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Abstract

This paper introduces the problem of coresets for regression problems to panel
data settings. We first define coresets for several variants of regression problems
with panel data and then present efficient algorithms to construct coresets of size
that depend polynomially on 1/e (where ¢ is the error parameter) and the number
of regression parameters — independent of the number of individuals in the panel
data or the time units each individual is observed for. Our approach is based on
the Feldman-Langberg framework in which a key step is to upper bound the “total
sensitivity” that is roughly the sum of maximum influences of all individual-time
pairs taken over all possible choices of regression parameters. Empirically, we
assess our approach with a synthetic and a real-world datasets; the coreset sizes
constructed using our approach are much smaller than the full dataset and coresets
indeed accelerate the running time of computing the regression objective.

1 Introduction

Panel data, represented as X € RN*T*Xd and Y € RM*T where N is the number of enti-
ties/individuals, 7" is the number of time periods and d is the number of features is widely used in
statistics and applied machine learning. Such data track features of a cross-section of entities (e.g.,
customers) longitudinally over time. Such data are widely preferred in supervised machine learning
for more accurate prediction and unbiased inference of relationships between variables relative to
cross-sectional data (where each entity is observed only once) [28, 6].

The most common method for inferring relationships between variables using observational data
involves solving regression problems on panel data. The main difference between regression on panel
data when compared to cross-sectional data is that there may exist correlations within observations
associated with entities over time periods. Consequently, the regression problem for panel data is the
following optimization problem over regression variables 3 € R? and the covariance matrix €2 that is
induced by the abovementioned correlations: mingega oerr =7 Y ;e vy (Yi — XiB) Ty — Xi3).

Here X; € RT*4 denotes the observation matrix of entity ¢ whose ¢-th row is z;; and (2 is constrained
to have largest eigenvalue at most 1 where 2, represents the correlation between time periods ¢
and t'. This regression model is motivated by the random effects model (Eq. (1) and Appendix A),
common in the panel data literature [27, 24, 23]. A common way to define the correlation between
observations is an autocorrelation structure AR(g) [25, 35] whose covariance matrix {2 is induced
by a vector p € R? (integer ¢ > 1). This type of correlation results in the generalized least-squares
estimator (GLSE), where the parameter space is P = R4,

As the ability to track entities on various features in real-time has grown, panel datasets have grown
massively in size. However, the size of these datasets limits the ability to apply standard learning
algorithms due to space and time constraints. Further, organizations owning data may want to share
only a subset of data with others seeking to gain insights to mitigate privacy or intellectual property
related risks. Hence, a question arises: can we construct a smaller subset of the panel data on which
we can solve the regression problems with performance guarantees that are close enough to those
obtained when working with the complete dataset?
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One approach to this problem is to appeal to the theory of “coresets.” Coresets, proposed in [1], are
weighted subsets of the data that allow for fast approximate inference for a large dataset by solving
the problem on the smaller coreset. Coresets have been developed for a variety of unsupervised and
supervised learning problems; for a survey, see [43]. But, thus, far coresets have been developed
only for ¢5-regression cross-sectional data [18, 36, 8, 15, 33]; no coresets have been developed for
regressions on panel data — an important limitation, given their widespread use and advantages.

Roughly, a coreset for cross-sectional data is a weighted subset of observations associated with
entities that approximates the regression objective for every possible choice of regression parameters.
An idea, thus, is to construct a coreset for each time period (cross-section) and output their union as
a coreset for panel data. However, this union contains at least 7" observations which is undesirable
since 1" can be large. Further, due to the covariance matrix 2, it is not obvious how to use this union
to approximately compute regression objectives. With panel data, one needs to consider both how to
sample entities, and within each entity how to sample observations across time. Moreover, we also
need to define how to compute regression objectives on such a coreset consisting of entity-time pairs.

Our contributions. We initiate the study of coresets for versions of ¢s-regression with panel data,
including the ordinary least-squares estimator (OLSE; Definition 2.2), the generalized least-squares
estimator (GLSE; Definition 2.3), and a clustering extension of GLSE (GLSE; Definition 2.4)
in which all entities are partitioned into k clusters and each cluster shares the same regression
parameters.

