Shared transcriptional machinery at homologous alleles

leads to reduced transcription in early *Drosophila* embryos

- 3 Hao Deng¹, Bomyi Lim^{1*}
- ¹Department of Chemical and Biomolecular Engineering, University of Pennsylvania,
- 5 Philadelphia, Pennsylvania, United States
- 6 * Correspondence:
- 7 Bomyi Lim
- 8 bomyilim@seas.upenn.edu
- 9 Keywords: Drosophila embryos, MS2, PP7, transcription, enhancers, live imaging
- 10 Abstract
- 11 The mechanism by which transcriptional machinery is recruited to enhancers and promoters to
- 12 regulate gene expression is one of the most challenging and extensively studied questions in
- modern biology. We explored the possibility that interallelic interactions between two
- 14 homologous alleles might affect gene regulation. Using an MS2- and PP7-based, allele-specific
- live imaging assay, we visualized de novo transcripts of a reporter gene in hemizygous and
- 16 homozygous *Drosophila* embryos. Surprisingly, each homozygous allele produced fewer RNA
- than the corresponding hemizygous allele, suggesting the possibility of allelic competition in
- 18 homozygotes. However, the competition was not observed when the enhancer-promoter
- interaction was weakened by placing the reporter construct in a different chromosome location or
- 20 by moving the enhancer further away from the promoter. Moreover, the reporter gene showed
- 21 reduced transcriptional activity when a partial transcription unit (either an enhancer or reporter
- 22 gene only) was in the homologous position. We propose that the transcriptional machinery that
- binds both the enhancer and promoter regions, such as RNA Pol II or preinitiation complexes,
- 24 may be responsible for the allelic competition. We showed that the degree of allelic interference
- 25 increased over developmental time as more Pol II was needed to activate zygotic genes. Such
- allelic competition was observed for an endogenous gene as well. Our study provides new
- 27 insights into the role of 3D interallelic interactions in gene regulation.
- 28
- 29 Word count: 3992
- 30 Number of figures and tables: 4

1 Introduction

32

Enhancers, which contain multiple binding sites for sequence-specific transcription activators 33 and repressors, determine when and where a target gene should be transcribed (Levine and Tjian, 34 2003; Levine et al., 2014). Missense mutations in enhancers or disruptions in enhancer-promoter 35 36 interactions often result in ectopic or lost expression of target genes (Halder et al., 1995; Riedel-Kruse et al., 2007). Many of these genetic perturbations in enhancers are associated with various 37 disease phenotypes, emphasizing the role of precise enhancer-promoter communications in 38 39 normal development (Hnisz et al., 2013; Miguel-Escalada et al., 2015). Extensive studies have 40 been conducted to elucidate the mechanism of enhancer-mediated transcriptional regulation, and vet, there remain more questions to be explored. For example, how do multiple enhancers drive 41 42 target gene expression in the same tissue while coordinating among themselves to ensure access 43 to the target promoter (Perry et al., 2011; Lim et al., 2018a; Berrocal et al., 2020)? A live 44 imaging study on early *Drosophila* embryos demonstrated that some enhancers work additively 45 with each other, while others work synergistically or competitively, such that multiple enhancers can drive higher or lower transcriptional activity than a single enhancer (Bothma et al., 2015). 46 Additionally, a single enhancer can interact with multiple promoters, sometimes activating the 47 48 target promoter on the homologous allele in trans (Fukaya et al., 2016; Lim et al., 2018b). These results indicate that enhancer-promoter communication involves interactions among multiple 49 transcriptional regulatory units, a far more dynamic process than previously envisioned. 50

In parallel, multiple studies have shown that transcriptional regulators like RNA polymerase II 51 52 (Pol II), Mediators, pre-initiation complexes (PICs), and transcription factors (TFs) form clusters at active transcription loci (Kato et al., 2012; Cisse et al., 2013; Cho et al., 2016; Wollman et al., 53 54 2017; Chong et al., 2018; Sabari et al., 2018). It has been suggested that TFs cluster at enhancers 55 and Pol II/Mediator cluster at promoters, forming active hubs to regulate transcription (Tsai et al., 2017; Boija et al., 2018). Indeed, studies in *Drosophila* embryos showed that highly 56 57 concentrated local clusters of the pioneer factor Zelda (Zld) at transcription loci facilitate the 58 binding of Bicoid (Bcd) and Dorsal (Dl) activators to the target DNA (Mir et al., 2017, 2018; Yamada et al., 2019). This idea of a "transcription hub" can also explain previous findings on 59 multivariate enhancer-promoter interactions where one enhancer can co-activate two target 60 promoters in cis as well as in trans (Fukaya et al., 2016; Lim et al., 2018b). Altogether, these 61 studies propose that the clustering of transcriptional machinery in a nucleus plays an important 62 role in enhancer-mediated gene regulation. 63

In this study, we provide evidence that two homologous alleles may compete and affect the level 64 65 of RNA production. Using allele-specific MS2- and PP7- based live imaging methods in early Drosophila embryos, we measured the transcriptional activity of a reporter gene in one allele 66 from homozygous and hemizygous embryos. Surprisingly, we found that one homozygous allele 67 68 produced fewer RNAs than its hemizygous counterpart. This decrease was manifested mainly as 69 a change in transcriptional amplitude, implying that the number of RNA Pol II loaded to each 70 allele was reduced in homozygotes. Interestingly, this allelic competition at the homologous 71 locus was not observed in the absence of strong enhancer-promoter interactions.

- To examine which transcriptional machinery might affect interallelic interactions, we measured the transcriptional activity of a reporter gene when the homologous allele contains only an
- enhancer or a promoter-reporter gene. Unexpectedly, both the "Enhancer Only" and the

- 75 "Promoter Only" allele on the homologous position were sufficient to decrease the
- 76 transcriptional activity. This implies that the transcriptional machinery binding to both the
- enhancer and promoter plays a role in the allelic competition. Based on these results, we propose
- 78 that homologous alleles may share the same local transcription hub and that each allele produces
- 79 a reduced number of RNAs when the number of Pol II in the hub is limiting especially upon
- strong enhancer-promoter interactions. Indeed, we showed that the competition was observed
- only in the nuclear cycle 14 (NC14) when massive zygotic genome activation occurs. Lastly, we
- 82 demonstrated that endogenous *snail* alleles also interfere with each other. Our study provides
- new insights into a mechanism of transcriptional regulation in 3D environments.

