 RANK-ADAPTIVE TENOSIRZED TRAINING

To simplify the descriptions, we assume that the parameters in each layer are represented with d TT
core factors θ = {Gn ∈ R

Rn−1×Jn×In×Rn}dn=1. Here Rn is an initial rank for dimension n, and it
is larger than the actual rank parameter that will be determined later in training. Our method applies
to general cases that have multiple layers with each layer being parameterized by some TT cores.
We propose to train a tensorized neural network with the following rank-shrinkage model:

minL
(

θ, {λn}
d−1

n=1 |D
)

=
1

|D|

∑

{xi,yi}∈D

CE (f (xi,θ) , yi) + g
(

θ, {λn}
d−1
n=1

)

(1)

with g(·) =

d−1
∑

n=1

Rn
∑

rn=1

[

‖Gn(:, :, :, rn)‖
2
F

λn(rn)
+

1 +Rn−1InJn

2
log (λn(rn))

]

(2)

where D is the training data set, CE(·, ·) is a cross-entropy loss, and λn ∈ R
Rn denotes a group of

rank-controlling hyper-parameters for TT core Gn.

Rank Reduction. Our objective function is the negative log-posterior of the Bayesian model in
Hawkins et al. (2020). Empirical results shows this prior leads to good trade-off between model
size and accuracy, and it is hyper-parameter-free which eliminates the need of hyper-parameter fine-
tuning. Every element of subtensor Gn(:, :, :, rn) (which is obtained by fixing the 4-th index of Gn)
is equipped with a zero-mean Gaussian prior with a variance λn(rn). Each element of λn is further
assumed to have a Log-Uniform prior distribution, such that some elements of λn will approach
0 with a high probability. In practice, once λn(rn) becomes very small the variables in subtensor
Gn(:, :, :, rn) shrink to 0, and they can be removed from Gn, leading to a rank reduction.

3.2 TRAINING QUANTIZED TENSOR FACTORS

To further reduce the memory and computing cost, we use BinaryConnect (Courbariaux et al., 2015)
to perform low-precision training. BinaryConnect keeps the real values of all low-precision param-
eters in a buffer. In each iteration, the gradients are accumulated in the buffer, and the low-precision
parameters are updated by quantizing the buffer. Let a real-valued TT factor be Gn, denote its quan-

tized variant as G̃n and Q(·) as the quantization function, the update process for each TT core is

G(t+1)
n = G(t)

n − ηt∇G̃t
n

L
(

{G̃t
n}

d
n=1, {λn}

d−1
n=1 |B

)

, G̃(t+1)
n = Q(G(t+1)

n), (3)

where B ∈ D is a batch of randomly sampled training data, and t is an index of the low-precision
stochastic gradient-descent iteration. In iteration t, the hyper-parameters are updated as:

λ
t
n(rn) =

2

1 +Rn−1InJn
‖Gt

n(:, :, :, rn)‖
2
F . (4)

The quantization function is not differentiable. Therefore, we use the straight-through estimator
(STE) (Bengio et al., 2013) to approximate the gradient of a quantization function. Specifically
we use the gradient of a smooth function instead of the original non-differentiable activation in the
backpropagation. This work uses a clipped ReLU as the STE. For ReLU activation function, denote
1(·) as the indicator function, the backpropagation rule can be written as ∂

∂x
= 1(x ≥ 0) ∂

∂y
. We use

4 bits to represent TT factors, 8 bits for activations and bias, and 16 bits for the gradients. Since the

2

Published as a conference paper at ICLR 2021 Workshop of Hardware Aware Efficient Training

DRAM (training samples, activation and gradients)

BRAM (Model parameters)

PE1
(forward&backward)

Ping-pong buffer

Load & store

PE2
(forward&backward)

Ping-pong buffer

Load & store
PE3

(backward)

ARM

Cortex-M

MPSOC

Zk

Gl
MACC

MACC

MACC

MACC

Zk+1

Zk

Gl
MACC

MACC

MACC

MACC

Zk+1

Figure 1: Left: overall view of the FPGA accelerator. Right: the structures of PE1 (top) and PE2
(bottom). MACC means “multiply and accumulator”.

processing elements (PE) are shared between forward and backward propagations, they are designed
to handle 16-bit activations or gradients and 4-bit TT factors. During forward propagation only the
8 least significant bits (LSB) of the 16 bits are used. Therefore our trained model can be deployed
for inference on edge devices with only 8 bits for activation and bias as well as 4 bits for TT factors.