Overall, we formulate the definitions of coresets and propose efficient construction of e-coresets
of sizes independent of N and 7. Our key contributions are: (a) We give a novel formulation
of coresets for GLSE (Definition 3.1) and GLSE}, (Definition 3.2). We represent the regression
objective of GLSE as the sum of NT' sub-functions w.r.t. entity-time pairs, which enables us to
define coresets similar to the case of cross-sectional data. For GLSEy, the regression objective
cannot be similarly decomposed due to the min operations in Definition 2.4. To deal with this
issue, we define the regression objective on a coreset S by including min operations. (b) Our
coreset for OLSE is of size O(min{e~2d, d*}) (Theorems C.1 and C.2), based on a reduction to
coreset for /5-regression with cross-sectional data. (¢) Our coreset for GLSE consists of at most
0(5’2 max{q*d?, ¢3d®}) points (Theorem 4.1), independent of N and 7" as desired. (d) Our coreset
for GLSE;, is of size poly(M, k, q,d, 1/¢) (Theorem 5.2) where M upper bounds the gap between
the maximum individual regression objective of OLSE and the minimum one (Definition 5.1). We
provide a matching lower bound (') (Theorem 5.4) for k, ¢, d < 2, indicating that the coreset size
should contain additional factors than k, ¢, d, 1/¢, justifying the M -bounded assumption.

Our coresets for GLSE/GLSE, leverage the Feldman-Langberg (FL) framework [21] (Algorithms 1
and 2). The p variables make the objective function of GLSE non-convex in contrast to the
cross-sectional data setting where objective functions are convex. Thus, bounding the “sensitivity”
(Lemma 4.4) of each entity-time pair for GLSE, which is a key step in coreset construction using
the FL framework, becomes significantly difficult. We handle this by upper-bounding the maximum
effect of p, based on the observation that the gap between the regression objectives of GLSE and
OLSE with respect to the same 3 € R? is always constant, which enables us to reduce the problem to
the cross-sectional setting. For GLSEy, a key difficulty is that the clustering centers are subspaces
induced by regression vectors, instead of points as in Gaussian mixture models or k-means. Hence,
it is unclear how GLSEj can be reduced to projective clustering used in Gaussian mixture models;
see [20]. To bypass this, we consider observation vectors of an individual as one entity and design a
two-staged framework in which the first stage selects a subset of individuals that captures the min
operations in the objective function and the second stage applies our coreset construction for GLSE
on each selected individuals. As in the case of GLSE, bounding the “sensitivity” (Lemma E.4) of
each entity for GLSEy, is a key step at the first stage. Towards this, we relate the total sensitivity of
entities to a certain “flexibility” (Lemma E.3) of each individual regression objective which is, in
turn, shown to be controlled by the A/-bounded assumption (Definition 5.1).

We implement our GLSE coreset construction algorithm and test it on synthetic and real-world
datasets while varying €. Our coresets perform well relative to uniform samples on multiple datasets
with different generative distributions. Importanty, the relative performance is robust and better on
datasets with outliers. The maximum empirical error of our coresets is always below the guaranteed
¢ unlike with uniform samples. Further, for comparable levels of empircal error, our coresets perform
much better than uniform sampling in terms of sample size and coreset construction speed.



1.1 Related work

With panel data, depending on different generative models, there exist several ways to define ¢o-
regression [27, 24, 23], including the pooled model, the fixed effects model, the random effects model,
and the random parameters model. In this paper, we consider the random effects model (Equation (1))
since the number of parameters is independent of N and T (see Section A for more discussion).

For cross-sectional data, there is more than a decade of extensive work on coresets for regression; e.g.,
{5-regression [18, 36, 8, 15, 33], ¢;-regression [11, 47, 12], generalized linear models [31, 40] and
logistic regression [44, 31, 42, 49]. The most relevant for our paper is ¢5-regression (least-squares
regression), which admits an e-coreset of size O(d/<?) [8] and an accurate coreset of size O(d?) [33].