84 2 Materials and Methods

85 Detailed materials and methods are in the Supplementary Materials

86 3 Results

87

3.1 MS2- and PP7-based labeling of two homologous alleles

- We compared the transcriptional activity of reporter genes driven by the well-characterized *snail*
- shadow enhancer (snaSE) between hemizygous and homozygous embryos to test the possibility
- 90 that homologous alleles may interact with each other (Figure 1A) (Perry et al., 2010). MS2- and
- 91 PP7-based live imaging methods, which were successfully implemented in *Drosophila* embryos
- and other tissues, were used to visualize nascent transcripts (Bertrand et al., 1998; Larson et al.,
- 2011; Coulon et al., 2013; Fukaya et al., 2017; Chen et al., 2018). We generated transgenic lines
- 94 where the snaSE and the 100-bp core promoter of *sna* drive expression of the *MS2-yellow* and
- 95 the *PP7-yellow* reporter gene. Upon transcription, the MS2 or PP7 sequence forms a stem-loop
- structure, which can be recognized by two copies of the MS2 coat protein (MCP) or the PP7 coat
- 97 protein (PCP), fused with GFP or mCherry, respectively (Figure 1B). The binding of MCP-GFP
- 98 or PCP-mCherry to the transcribed MS2 or PP7 stem loops allows visualization of *de novo*
- transcripts in living embryos (Figure 1C) (Lim et al., 2018b). The reporter genes were inserted
- into a specific location in the 3rd chromosome using PhiC31-mediated site-directed transgenesis
- 101 (Groth, 2004; Bischof et al., 2007).
- To distinguish transcriptional activities from each allele in homozygous embryos, we crossed
- nos>MCP-GFP, PCP-mCherry / snaSE>*PP7-yellow* females with snaSE>*MS2-yellow*
- homozygous males. Fifty percent of the progeny have two copies of the *vellow* reporter gene.
- each marked with *PP7* and *MS2* stem-loops (homozygotes). The other 50% have one copy of the
- 106 *yellow* reporter gene marked with MS2 stem-loops (hemizygotes) (Figure 1C and Movie 1). To
- note, the paternal allele carries the MS2-vellow for both homozygous and hemizygous embryos.

3.2 Live imaging reveals a possibility of allelic competition between the homologous alleles

- Since our live imaging methods provide instantaneous transcriptional activity as a function of
- time, we can estimate total RNA production by measuring the area under the transcriptional
- trajectory of each nucleus (Figure 1D and S1). Theoretically, if the homologous alleles behave
- independently of each other, one single allele from homozygous embryos should produce a
- comparable number of RNAs as the hemizygous allele. In the case of interallelic interaction, the
- transcriptional activity of each homozygous allele would differ from that of the hemizygous

115 allele. To our surprise, the MS2-yellow allele in homozygous embryos produced about 25%

116 fewer RNAs than the hemizygous MS2-yellow allele (Figure 1E).

120

129

130 131

132

133

134 135

136

137 138

139

140

156

117 Considering we obtained the fluorescent signals solely from the paternal allele of the

homozygotes, we acknowledge that there could be a bias in RNA production between the 118

119 maternal and the paternal alleles where the alleles may complement each other instead of

interfering with each other. To address this potential bias, we generated two homozygous

constructs, one with the maternal MS2-yellow and the other with the paternal MS2-yellow. We 121

122 confirmed that the MS2-yellow transcriptional activity does not change between maternal and

paternal alleles of homozygous embryos, suggesting that the total RNA production can be 123

124 estimated by doubling the RNA production of one allele (Figure S2). The estimated total RNA

production of homozygotes was about 1.5 times the RNA production in hemizygotes, rather than 125

twice, which is expected if there were no interallelic interaction (Figure 1E). In sum, our allele-126

127 specific live imaging assays suggest that the homologous alleles of snaSE>*yellow* reporter genes

128 may interact in *trans* and inhibit each other, resulting in lower RNA production than expected.

We investigated the source of observed reduced RNA production by analyzing three parameters extracted from our single-cell resolution live imaging data. The lower RNA production can be caused by different factors during transcription. First, the delayed onset of transcription due to a lag in enhancer-promoter interactions could cause lower transcriptional activity. Alternatively, infrequent Pol II loading to the promoter could result in less frequent transcriptional bursting, resulting in a shorter duration of active transcription and reduced RNA production. Lastly, a reduction in the number of Pol II loaded to the promoter could lead to a decrease in transcriptional amplitude and a reduction in RNA production. To distinguish these factors, we measured three parameters: (i) the timing of transcription initiation, (ii) the duration of active transcription, and (iii) the average amplitude of transcription in each transcriptionally active nucleus. We found that transcription was initiated about 6 min after the onset of NC14 in both hemizygous and homozygous embryos (Figure 2A). The duration of active transcription was also comparable between the two genotypes, with about a 5% shorter duration for the homozygous

141

allele (Figure 2B). Unlike these two parameters that showed a minimal effect, the average 142

amplitude of transcriptional activity was significantly lower in the homozygous MS2-yellow 143

allele than in the hemizygous allele (Figure 2C). Indeed, when we examined the average 144

trajectory of the homozygous and the hemizygous MS2-vellow allele, the hemizygous allele 145

maintained a higher amplitude till the end of NC14 (Figure 2D). 146

147 In addition to the single-cell analysis, we analyzed if all the nuclei within the *sna* expression domain uniformly exhibited lower transcriptional amplitude, or if the boundary nuclei where the 148 concentration of the Dorsal activator is lower showed a greater reduction in amplitude. Similar to 149 what we observed in the single-cell analysis, the level of RNA production decreased, but the 150 overall width and pattern of the sna boundary remained unchanged (Figure 2E and F). We also 151 152 measured the cumulative fraction of active nuclei over time, and both the homozygous and hemizygous MS2-yellow allele exhibited similar kinetics of transcriptional activation (Figure 153 154 2G). This result indicates that the rate of forming the *sna* expression boundary is similar between 155 the two genotypes. Taken together, our analysis suggests that the alleles may compete in trans

throughout the *sna* expression domain, mainly by modulating the transcriptional amplitude.