3.3 AUTOMATIC SCALE SELECTION

In fixed-point representations, each variable needs to be scaled carefully to avoid overflow or large
quantization errors. Furthermore, a bit shift is needed if the scaling factors differ by 2i×. In the
training process, the values of activation functions and gradients can vary by several orders of mag-
nitude. To handle this issue, we determine the scaling factor on the fly. The scaling factors of all
variables are enforced to be 2k. We allow different scaling factors for each activation, gradient or
intermediate result but share scaling factors across different data samples and different neurons of
the same layer. The scaling factors of the TT factors are fixed. To determine the scaling factor of the
activation and gradients, we track the mean of their absolute values during training, and we enforce
it to be in the range [0.1, 0.3] by dynamically adjusting the scaling factor. This allows a small margin
to avoid overflows, while making the most use of the hardware bits to reduce quantization errors.

4 FPGA IMPLEMENTATION

This section describes the FPGA implementation for our on-device tensorized training method. The
overall FPGA design is shown in Fig 1. The detailed computations of forward and backward prop-
agation are given in the Appendix. During training, the data samples, activations, and gradients
are stored in the off-chip DRAM. Due to our low-rank tensorization, all the model parameters may
be stored in the on-chip BRAM. The overall training involves three steps: forward propagation,
backward propagation, and model parameter update. The forward and backward propagations run
on the FPGA programmable logic; the TT factors Gn’s and rank parameters λn’s are updated on
the embedded ARM core, which usually take less than 1% of the total computing time. We design
three processing elements (PEs) for the forward and backward propagation: PE1 and PE2 are shared
by the forward and backward propagation and can take advantage of different data locality during
tensor contraction. PE3 is dedicated to computing the outer products in a backward propagation.

PE1 and PE2 are shown in Fig. 1. The computation involves three steps: loading a tensor slice
from DRAM to the on-chip buffer, performing the multiply-and-accumulate (MAC) operations, and
sending the results back to DRAM. With ping-pong buffers, the (most time-consuming) second step
can be executed in parallel with other steps. We require only two key computational kernels to
perform forward propagation. We describe the kernels of the first two PEs, and provide the details
of the forward and backward pass in the Appendix. PE1 is used for a two-index tensor contraction
which contains the last dimension of both operands. By reshaping the d-dimensional tensors into
3-dimensional tensors without permutation, the computation can be written element-wise as

Zk+1(a, d) =
∑

b,c

Zk(a, b, c)Gl(b, d, c). (5)

The second PE (PE2) performs a tensor contraction along a single dimension that is not the last:

Zk+1(a, d, c) =
∑

b

Zk(a, b, c)Gl(b, d). (6)

3

Published as a conference paper at ICLR 2021 Workshop of Hardware Aware Efficient Training

Table 1: Fashion MNIST training result.

Method
Training
accuracy

Testing
accuracy

Model
parameters

Memory in bits
Memory
reduction

Vanilla 95.75% 89.27% 4.67× 105 1.49× 107 N/A

Floating, w/o prior 92.54% 88.03% 1.48× 104 4.74× 105 31.4×
Fixed, w/o prior 88.31% 86.67% 1.48× 104 6.13× 104 243×

Floating, w/ prior 90.17% 87.88% 1.08× 104 3.46× 105 43.1×
Fixed, w/ prior (proposed) 85.45% 84.86% 1.22× 104 5.11× 104 292×

Table 2: Resource utilization of two-layer tensorized neural network.
resource LUT FF DSP BRAM power

used 56131 30155 278 77 1.2W
available 70560 141120 360 432 -
utilization 79.55% 21.37% 77.22% 17.82% -

Here Zk+1 and Zk denote the intermediate results, and Gl is a reshaped TTM factor. Both PEs have
128 MACs that operate in parallel. Only order-2 and order-3 tensor contractions are required due to a
reshape operation (see Table 3 in the Appendix). In a forward propagation, the mode index l = d−k;
in a backward propagation, l = k+1. In PE1, we split the first operand based on the first dimension
of Zk. We parallelize the computing along the last dimension (associated with index c) by a factor
of 16, and along the first dimension (w.r.t. index a) by a factor of 8. This allows each element in
the first operand to be shared across 8 multipliers. To simplify the design, we enforce the dimension
size of index c to be a multiplier of 16, which is equivalent to enforcing the last dimension of both
input and output tensors to be a multiplier of 16. Similarly, in PE2, the first operand is split based
on dimensions associated with indices a and c. The computations associated with indices c and d
are parallelized by a factor of 16 and 8, respectively. We introduce PE3 to perform outer products.
The throughput of this step is bounded by the memory bandwidth of storing, so we parallelize the
computing along the last dimension Id only by a factor of 16. The elements of the second operand
is cached, while the first operand is read from DRAM directly. A total of 16 multipliers calculate
the product of elements from the two operands and the results are written to DRAM directly without
caching, because they are not further used in this step.