With cross-sectional data, coresets have been developed for a large family of problems in machine
learning and statistics, including clustering [21, 22, 30], mixture model [37], low rank approxima-
tion [16], kernel regression [54] and logistic regression [42]. We refer interested readers to recent
surveys [41, 19]. It is interesting to investigate whether these results can be generalized to panel data.

There exist other variants of regression sketches beyond coreset, including weighted low rank
approximation [13], row sampling [17], and subspace embedding [47, 39]. These methods mainly
focus on the cross-sectional setting. It is interesting to investigate whether they can be adapted to the
panel data setting that with an additional covariance matrix.

2 /y-regression with panel data

We consider the following generative model of ¢s-regression: for (i,t) € [N] x [T],

Yyit = 23 Bi + e, (1
where §; € R< and e;; € R is the error term drawn from a normal distribution. Sometimes, we
may include an additional entity or individual specified effect o; € R so that the outcome can be
represented by y;; = % 3; + a; + e;;. This is equivalent to Equation (1) by appending an additional
constant feature to each observation x;;.

Remark 2.1 Sometimes, we may not observe individuals for all time periods, i.e., some observation
vectors x;; and their corresponding outcomes y;; are missing. One way to handle this is to regard
those missing individual-time pairs as (zt,yit) = (0,0). Then, for any vector 3 € R%, we have
Yit — ;v;'; B = 0 for each missing individual-time pairs.

As in the case of cross-sectional data, we assume there is no correlation between individuals. Using
this assumption, the ¢5-regression function can be represented as follows: for any regression parame-
ters ¢ € P (P is the parameter space), ¥)(¢) = >, €[N 1;(C), where v; is the individual regression
function. Depending on whether there is correlation within individuals and whether 3; is unique,
there are several variants of v;. The simplest setting is when all ;s are the same, say §; = 3, and
there is no correlation within individuals. This setting results in the ordinary least-squares estimator
(OLSE); summarized in the following definition.

Definition 2.2 (Ordinary least-squares estimator (OLSE)) For an ordinary least-squares estima-
tor (OLSE), the parameter space is R? and for any 3 € R? the individual objective function is

POB) = T ¥ (B) = Coei (wir — w58)%.

Consider the case when [3; are the same but there may be correlations between time periods within
individuals. A common way to define the correlation is called autocorrelation AR(q) [25, 35], in
which there exists p € B?, where ¢ > 1 is an integer and BY = {z € R? : ||z||2 < 1}, such that

eir = m Y poei s o+ N(0,1). @)

a=1
This autocorrelation results in the generalized least-squares estimator (GLSE).

Definition 2.3 (Generalized least-squares estimator (GLSE)) For a generalized least-squares es-
timator (GLSE) with AR(q) (integer q¢ > 1), the parameter space is RY x BY and for any

¢ = (B,p) € R x BY the individual objective function is ng’Q)(C) =2 tem) w§f7q)(c) equal to

T min{t—1, 2
(1= o3 (wa — w38 + Sy (i — 20B) = T30 (9 — 21, ,8))



The main difference from OLSE is that a sub-function wl(tG 9 is not only determined by a single
observation (x;¢, y;¢); instead, the objective of wl(tG ) may be decided by up to ¢ + 1 contiguous
observations (xi7max{1,t_q}, yi7max{1,t_q}), ooy (it Yir)-

Motivated by k-means clustering [48], we also consider a generalized setting of GLSE, called

GLSE;, (k > 1 is an integer), in which all individuals are partitioned into % clusters and each cluster
corresponds to the same regression parameters with respect to some GLSE.

Definition 2.4 (GLSE,: an extention of GLSE) Let k,q > 1 be integers. For a GLSEy, the pa-
rameter space is (R? x Bq)k and for any ¢ = (B, ...,3" pM) . pk)) e (R x Bq)k the
individual objective function is ¢§G’q’k)(C) i= mingepy) wZ(G’Q) (BW, p®).