3.3 Weaker enhancer-promoter interactions do not result in allelic interference but alleles with partial transcription units still compete with each other

We next examined the potential mechanisms of the observed allelic competition. One possible

- explanation is that transcription factors that are available to bind to enhancers are limiting. A
- recent study showed that a limiting number of transcription factors could lead to reduced RNA
- production from the homozygous allele (Waymack et al., 2021). To further test this idea, we
- varied the strength of enhancer-promoter interactions without changing the enhancer sequence.
- Since the same transgene could have different degrees of enhancer-promoter interactions and
- produce different amounts of RNA depending on the chromosomal location (Lewis, 1954;
- Wallrath and Elgin, 1995), we inserted the strong snaSE>*yellow* constructs to the 2nd
- 167 chromosome using the VK00002 line instead of the 3rd chromosome position used as the control
- 168 (Figure 3A) (Venken et al., 2009). The transgene was inserted into a homologous position in the
- 2nd chromosome. In this chromatin context, the transcriptional activity was reduced by about
- 170 60% compared to the control (Figure 3A).
- 171 Transcriptional activity of the reporter gene can also be reduced by increasing the enhancer-
- promoter distance, thereby weakening their interactions. Therefore, we created a construct where
- snaSE was inserted at the 3'UTR of the reporter gene, around 6.5 kb downstream of the promoter
- 174 (Figure 3A). While the enhancer-promoter distance is often correlated with the degree of
- transcriptional activity (Oudelaar et al., 2019; Zuin et al., 2022), it is not always the case
- depending on the insulator localization and the 3D genome folding context (Symmons et al.,
- 2016). In our case, however, the enhancer and its target promoter (6.5kb away) are still within
- the same TADs with no insulator in between. Hence, the enhancer can directly interact with the
- target promoter with a lower frequency than the control construct where the enhancer and the
- promoter are adjacent to one another. The average transcriptional activity was reduced by 64%
- compared to the snaSE>MS2-yellow control (Figure 3A).
- In both constructs where we reduced the enhancer-promoter interaction and hence the
- transcriptional activity, there was no sign of interallelic competition. The homozygous and
- hemizygous MS2-vellow allele produced a comparable number of RNAs (Figure 3A). Since we
- used the same *snaSE* sequence in the control and the weakened-interaction constructs, a similar
- number of transcription factors would have bound to the enhancer in these constructs. We
- acknowledge that there is a possibility that the number of transcription factors bound to the
- enhancer is different due to a different chromatin landscape in the 2nd chromosome construct.
- Yet, no allelic competition in the construct with a greater enhancer-promoter distance in the
- same chromosomal position as the control indicates that the number of transcription factors is not
- the only limiting factor that causes the allelic interference.
- Another possibility is that the limiting number of Pol II and other PIC molecules induced the
- reduction in transcriptional activity in homozygous embryos. With recent studies on enhancer
- 194 RNA, it is known that Pol II binds to both the enhancer and the promoter regions to initiate
- transcription at both locations (Kim et al., 2010; Adelman and Lis, 2012; Savic et al., 2015). It
- was also shown that in early *Drosophila* embryos, the amount of TATA-Binding Protein (TBP)
- and TAFII is limiting (Zhou et al., 1998; Mannervik, 1999). Based on such previous studies, we
- 198 hypothesized that two homologous alleles may share the same transcription hub where the

- number of Pol II and PIC factors are limiting, resulting in reduced transcriptional activity (see
- 200 Discussion).
- Two additional constructs were designed to test this idea. In these constructs, one allele remains
- the same with an intact *sna* shadow enhancer, 100-bp core *sna* promoter, and the *MS2-yellow*
- reporter gene, while the homologous allele contains either only the *sna* shadow enhancer without
- 204 the reporter gene ("Enhancer Only") or the promoter-reporter gene cassette without the *cis*-
- linked enhancer ("Promoter Only") (Figure 3B). If the number of transcription factors is limiting,
- 206 interference will occur for the "Enhancer Only" construct since transcription factors will still
- bind to the enhancer on both alleles. On the other hand, the interference should not be observed
- for the "Promoter Only" construct, as transcription factors do not bind to the core promoter, and
- the MS2-yellow allele is expected to behave similarly to the hemizygous allele.
- Surprisingly, we found that the transcriptional activity of the MS2-yellow allele from both the
- 211 "Enhancer Only" and the "Promoter Only" constructs behaved like the MS2-yellow allele from
- 212 homozygous constructs, exhibiting reduced transcriptional activity compared to the hemizygotes
- 213 (Figure 3B). We also examined the kinetics and the average trajectory of "Enhancer Only" and
- 214 "Promoter Only" constructs and compared them to the hemizygotes and homozygotes of
- snaSE>*MS2-yellow* in the 3rd chromosome. All four constructs exhibited similar kinetics of
- transcriptional activation with a slight delay in activation in the "Promoter Only" construct
- 217 (Figure 3C). The average transcriptional trajectories of these partial constructs were also
- comparable to the homozygotes, with slightly lower amplitude in the "Promoter Only" (Figure
- 3D). Our results show that the alleles can interfere with each other even if the homologous allele
- has only a partial transcription unit. This suggests that molecules that bind to both enhancers and
- promoters, such as Pol II and PIC factors, may play a role in allele competition.

3.4 Allelic interference is observed only in late NC when more Pol II is needed

- We wanted to further test the idea that the limiting number of local Pol II and PIC hubs prompts
- allelic interference. Since the demand for Pol II increases over NCs, we compared the
- transcriptional activity between hemizygous and homozygous embryos in early and late NCs. In
- NC13, around 950 zygotic genes are activated, while around 3,500 genes are activated in NC14
- 227 (Kwasnieski et al., 2019). We hypothesized that such massive activation of the zygotic genome
- in NC14 could greatly consume local Pol II and PICs in each hub, leading to reduced
- transcriptional activity from each allele. Indeed, we found that during NC13, the transcriptional
- activity of the *sna*SE>*MS2-yellow* allele was comparable between hemizygous and homozygous
- embryos (Figure 3E). We then evenly divided NC14 into four temporal classes (0-25%, 25-50%,
- 50-75%, and 75-100% of NC14) and examined how the RNA production differs between the
- 233 hemizygotes and homozygotes throughout NC14. RNA production was similar between the two
- 234 genotypes in early NC14. However, the homozygous MS2-yellow allele produced fewer RNAs
- compared to the hemizygous MS2-yellow allele, showing larger differences in late NC14 (Figure
- 236 3F). Therefore, our observations of allelic competition in NC14, but not in NC13, support the
- 237 hypothesis that the limiting number of local Pol II and PICs could lead to the observed allelic
- 238 competition.