5 EXPERIMENTS AND RESULTS

We implement our low-precision rank-adaptive tensorized training on an Avnet Ultra96-V2 FPGA
board and use it to train a two-layer neural network to classify the FashionMNIST dataset. We
implemented the neural network in HLS codes, yet they can be easily modified to fit different net-
work structures. The detailed experimental setup, including the structure of neural network and the
hyperparameters, is provided in the Appendix B. As shown in Table 1, our method achieves 294×
memory reduction for the model parameters compared with the standard non-tensorized training.

The hardware resource utilization is listed in Table 2. We compare the time and memory usage of
tensorized neural network training on FPGA and on an embedded processor, a Raspberry Pi 3B with
Quad Core 1.2GHz ARM processor. We use the Pytorch and Tensorly modules to implement our
training algorithm on the embedded processor. For the FPGA we set the clock rate to 100MHz.
The forward and backward propagation takes 0.09s per batch of 64 samples, where the embedded
processor takes 5.34s. The estimated power consumption of our design is 1.2W compared to 2.5W
of Raspberry Pi, indicating that our FPGA accelerator is 123× more energy-efficient.

6 CONCLUSION AND FUTURE WORK

We have proposed a low-precision tensor method to train neural networks on edge devices. By end-
to-end compressed training, our approach produce an ultra-compact model from scratch while saving
significant hardware resources during the training. Our algorithm uses a rank-adaptive approach to
determine model complexity, and it has achieved 292× memory reduction compared to the baseline
model with only a 4.5% testing accuracy loss on Fashion MNIST. The FPGA implementation has
achieved 59× speedup and 123× energy reduction than the training on an embedded CPU.

In the future we plan to: (1) further optimize the low-precision tensorized training algorithm and its
FPGA implementation, and (2) demonstrate on-device training for large-size neural networks.

4

Published as a conference paper at ICLR 2021 Workshop of Hardware Aware Efficient Training

REFERENCES

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Giuseppe G Calvi, Ahmad Moniri, Mahmoud Mahfouz, Qibin Zhao, and Danilo P Mandic. Com-
pression and interpretability of deep neural networks via tucker tensor layer. arXiv:1903.06133,
2019.

Yao Chen, Kai Zhang, Cheng Gong, Cong Hao, Xiaofan Zhang, Tao Li, and Deming Chen. T-dla:
An open-source deep learning accelerator for ternarized dnn models on embedded fpga. In 2019
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 13–18. IEEE, 2019.

Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An energy-efficient recon-
figurable accelerator for deep convolutional neural networks. IEEE journal of solid-state circuits,
52(1):127–138, 2016.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in neural information processing
systems, pp. 3123–3131, 2015.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv:1510.00149, 2015.

Cong Hao, Xiaofan Zhang, Yuhong Li, Sitao Huang, Jinjun Xiong, Kyle Rupnow, Wen-mei Hwu,
and Deming Chen. Fpga/dnn co-design: An efficient design methodology for 1ot intelligence on
the edge. In 2019 56th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE, 2019.

Cole Hawkins, Xing Liu, and Zheng Zhang. Towards compact neural networks via end-to-end
training: A bayesian tensor approach with automatic rank determination. arXiv:2010.08689,
2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv:1503.02531, 2015.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with low precision weights and activations. The Jour-
nal of Machine Learning Research, 18(1):6869–6898, 2017.

Valentin Khrulkov, Oleksii Hrinchuk, Leyla Mirvakhabova, and Ivan Oseledets. Tensorized embed-
ding layers for efficient model compression. arXiv:1901.10787, 2019.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In NIPS, pp. 598–605, 1990.

Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry P Vetrov. Structured Bayesian
pruning via log-normal multiplicative noise. In NIPS, pp. 6775–6784, 2017.

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural
networks. In Advances in neural information processing systems, pp. 442–450, 2015.

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–
2317, 2011.

Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, Ankur Agrawal, Xiaodong Cui, Swagath
Venkataramani, Kaoutar El Maghraoui, Vijayalakshmi Viji Srinivasan, and Kailash Gopalakr-
ishnan. Ultra-low precision 4-bit training of deep neural networks. NIPS, 33, 2020.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Distributed deep neural net-
works over the cloud, the edge and end devices. In Intl. Conf. Distributed Computing Systems,
pp. 328–339, 2017.

5

Published as a conference paper at ICLR 2021 Workshop of Hardware Aware Efficient Training

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

Pengfei Xu, Xiaofan Zhang, Cong Hao, Yang Zhao, Yongan Zhang, Yue Wang, Chaojian Li, Zetong
Guan, Deming Chen, and Yingyan Lin. Autodnnchip: An automated dnn chip predictor and
builder for both fpgas and asics. In The 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 40–50, 2020.

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimizing fpga-
based accelerator design for deep convolutional neural networks. In Proceedings of the 2015
ACM/SIGDA international symposium on field-programmable gate arrays, pp. 161–170, 2015.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantiza-
tion: Towards lossless cnns with low-precision weights. arXiv:1702.03044, 2017.

6

Published as a conference paper at ICLR 2021 Workshop of Hardware Aware Efficient Training

A DETAIL ABOUT TENSOR CONTRACTION

A.1 FORWARD PROPAGATION

To perform the forward propagation we take a vector x and the TTM cores {Gn}
d
n=1 of the tensorized

weight matrix W. The forward propagation operation is

y = Wx (7)

We detail the tensorized forward and backward passes where X is achieved by reshaping x and Y is
the tensorized output.

The forward and backward propagation of neural network involves tensor contraction. Denote
the input dimensions as I1, I2, . . . , Id, output dimensions as J1, J2, . . . , Jd, and the rank as
R1, R2, . . . Rd−1. the forward propagation involves the following computation:

Z1(i1, i2, . . . , rd−1, jd) =
∑

id

X (i1, i2, . . . id)× Gd(rd−1, jd, id) (8)

Z2(i1, . . . , rd−2, jd−1, jd) =
∑

id−1rd−1

Z1(i1, i2, . . . , rd−1, jd)× Gd−1(jd−1, rd−1, rd−2, id−1)

(9)

. . .

Y(j1, j2, . . . jd) =
∑

i1

Zd−1(i1, r1, j2, . . . , jd)× G1(j1, r1, i1) (10)

In these expressions, we denote X as the input to this layer, Gn as TTM core factors, Y as the output
and Zi as an intermediate result.

A.2 BACKWARD PROPAGATION

In back propagation, there are two tasks:

• To compute the gradients with respect to the inputs of the layer.

• To compute the gradients with respect to the compressed model parameters (TTM core
factors) of the layer.

To compute the gradients with respect to the inputs, we denote X̂ as the gradient of input to this

layer and Ŷ as the gradient of the output of this layer. The computation is shown below:

Z1(i1, r1, j2, . . . , jd) =
∑

j1

Ŷ(j1, j2, . . . , jd)× G1(j1, i1, r1) (11)

Z2(i1, i2, r2, . . . , jd) =
∑

r1j2

Z1(i1, r1, j2, . . . , jd)× G2(r1, j2, i2, r2) (12)

. . .

X̂ (i1, i2, . . . , id) =
∑

jd

Zd−1(i1, . . . , id−1, rd−1, jd)× Gd(rd−1, jd, id) (13)

The first equation is to compute the gradients directly. The second is to compute the gradients with
respect to full weights and then accumulate them and compute the gradients with respect to the TTM
factors. The former method is more efficient if the batch size is small and the compressed model is
small, while the latter is more efficient otherwise. In our work, we start training with a large rank
initial guess (i.e., a larger model), so the latter method is more efficient. The first step, computing

the gradient w.r.t. the full weight matrix (denoted as Ŵ), requires a simple outer product which is
computed by PE3:

Ŵ(j1, i1, j2, i2, . . . , jd, id) = X (i1, i2, . . . , id)× Ŷ(j1, j2, . . . , jd)

The first operand of this PE is the input to this layer during forward propagation, and the second
operand is the gradient of the output. After the gradient has been accumulated in a batch, the

7

Published as a conference paper at ICLR 2021 Workshop of Hardware Aware Efficient Training

Eq. PE a b c d
(8) PE1 I1I2 . . . Id−1 1 Id Rd−1Jd
(9) PE2 I1I2 . . . Id−2 Id−1Rd−1 Jd Rd−2Jd−1