GLSE, is a basic problem with applications in many real-world fields; as accounting for unobserved
heterogeneity in panel regressions is critical for unbiased estimates [3, 26]. Note that each individual
selects regression parameters (3, p()) (I € [k]) that minimizes its individual regression objective
for GLSE. Note that GLSE; is exactly GLSE. Also note that GLSE;, can be regarded as a generalized
version of clustered linear regression [4], in which there is no correlation within individuals.

3 Our coreset definitions

In this section, we show how to define coresets for regression on panel data, including GLSE and
GLSEj. Due to the additional autocorrelation parameters, it is not straightforward to define coresets
for GLSE as in the cross-sectional setting. One way is to consider all observations of an individual as
an indivisible group and select a collection of individuals as a coreset. However, this construction
results in a coreset of size depending on 7', which violates the expectation that the coreset size should

be independent of N and 7. By Definition 2.3, we know that the objective function )(%>9) can be

G,q)

represented as the summation of NT" sub-functions 1/1;5 . This motivated the following definition.

Definition 3.1 (Coresets for GLSE) Given a panel dataset X € RVN*T*d gqnd Yy € RNXT ¢4
constant € € (0, 1), integer ¢ > 1, and parameter space P, an e-coreset for GLSE is a weighted set
S C [N] x [T together with a weight function w : S — R such that for any ¢ = (8,p) € P,

v = Y wit) (0 € (L£e) - F9(Q).

(i,t)eS

Note that the number of points in this coreset S is at most (¢ + 1) - |S|. Specifically, for OLSE, the
parameter space is R since ¢ = 0, and hence is a special case of the above definition. Also note that
this definition can be derived from the coreset definition from [21, 9]; see Section B.1 for details.

Due to the min operations in Definition 2.4, the objective function 1/(%:%*¥) can only be decomposed

into sub-functions 1){<***)
G,q:k)

instead of individual-time pairs. Hence, the first idea is to select a sub-

collection of wf to estimate the full function ¥)(¢-¥) However, each sub-function wa’q’k) is

computed by 7" observations and the resulting coreset size should contain a factor 7". To avoid the
size dependence of T, the intuition is to further select a subset of time periods to estimate wEG’q’k).
Given S C [N] x [T], we denote Is := {i € [N]: 3t € [T],s.t.,(i,t) € S} as the collection of
individuals that appear in S. Moreover, for each i € Ig, we denote Jg; := {t € [T] : (i,t) € S} to
be the collection of observations for individual ¢ in S.

Definition 3.2 (Coresets for GLSE,) Given a panel dataset X € RN*XT>d gnd Y ¢ RNXT,
constant ¢ € (0,1), integer k,q > 1, and parameter space P¥, an c-coreset for GLSE}, is a
weighted set S C [N] x [T] together with a weight function w : S — Rx¢ such that for any

§: (5(1)7"'7ﬁ(k)7p(1)7"'7p(k)) E Pk’
¢ga,q,k)(<) — szzﬁ § : w(i,t) .¢Z(tC¥,q) (ﬂ(l)7p(l)) e(1+e) .¢(G,q,k)(o_
(S
i€ls teJs,i

The key is to incorporate min operations in the computation function ng’q’k) over the coreset.

Similar to GLSE, the number of points in such a coreset .S is at most (¢ + 1) - | S].



4 Coresets for GLSE

In this section, we show how to construct coresets for GLSE. Due to space limitations, we omit many
details to Section D. We let the parameter space be Py = R x B{_, for some constant A € (0, 1)
where B{ _, = {p € R?: ||p||3 <1 — A}. The assumption of the parameter space B{_, for p is
based on the fact that ||p||3 < 1 (A — 0) is a stationary condition for AR(q) [35].