239

3.5 Endogenous *sna* also exhibits allelic competition

240 So far, we have relied on transgenic reporter genes to provide evidence that the two homologous 241 alleles compete with each other. We wondered if a homozygous allele of an endogenous gene 242 also produces fewer RNAs than a heterozygous allele. Using CRISPR/Cas9-mediated genome 243 editing, we inserted MS2 and PP7 stem loops to the 3' UTR of the endogenous sna to generate 244 sna-MS2 and sna-PP7 lines (Figure 4A). By crossing sna-MS2 homozygous flies with sna-PP7 / 245 CyO flies, we obtained either hemizygous sna-MS2 / CyO or homozygous sna-MS2 / sna-PP7 246 embryos. Similar to the transgenic lines, we found that the endogenous *sna* alleles also compete 247 with each other such that the homozygous sna-MS2 allele produces fewer RNAs than the hemizygous allele (Figure 4C). Moreover, this interference was only observed in NC14 but not 248 249 in NC13, agreeing with the results from the transgenic lines (Figure 3E and 4B). Our results with 250 endogenous sna suggest that the allelic competition may be a general feature of transcriptional regulation for some strongly expressed genes. Taken together, we believe that the localized 251 252 cluster of Pol II and PICs along with specific transcription factors form "transcription hubs" 253 within a nucleus, capping the total RNA production level for some strong genes and resulting in 254 reduced transcriptional activity of homozygous alleles.

4 **Discussion**

255

- 256 Here, we have shown that homozygous alleles may interfere with each other to produce fewer 257 RNAs per allele than a hemizygous allele. Strikingly, this decrease in RNA production was 258 observed even when the homologous allele contained only a partial transcription unit such as an enhancer or reporter gene only. We have presented evidence to support the hypothesis that the 259 260 local concentration of Pol II in transcription hubs may be limiting, leading to allelic competition and reduced transcriptional activity. 261
- A recent study demonstrated a similar reduction of transcriptional activity in homozygotes 262 compared to the hemizygotes, using reporter genes driven by the Krüppel enhancers. Inserting an 263 264 array of Bcd or Zld TF binding sites on the homologous position was sufficient to reduce the transcriptional activity of the reporter gene, suggesting that the limiting number of TFs may 265 induce allelic competition (Waymack et al., 2021). This idea is in agreement with our finding 266 267 that the stronger *sna* shadow enhancer exhibits allelic interference. However, we also showed that the same sna shadow enhancer does not drive allelic interference when the enhancer-268 269 promoter interaction was weakened by moving the transgene to a different chromosome or by 270 increasing the enhancer-promoter distance (Figure 3B). Moreover, transcriptional activity from 271 the snaSE>MS2-yellow was reduced when the homologous allele had only the core promoter and the MS2-vellow reporter gene without the enhancer (Figure 3C). Since the site-specific TFs like 272 273 Dl do not bind to the 100bp-core promoter region, we do not think that the number of site-274 specific TFs is the only limiting factor responsible for the allelic interference.
- 275 Instead, we suggest that RNA Pol II levels may be also limiting for strongly activated genes. Previous studies showed that the level of TATA-Binding Protein (TBP) and TAFII is limiting in 276 277 Drosophila (Colgan and Manley, 1992; Aoyagi and Wassarman, 2001). For example, one study 278 in early *Drosophila* embryos showed that in the sensitized DI heterozygous background, TBP or 279 TAFII deletion in one allele leads to defects in *sna* expression (Zhou et al., 1998). In our study, 280 we demonstrated that homozygous alleles that contain strongly expressed reporter genes produce 281 fewer RNAs than the hemizygous alleles. If the number of Pol II and PICs indeed works as the rate-limiting factor, all available proteins can bind to the promoter on the hemizygous, whereas 282

they need to be divided between the two homologous alleles of homozygotes to initiate transcription, resulting in a lower transcription level.

Furthermore, the allelic competition observed in the "Enhancer Only" and "Promoter Only" 285 constructs indicates that a common factor that binds to both the enhancer and the promoter may 286 287 be responsible for the observed allelic interference (Figure 3B). Many papers have provided evidence that enhancers are actively transcribed through the binding of Pol II, Mediators, and 288 289 other general TFs to the enhancer region, producing enhancer RNAs (eRNAs) (Kim et al., 2010, 290 2015; Arnold et al., 2020). Hence, we suggest that the limiting number of Pol II or PICs can lead 291 to reduced transcriptional activity in homozygotes. In support of this hypothesis, the RNA 292 production was comparable between the homozygous and hemizygous allele in NC13, when fewer genes are transcribed. In NC14, where thousands of genes are activated, the allelic 293 interference was observed, and the degree of interference increased as the embryo progressed to 294 295 late NC14 (Figure 3F). These results support our claim that the number of Pol II and PICs can 296 become limiting in early embryos, affecting the allelic competition.

297

298299

300

301

302 303

304

305 306

307

308 309

310

311

We acknowledge that thousands of genes are being transcribed in early embryos, and it is not intuitive to think that one additional transgene can affect the overall balance of TFs, Pol II, and PICs in each nucleus. Yet, others have reported similar phenomena of allelic competition, and we have also demonstrated that endogenous *snail* alleles interfere with each other (Figure 4) (Waymack et al., 2020, 2021). While strong physical interactions between an enhancer and the target promoter often result in high transcriptional activity (Symmons et al., 2016; Oudelaar et al., 2019), it was also demonstrated that the transcriptional efficiency is not linearly correlated with the degree of physical interactions (Zuin et al., 2022). We did not find direct evidence that the physical interaction between the two homologous alleles causes the reduced transcriptional activity in homozygous alleles. For example, transcriptional activity of the closely interacting homozygous alleles was similar to that of the homologous alleles located on the other side of the nucleus. Although the direct physical interactions in *trans* may not be affecting the reduced transcriptional activity in homologous alleles, we believe that different allelic displacement between the homozygous and hemizygous alleles could have affected their transcriptional efficiency.