(10) PE2 1 I1R1 J2 . . . Jd J1
(11) PE2 1 J1 J2 . . . Jd I1R1

(12) PE2 I1 R1J2 J3 . . . Jd I2R2

(13) PE1 I1I2 . . . Id−1 Rd−1 Jd Id
(14) PE1 J1I1 . . . Jd−1Id−1 1 JdId Rd−1

(15) PE1 J1I1 . . . Jd−2Id−2 1 Jd−1Id−1 Rd−2

(16) PE1 J1I1 1 J2I2R2 R1

(17) PE2 1 J1I1 J2I2R2 R1

(18) PE2 1 J1I1 J2I2J3I3R3 R1

(19) PE2 1 R1J2I2 J3I3R3 R2

Table 3: PE and operand of each expression.

gradient with respect to the factors denoted by Ĝi can be computed by contracting the gradient of
full weight with the tensor factors:

Z1,1(j1, i1, j2, i2, . . . , jd−1, id−1, rd−1) =
∑

jd,id

Ŵ(j1, i1, j2, i2, . . . , jd, id)× Gd(rd−1, jd, id)

(14)

Z2,1(j1, i1, j2, i2, . . . , jd−2, id−2, rd−2)

=
∑

jd−1,id−1,rd−1

Z1,1(j1, i1, j2, i2, . . . , jd−1, id−1, rd−1)× Gd−1,1(rd−2, jd−1, id−1, rd−1)

(15)

. . .

Ĝ1(j1, i1, r1) =
∑

j2,i2,r2

Zd−2,1(j1, i1, j2, i2, r2)× G2(r1, j2, i2, r2) (16)

Ĝ2(r1, j2, i2, r2) =
∑

j1,i1

Zd−2,1(j1, i1, j2, i2, r2)× G1(j1, i1, r1) (17)

Zd−3,2(r1, j2, i2, j3, i3, r3) =
∑

j1,i1

Zd−3,1(j1, i1, j2, i2, j3, i3, r3)× G1(j1, i1, r1) (18)

Ĝ3(r2, j3, i3, r3) =
∑

r1,j2,i2

Zd−3,2(r1, j2, i2, j3, i3, r3)× G2(r1, j2, i2, r2) (19)

. . .

Note that the Z1,1 is shared to get Ĝ1 and Ĝ2, and Z2,1 is shared to get Ĝ1 and Ĝ3.

A.3 USE OF PE

To compute the gradient with respect to the tensor factors, as in equation (14)-(19), we can reuse PE1
and PE2. In either case we can reshape the tensor in order to apply Equation (5) or Equation (6). If
tensor contraction is executed along the the last dimension as in (8)(13)(14)(15)(16), PE1 (Equation
(5)) is used; otherwise, as in (9)(10)(11)(12)(17)(18)(19), PE2 (Equation (6)) is used. The way to
shape the tensors is given in Table 3. When necessary we add a dimension with size one and/or
perform a reshape operation so that our computation fits the appropriate PE tensor contraction.

B DETAIL ABOUT NUMERICAL EXPERIMENT

We used C++ to implement fixed point tensor contraction and used Pytorch to implement high level
methods (ADAM, rank parameters update). In order to fit the requirement on the shape of tensors,
we zero pad the input to 28× 32 and decompose it to 7× 4× 2× 16. There are 512 neurons in the

8

Published as a conference paper at ICLR 2021 Workshop of Hardware Aware Efficient Training

hidden layer decomposed into 4×4×2×16 for the first layer, and 32×16 for the second layer. The
output is decomposed into 1 × 16. We trained this model for FashionMNIST dataset (Xiao et al.,
2017), which has the same shape and size as MNIST dataset but is more complicated and can better
represent modern machine learning tasks. To accelerate training, we pretrain the models on MNIST
dataset. We train the model for 30 epochs and compare both standard floating-point computation in
Pytorch (Floating) and our simulator (Fixed), and also compare the training methods with or without
the low rank TT priors. We report the epoch with highest testing accuracy. For run-time comparison,
only the time on forward and backward propagation is included, as the rest part (optimizer) is the
same on both devices.

9

	Introduction
	Preliminary
	Low-Precision Rank-Adaptive Tensorized Neural Network
	Rank-Adaptive Tenosirzed Training
	Training Quantized Tensor Factors
	Automatic Scale Selection

	FPGA Implementation
	Experiments and results
	Conclusion and Future Work
	Detail about tensor contraction
	Forward propagation
	Backward propagation
	Use of PE

	Detail about numerical experiment