Theorem 4.1 (Coresets for GLSE) There exists a randomized algorithm that, for a given
panel dataset X € RN*Txd gnd Y € RNXT) constants £,6,A € (0,1) and inte-
ger ¢ > 1, with probability at least 1 — 0§, constructs an e-coreset for GLSE of size
0] (5*2)\*1qd (max {qu, qd2} -log % + log %)) and runs in time O(NTq + NTd?).

Note that the coreset in the above theorem contains at most (¢ + 1)

O (72X "'qd (max {¢?d, qd*} -log ¢ +log %)) points (zi;,y;¢), which is independent of
both N and 7. Also note that if both A and 4 are away from 0, e.g., A = § = 0.1 the number of
points in the coreset can be further simplified: O (¢ =2 max {¢*d?, ¢°d®} - logd) = poly(q,d, 1/¢).

4.1 Algorithm for Theorem 4.1

We summarize the algorithm of Theorem 4.1 in Algorithm 1, which takes a panel dataset (X,Y") as
input and outputs a coreset S of individual-time pairs. The main idea is to use importance sampling
(Lines 6-7) leveraging the Feldman-Langberg (FL) framework [21, 9]. The key new step appears
in Line 5, which computes a sensitivity function s for GLSE that defines the sampling distribution.
Also note that the construction of s is based on another function s(©) (Line 4), which is actually a
sensitivity function for OLSE that has been studied in the literature [8].

Algorithm 1: CGLSE: Coreset construction of GLSE
Input: X € RV*T*d y ¢ RNXT constant ¢, 5, A € (0, 1), integer ¢ > 1 and parameter space P
Output: asubset S C [N] x [T] together with a weight function w : S — R>o.
I: M+ O (e72\"1qd (max {¢d, qd*} - log ¢ +log 1)).
2: Let matrix Z € RNT*(4+1) be whose (iT — T + t)-th row is 2z = (24, yir) € R4 for
(i,t) € [N] > [T].
3: Compute A C RV Txd" whose columns form a unit basis of the column space of Z.
4: For each (i,t) € [N] x [T], 8O (i,t) + || Air—74¢]|3.
5: For each pair (i,t) € [N] x [T],
s(i, t) < mln{l 2271 ( ©) (i, t) + Zm“‘{t La} 5(0)(;, t—j))}
6: Pick a random sample S C [N] x [T'] of M pairs, where each (i,t) € S is selected with
probability Soo s(i.t)

i ) E[N] X [T] s(i,t") "

s(i’,t)

7: Foreach (i,t) € S, w(i,t) + L N A(iD)
8: Output (S, w).

4.2 Proof of Theorem 4.1

Algorithm 1 applies the FL framework (Feldman and Langberg [21]) that constructs coresets by
importance sampling and the coreset size has been improved by [9]. The details of the unified FL
framework can be found in Section B.2. The key is to verify the “pseudo-dimension” (Lemma 4.3)
and “sensitivities” (Lemma 4.4) separately; summarized as follows.

Upper bounding the pseudo-dimension. For preparation, we introduce a notion which measures
the combinatorial complexity that plays the same role as VC-dimension [51].

Definition 4.2 (Pseudo-dimension [21, 9]) Given an arbitrary weight function u : [N] x [T] —
R>¢, we define range, (¢, 1) = {(i,t) € [N] x [T] : u(i,t) - w(G Q)(C) < r}forevery( € Py and



r > 0. The (pseudo-)dimension of GLSE is the largest integer t such that there exists a weight
function u and a subset A C X of size t satisfying that |{ AN range,, (C,r) : ¢ € Py,r > 0}] = 2M4l.

We have the following lemma that upper bounds the pseudo-dimension of GLSE.
Lemma 4.3 (Pseudo-dimension of GLSE) The pseudo-dimension dim is at most O ((q + d)qd).

The proof can be found in Section D.1. The main idea is to apply the prior results [2, 53] which
shows that the pseudo-dimension is polynomially dependent on the number of regression parameters
(g + d for GLSE) and the number of operations of individual regression objectives (O(qd) for GLSE).

Constructing a sensitivity function. Next, we show that the function s constructed in Line 5 of
Algorithm 1 is indeed a sensitivity function of GLSE that measures the maximum influence for each
zi¢ € X; summarized by the following lemma.