312 We suggest that the localized clustering of Pol II and TFs in each nucleus allows allelic 313 competition. Many recent papers have reported the presence of "transcription hubs" where TFs, Mediators, Pol II, and PICs form a cluster and the genes within each hub share the transcriptional 314 machinery (Cisse et al., 2013; Mir et al., 2017; Cho et al., 2018; Yamada et al., 2019). According 315 316 to the model, only a handful of each transcriptional machinery exists in a given hub, and adding one more reporter gene may work as a rate-limiting factor in this localized environment. The 317 transcriptional machinery is non-uniformly distributed in a limited number of transcription hubs 318 319 in a given nucleus (Edelman and Fraser, 2012; Mir et al., 2017; Boehning et al., 2018; Tsai et al., 320 2019; Yamada et al., 2019; Zhu et al., 2021). Even if numerous hubs exist in each nucleus, their positions could be relatively fixed and heterogeneously localized, preventing each hub to move 321 322 freely toward active transcription loci. In our case, in the vicinity of the MS2-vellow reporter gene, there may exist just a single hub at that specific 3D location that is accessible by the 323 reporter gene. 324

- Taken together, we suggest that localized clusters of transcription hubs can limit the number of
- available molecules that bind to the enhancer and promoter regions, inducing allelic competition
- for strongly expressed genes. Our study provides additional insight into how the distribution of
- Pol II clusters in the nucleus and subsequent interallelic competitions can affect enhancer-
- mediated transcriptional regulation.
- 330 5 Acknowledgments
- We thank Mike Levine, Stas Shvartsman, and Lim lab members for the helpful discussion. We also thank
- FlyBase for providing helpful information (Larkin et al., 2021). This work was supported by the National
- 333 Science Foundation CAREER MCB 2044613 awarded to B.L.
- 334 6 Competing Interests
- We declare no competing interests.
- 336 7 Reference List
- Adelman, K., and Lis, J. T. (2012). Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. *Nat. Rev. Genet.* 13, 720–731. doi:10.1038/nrg3293.
- Aoyagi, N., and Wassarman, D. A. (2001). Developmental and Transcriptional Consequences of Mutations in Drosophila TAF II 60. *Mol. Cell. Biol.* 21, 6808–6819.
- 341 doi:10.1128/MCB.21.20.6808-6819.2001.
- Arnold, P. R., Wells, A. D., and Li, X. C. (2020). Diversity and Emerging Roles of Enhancer RNA in Regulation of Gene Expression and Cell Fate. *Front. Cell Dev. Biol.* 7, 377.
- doi:10.3389/fcell.2019.00377.
- Berrocal, A., Lammers, N. C., Garcia, H. G., and Eisen, M. B. (2020). Kinetic sculpting of the seven stripes of the Drosophila even-skipped gene. *Elife* 9, 1–29. doi:10.7554/eLife.61635.
- Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S. M., Singer, R. H., and Long, R. M. (1998).
- Localization of ASH1 mRNA particles in living yeast. *Mol. Cell* 2, 437–445.
- 349 doi:10.1016/S1097-2765(00)80143-4.
- 350 Bischof, J., Maeda, R. K., Hediger, M., Karch, F., and Basler, K. (2007). An optimized
- transgenesis system for Drosophila using germ-line-specific C31 integrases. *Proc. Natl.*
- 352 *Acad. Sci.* 104, 3312–3317. doi:10.1073/pnas.0611511104.
- Boehning, M., Dugast-Darzacq, C., Rankovic, M., Hansen, A. S., Yu, T., Marie-Nelly, H., et al.
- 354 (2018). RNA polymerase II clustering through carboxy-terminal domain phase separation.
- 355 Nat. Struct. Mol. Biol. 25, 833–840. doi:10.1038/s41594-018-0112-y.
- Boija, A., Klein, I. A., Sabari, B. R., Dall'Agnese, A., Coffey, E. L., Zamudio, A. V., et al. (2018).
- 357 Transcription Factors Activate Genes through the Phase-Separation Capacity of Their
- Activation Domains. *Cell* 175, 1842-1855.e16. doi:10.1016/j.cell.2018.10.042.
- Bothma, J. P., Garcia, H. G., Ng, S., Perry, M. W., Gregor, T., and Levine, M. (2015). Enhancer

- additivity and non-additivity are determined by enhancer strength in the Drosophila embryo.
- 361 *Elife* 4. doi:10.7554/eLife.07956.001.
- 362 Chen, H., Levo, M., Barinov, L., Fujioka, M., Jaynes, J. B., and Gregor, T. (2018). Dynamic
- interplay between enhancer–promoter topology and gene activity. *Nat. Genet.* 50, 1296–
- 364 1303. doi:10.1038/s41588-018-0175-z.
- 365 Cho, W.-K., Jayanth, N., English, B. P., Inoue, T., Andrews, J. O., Conway, W., et al. (2016).
- RNA Polymerase II cluster dynamics predict mRNA output in living cells. *Elife* 5.
- doi:10.7554/eLife.13617.
- 368 Cho, W.-K., Spille, J.-H., Hecht, M., Lee, C., Li, C., Grube, V., et al. (2018). Mediator and RNA
- polymerase II clusters associate in transcription-dependent condensates. *Science* (80-.). 361,
- 370 412–415. doi:10.1126/science.aar4199.
- 371 Chong, S., Dugast-Darzacq, C., Liu, Z., Dong, P., Dailey, G. M., Cattoglio, C., et al. (2018).
- Imaging dynamic and selective low-complexity domain interactions that control gene
- transcription. *Science* (80-.). 361, eaar2555. doi:10.1126/science.aar2555.
- Cisse, I. I., Izeddin, I., Causse, S. Z., Boudarene, L., Senecal, A., Muresan, L., et al. (2013). Real-
- Time Dynamics of RNA Polymerase II Clustering in Live Human Cells. *Science* (80-.). 341,
- 376 664–667. doi:10.1126/science.1239053.
- Colgan, J., and Manley, J. L. (1992). TFIID can be rate limiting in vivo for TATA-containing, but
- not TATA-lacking, RNA polymerase II promoters. Genes Dev. 6, 304–315.
- 379 doi:10.1101/gad.6.2.304.
- Coulon, A., Chow, C. C., Singer, R. H., and Larson, D. R. (2013). Eukaryotic transcriptional
- dynamics: from single molecules to cell populations. Nat. Rev. Genet. 14, 572–584.
- doi:10.1038/nrg3484.
- Edelman, L. B., and Fraser, P. (2012). Transcription factories: genetic programming in three
- dimensions. Curr. Opin. Genet. Dev. 22, 110–114. doi:10.1016/j.gde.2012.01.010.
- Fukaya, T., Lim, B., and Levine, M. (2016). Enhancer Control of Transcriptional Bursting. *Cell*
- 386 166, 358–368. doi:10.1016/j.cell.2016.05.025.
- Fukaya, T., Lim, B., and Levine, M. (2017). Rapid Rates of Pol II Elongation in the Drosophila
- 388 Embryo. *Curr. Biol.* 27, 1387–1391. doi:10.1016/j.cub.2017.03.069.
- Groth, A. C. (2004). Construction of Transgenic Drosophila by Using the Site-Specific Integrase
- From Phage C31. *Genetics* 166, 1775–1782. doi:10.1534/genetics.166.4.1775.
- Halder, G., Callaerts, P., and Gehring, W. (1995). Induction of ectopic eyes by targeted expression
- of the eyeless gene in Drosophila. *Science* (80-.). 267, 1788–1792.
- 393 doi:10.1126/science.7892602.
- Hnisz, D., Abraham, B. J., Lee, T. I., Lau, A., Saint-André, V., Sigova, A. A., et al. (2013). Super-

- Enhancers in the Control of Cell Identity and Disease. Cell 155, 934–947.
- 396 doi:10.1016/j.cell.2013.09.053.
- 397 Kato, M., Han, T. W., Xie, S., Shi, K., Du, X., Wu, L. C., et al. (2012). Cell-free Formation of
- 398 RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within
- 399 Hydrogels. *Cell* 149, 753–767. doi:10.1016/j.cell.2012.04.017.
- 400 Keller, S. H., Jena, S. G., Yamazaki, Y., and Lim, B. (2020). Regulation of spatiotemporal limits
- of developmental gene expression via enhancer grammar. *Proc. Natl. Acad. Sci. U. S. A.* 117,
- 402 15096–15103.
- 403 doi:10.1073/PNAS.1917040117/SUPPL FILE/PNAS.1917040117.SM04.MOV.
- 404 Kim, T.-K., Hemberg, M., and Gray, J. M. (2015). Enhancer RNAs: A Class of Long Noncoding
- 405 RNAs Synthesized at Enhancers: Figure 1. Cold Spring Harb. Perspect. Biol. 7, a018622.
- doi:10.1101/cshperspect.a018622.
- 407 Kim, T.-K., Hemberg, M., Gray, J. M., Costa, A. M., Bear, D. M., Wu, J., et al. (2010). Widespread
- 408 transcription at neuronal activity-regulated enhancers. *Nature* 465, 182–187
- doi:10.1038/nature09033.
- 410 Kwasnieski, J. C., Orr-Weaver, T. L., and Bartel, D. P. (2019). Early genome activation in
- Drosophila is extensive with an initial tendency for aborted transcripts and retained introns.
- 412 *Genome Res.* 29, 1188–1197. doi:10.1101/gr.242164.118.
- 413 Larkin, A., Marygold, S. J., Antonazzo, G., Attrill, H., dos Santos, G., Garapati, P. V., et al. (2021).
- FlyBase: updates to the Drosophila melanogaster knowledge base. *Nucleic Acids Res.* 49,
- 415 D899. doi:10.1093/NAR/GKAA1026.
- 416 Larson, D. R., Zenklusen, D., Wu, B., Chao, J. A., and Singer, R. H. (2011). Real-Time
- Observation of Transcription Initiation and Elongation on an Endogenous Yeast Gene.
- 418 *Science* (80-.). 332, 475–478. doi:10.1126/science.1202142.
- 419 Levine, M., Cattoglio, C., and Tjian, R. (2014). Looping Back to Leap Forward: Transcription
- 420 Enters a New Era. *Cell* 157, 13–25. doi:10.1016/j.cell.2014.02.009.
- 421 Levine, M., and Tjian, R. (2003). Transcription regulation and animal diversity. *Nature* 424, 147–
- 422 151. doi:10.1038/nature01763.
- 423 Lewis, E. B. (1954). The Theory and Application of a New Method of Detecting Chromosomal
- Rearrangements in Drosophila melanogaster. *Am. Nat.* 88, 225–239. doi:10.1086/281833.
- Lim, B., Fukaya, T., Heist, T., and Levine, M. (2018a). Temporal dynamics of pair-rule stripes in
- living Drosophila embryos. Proc. Natl. Acad. Sci. U. S. A. 115, 8376–8381.
- 427 doi:10.1073/pnas.1810430115.
- 428 Lim, B., Heist, T., Levine, M., and Fukaya, T. (2018b). Visualization of Transvection in Living
- 429 Drosophila Embryos. *Mol. Cell* 70, 287-296.e6. doi:10.1016/j.molcel.2018.02.029.

- 430 Mannervik, M. (1999). Transcriptional Coregulators in Development. *Science* (80-.). 284, 606–431 609. doi:10.1126/science.284.5414.606.
- 432 Miguel-Escalada, I., Pasquali, L., and Ferrer, J. (2015). Transcriptional enhancers: functional
- insights and role in human disease. Curr. Opin. Genet. Dev. 33, 71-76.
- doi:10.1016/j.gde.2015.08.009.
- 435 Mir, M., Reimer, A., Haines, J. E., Li, X.-Y., Stadler, M., Garcia, H., et al. (2017). Dense Bicoid
- hubs accentuate binding along the morphogen gradient. Genes Dev. 31, 1784–1794.
- 437 doi:10.1101/gad.305078.117.
- 438 Mir, M., Stadler, M. R., Ortiz, S. A., Hannon, C. E., Harrison, M. M., Darzacq, X., et al. (2018).
- Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila
- embryos. *Elife* 7. doi:10.7554/eLife.40497.
- Oudelaar, A. M., Harrold, C. L., Hanssen, L. L. P., Telenius, J. M., Higgs, D. R., and Hughes, J.
- R. (2019). A revised model for promoter competition based on multi-way chromatin
- interactions at the α -globin locus. *Nat. Commun.* 10. doi:10.1038/S41467-019-13404-X.
- Perry, M. W., Boettiger, A. N., Bothma, J. P., and Levine, M. (2010). Shadow Enhancers Foster
- Robustness of Drosophila Gastrulation. Curr. Biol. 20, 1562–1567.
- 446 doi:10.1016/j.cub.2010.07.043.
- Perry, M. W., Boettiger, A. N., and Levine, M. (2011). Multiple enhancers ensure precision of gap
- gene-expression patterns in the Drosophila embryo. *Proc. Natl. Acad. Sci.* 108, 13570–13575.
- doi:10.1073/pnas.1109873108.
- 450 Riedel-Kruse, I. H., Muller, C., and Oates, A. C. (2007). Synchrony Dynamics During Initiation,
- 451 Failure, and Rescue of the Segmentation Clock. Science (80-.). 317, 1911–1915.
- 452 doi:10.1126/science.1142538.
- 453 Sabari, B. R., Dall'Agnese, A., Boija, A., Klein, I. A., Coffey, E. L., Shrinivas, K., et al. (2018).
- Coactivator condensation at super-enhancers links phase separation and gene control. *Science*
- 455 (80-.). 361, eaar3958. doi:10.1126/science.aar3958.
- 456 Savic, D., Roberts, B. S., Carleton, J. B., Partridge, E. C., White, M. A., Cohen, B. A., et al. (2015).
- Promoter-distal RNA polymerase II binding discriminates active from inactive CCAAT/
- enhancer-binding protein beta binding sites. Genome Res. 25, 1791–1800.
- 459 doi:10.1101/gr.191593.115.
- 460 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. (2012).
- Fiji: an open-source platform for biological-image analysis. *Nat. Methods* 9, 676–682.
- doi:10.1038/nmeth.2019.
- 463 Symmons, O., Pan, L., Remeseiro, S., Aktas, T., Klein, F., Huber, W., et al. (2016). The Shh
- Topological Domain Facilitates the Action of Remote Enhancers by Reducing the Effects of
- 465 Genomic Distances. *Dev. Cell* 39, 529–543. doi:10.1016/J.DEVCEL.2016.10.015.

- Tsai, A., Alves, M. R. P., and Crocker, J. (2019). Multi-enhancer transcriptional hubs confer phenotypic robustness. *Elife* 8. doi:10.7554/eLife.45325.
- 468 Tsai, A., Muthusamy, A. K., Alves, M. R. P., Lavis, L. D., Singer, R. H., Stern, D. L., et al. (2017).
- Nuclear microenvironments modulate transcription from low-affinity enhancers. *Elife* 6.
- 470 doi:10.7554/eLife.28975.
- 471 Venken, K. J. T., Carlson, J. W., Schulze, K. L., Pan, H., He, Y., Spokony, R., et al. (2009).
- Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. *Nat.*
- 473 *Methods* 6, 431–434. doi:10.1038/nmeth.1331.
- Venken, K. J. T., He, Y., Hoskins, R. A., and Bellen, H. J. (2006). P[acman]: A BAC Transgenic
- Platform for Targeted Insertion of Large DNA Fragments in D. melanogaster. *Science* (80-.
- 476). 314, 1747–1751. doi:10.1126/science.1134426.
- Wallrath, L. L., and Elgin, S. C. (1995). Position effect variegation in Drosophila is associated with an altered chromatin structure. *Genes Dev.* 9, 1263–1277. doi:10.1101/gad.9.10.1263.
- Waymack, R., Fletcher, A., Enciso, G., and Wunderlich, Z. (2020). Shadow enhancers can
- suppress input transcription factor noise through distinct regulatory logic. *Elife* 9, 1–57.
- doi:10.7554/eLife.59351.
- Waymack, R., Gad, M., and Wunderlich, Z. (2021). Molecular competition can shape enhancer activity in the Drosophila embryo. *iScience* 24, 103034. doi:10.1016/J.ISCI.2021.103034.
- Wollman, A. J. M., Shashkova, S., Hedlund, E. G., Friemann, R., Hohmann, S., and Leake, M. C.
- 485 (2017). Transcription factor clusters regulate genes in eukaryotic cells. *Elife* 6.
- 486 doi:10.7554/eLife.27451.
- 487 Yamada, S., Whitney, P. H., Huang, S.-K., Eck, E. C., Garcia, H. G., and Rushlow, C. A. (2019).
- The Drosophila Pioneer Factor Zelda Modulates the Nuclear Microenvironment of a Dorsal
- Target Enhancer to Potentiate Transcriptional Output. Curr. Biol. 29, 1387-1393.e5.
- 490 doi:10.1016/j.cub.2019.03.019.
- Zhou, J., Zwicker, J., Szymanski, P., Levine, M., and Tjian, R. (1998). TAFII mutations disrupt
- Dorsal activation in the Drosophila embryo. *Proc. Natl. Acad. Sci.* 95, 13483–13488.
- 493 doi:10.1073/pnas.95.23.13483.
- Zhu, I., Song, W., Ovcharenko, I., and Landsman, D. (2021). A model of active transcription hubs
- that unifies the roles of active promoters and enhancers. *Nucleic Acids Res.* 49, 4493–4505.
- 496 doi:10.1093/nar/gkab235.
- Zuin, J., Roth, G., Zhan, Y., Cramard, J., Redolfi, J., Piskadlo, E., et al. (2022). Nonlinear control
- of transcription through enhancer-promoter interactions. *Nature* 604, 571–577.
- 499 doi:10.1038/S41586-022-04570-Y.

8 Figure Legends

503 Figure 1. Allelic competition between the homologous alleles reduces transcriptional activity. (A) Schematic of the snail gene (sna), the primary enhancer (snaPE), the shadow 504 enhancer (snaSE). (B) Schematic of the hemizygous and homozygous snaSE>vellow constructs. 505 506 snaSE is placed right upstream of the *sna* promoter. 24 copies of MS2 and PP7 sequences were inserted for allele-specific visualization of the transcriptional activity. The paternal allele 507 contains the MS2-yellow reporter gene for both hemizygotes and homozygotes. (C) 508 509 Representative snapshots of hemizygous and homozygous embryos containing the snaSE>*yellow* 510 transgene. The time indicates minutes after the onset of NC14. Fluorescence puncta (green -511 MS2-vellow: red - PP7-vellow) indicate active nascent transcripts. Nuclei were visualized with His2Av-eBFP2 (blue). (D) Representative transcriptional trajectories from a nucleus of 512 513 hemizygous and homozygous embryos shown in (C). Transcriptional activity is proportional to 514 the fluorescence intensity. The total RNA production of each allele can be estimated by 515 measuring the area under the transcription trajectory. (E) Boxplot showing RNA production of the snaSE>MS2-vellow allele in hemizygous and homozygous embryos. The scatter points show 516 RNA production of two hundred random nuclei from the analysis. The boxplots show that the 517 518 MS2-yellow allele from homozygotes produced approximately 25% fewer RNAs than the one from hemizygotes. The band above the homozygote boxplot shows the projected total RNA 519 production of a homozygous embryo, which is obtained by doubling the RNA production of one 520 allele in homozygotes. Hemizygotes produce around 70% of the total RNA production of 521 522 homozygotes. n indicates the number of analyzed nuclei from 4 and 10 biologically replicate 523 embryos of each genotype respectively. The box indicates the 25%, 50% and 75% quantile, and the whiskers extend to the 10th and 90th percentile of each distribution. 524

502

527

528

529 530

531

532

533

534

535

536

537

538

539

540 541

542543

544

545 546

547

548

549

550

551

552

Figure 2. Low transcriptional amplitude caused reduced RNA output in the homozygous alleles. (A) Boxplot of the timing of transcription initiation for hemizygotes (hemi) and homozygotes (hom) expressing snaSE>vellow. For both genotypes, transcription was initiated about 6 min after the onset of NC14. n indicates the number of analyzed nuclei from 4 and 10 biologically replicate embryos of each genotype, respectively. (B) Boxplot of the duration of active snaSE>MS2-yellow transcription in NC14. The hemizygous and the homozygous alleles spend comparable time in the active transcription state. (C) Boxplot of the average amplitude of MS2-yellow fluorescent intensity in snaSE>yellow hemizygotes and homozygotes. The amplitude in homozygous embryos is about 20% lower than the one in hemizygous embryos. (**D**) Average transcriptional trajectories of active nuclei from hemizygous (blue) and homozygous (red) embryos. The main difference between the genotypes is the average amplitude. (E) Heat maps of a representative snaSE>yellow hemizygous (left) and homozygous (right) embryo showing the accumulated RNA production in NC14 of all nuclei within the sna expression domain. The RNA production is reduced throughout the ventral side of the homozygous embryo. The snapshot shows a ventral view of an embryo. (F) Average RNA production of hemizygotes (blue) and homozygotes (red) expressing the snaSE>MS2-yellow reporter gene along the dorsoventral axis of an embryo. The RNA production is reduced throughout the domain in homozygotes yet the sna expression boundary is not narrowed. (G) Plot of the cumulative fraction of active nuclei over the duration of NC14 in hemizygotes (blue) and homozygotes (red). Both genotypes produce RNAs with similar kinetics of transcriptional activation. The number of analyzed nuclei is the same as the one shown in Figure 1E. For boxplots in (A-C), the scatter points indicate values from 200 randomly selected nuclei used in the analysis. The box indicates the 25%, 50% and 75% quantile, and the whiskers extend to the 10th and the 90th percentile of each distribution. The error bar in (D), (F) and (G) represents the Standard Error of Mean (SEM) for 4 and 10 biologically replicate embryos for hemizygous and homozygous snaSE>*yellow* embryos, respectively.

555

556

557

558

559

560

561

562563

564

565

566 567

568 569

570

571

572

573

574 575

576

577 578

579

580 581

582

583

Figure 3. Allelic competition is not observed when the enhancer-promoter interactions are weakened. (A Plots comparing the RNA production of the MS2-yellow allele between the homozygous and the hemizygous constructs of snaSE>yellow (III), snaSE>yellow (II) and snaSE3'>yellow. The homozygous alleles of the latter two constructs do not compete with each other. The simplified schematics of the constructs are shown under each genotype, n indicates the number of analyzed nuclei from 4, 10,4 and 4 biologically replicate embryos of each genotype, respectively. (B) Boxplots showing RNA production of the MS2-yellow allele from the hemizygous, homozygous, Enhancer Only and Promoter Only embryos containing snaSE>*yellow*. The simplified schematics of the constructs are shown under each genotype. The MS2-yellow allele exhibits significant reduction in transcriptional activity in the presence of an Enhancer Only or the *PP7-yellow* reporter gene only on the homologous position. n indicates the number of analyzed nuclei from 4, 10,4 and 4 biologically replicate embryos of each genotype, respectively. (C) Plot of the cumulative fraction of active nuclei over the duration of NC14 in hemizygotes (blue), homozygotes (red), Enhancer Only (orange) and Promoter Only (yellow). N indicates the number of biologically replicate embryos of each genotype, respectively. (D) Plot of the average transcriptional trajectories of active nuclei in hemizygotes (blue), homozygotes (red), Enhancer Only (orange) and Promoter Only (yellow). N indicates the number of biologically replicate embryos of each genotype, respectively. (E) Boxplot showing the RNA production of the snaSE>MS2-vellow during NC13 compared to the production during NC14. No allelic competition is observed in NC13. n indicates the number of analyzed nuclei from 3, 5, 4 and 10 biologically replicate embryos of each genotype, respectively. For all boxplots, the box indicates the 25%, 50% and 75% quantile, and the whiskers extend to the 10th and 90th percentile of each distribution. The scattered points indicate values from 200 (B, D) or 100 (E) randomly selected nuclei used in the analysis. (F) Plot showing the RNA production of the snaSE>MS2-yellow during NC14. RNA production was measured in four temporal classes in NC14 by dividing the duration of NC14 into four. In early NC14, transcriptional activities of both genotypes are comparable to each other. Later in NC14, however, a reduced expression is observed in homozygotes with a greater difference towards the end of NC14. The data points show the mean and the error bars show the standard errors of the dataset.

Figure 4. Allelic competition is observed for endogenous *sna*. (A) Schematic of the hemizygous and homozygous endogenous *sna* constructs. MS2 or PP7 stem loops are inserted into the 3'UTR of the endogenous *sna* via CRISPR-mediated genome editing. (B-C) Boxplot of the transcriptional amplitude of the hemizygous and homozygous *sna-MS2* alleles during (B) NC13 and (C) NC14. No allelic competition is observed in NC13. However, amplitude of the homozygous *sna-MS2* allele is about 10% lower than the hemizygous allele's amplitude in NC14. n indicates the number of analyzed nuclei from 2, 2, 3 and 3 biologically replicate embryos of each genotype, respectively . For boxplots in (B-C), the scatter points indicate values from 100 (B) or 200 (C) randomly selected nuclei used in the analysis. The box indicates the 25%, 50% and 75% quantile, and the whiskers extend to the 10th and the 90th percentile of each distribution.