Lemma 4.4 (Total sensitivity of GLSE) Function s : [N]x[T] — Rx>¢ of Algorithm 1 satisfies that
. . (G.q) . _
for any (i,t) € [N] x [T}, s(i,t) > sup;cp :ﬁ;giq)gg and G := 3 penvyxr S 1) = O(A Lqd).

Moreover; the construction time of function s is O(NTq + NTd?).

The proof can be found in Section D.2. Intuitively, if the sensitivity s(i, t) is large, e.g., close to 1,

wz(fG ) must contribute significantly to the objective with respect to some parameter ( € Py. The

sampling ensures that we are likely to include such pair (4, t) in the coreset for estimating ¢(¢). Due
to the fact that the objective function of GLSE is non-convex which is different from OLSE, bounding
the sensitivity of each individual-time pair for GLSE becomes significantly difficult. To handle this
difficulty, we develop a reduction of sensitivities from GLSE to OLSE (Line 5 of Algorithm 1), based

on the relations between (%9 and 1(?), i.e., for any ¢ = (3, p) € Py we prove that dJEG’q) ¢) >
- wz(O) (8) and 1/}1(?’61)(0 <2. (wz(tO)(ﬁ) n Z;n:i?{t_l’ﬂ ’(/}7;(,?1]'(6)) . The first inequality follows

from the fact that the smallest eigenvalue of Qp_l (the inverse covariance matrix induced by p) is

at least \. The intuition of the second inequality is from the form of function t/JZ(tG ’4), which relates

to min {¢, ¢ + 1} individual-time pairs, say (2; min{1,t—q}>Yi,min{1,t=q})> - - - » (Tit, Yir). Then it
suffices to construct s(@) (Lines 2-4 of Algorithm 1), which reduces to the cross-sectional data

setting and has total sensitivity at most d + 1 (Lemma D.3). Consequently, we conclude that the total
sensitivity G of GLSE is O(A™!¢d) by the definition of s.

Proof: [Proof of Theorem 4.1] By Lemma 4.4, the total sensitivity G is O(A~!qd). By Lemma 4.3,
we let dim = O ((q + d)qd). Pluging the values of G and dim in the FL framework [21, 9], we prove
for the coreset size. For the running time, it costs O(NT'q + NT'd?) time to compute the sensitivity
function s by Lemma 4.4, and O(NT'd) time to construct an e-coreset. This completes the proof. [J

5 Coresets for GLSE,

Following from Section 4, we assume that the parameter space is Pf = (R%x Bi_ /\)k for some given
constant A € (0,1). Given a panel dataset X € RV*T*d and Y € RN*7 let Z() ¢ RT*(d+1)

denote a matrix whose t-th row is (74, y;;) € R4t forall ¢ € [T (i € [N]). Assume there exists
constant M > 1 such that the input dataset satisfies the following property.

Definition 5.1 (M -bounded dataset) Given M > 1, we say a panel dataset X € RN*T*d gnd
Y € RYXT is M-bounded if for any i € [N), the condition number of matrix (Z )T Z@) is at most
v 2B v (B)

1815+1 B8I5+1"

M, ie., maxgepd <M - mingeprd
If there exists i € [N] and 3 € R? such that 1){”’(8) = 0, we let M = co. Specifically, if all
(ZD)T Z) are identity matrix whose eigenvalues are all 1, i.e., for any 3, ¥\?)(8) = || 8|12 + 1. we
can set M = 1. Another example is that if n. >> d and all elements of Z() are independently and iden-
tically distributed standard normal random variables, then the condition number of matrix (Z®))T Z()



is upper bounded by some constant with high probability (and constant in expectation) [10, 46],
which may also imply M = O(1). The main theorem is as follows.

Theorem 5.2 (Coresets for GLSE) There exists a randomized algorithm that given an M -bounded
(M > 1) panel dataset X € RN*T*d qnd y ¢ RNXT constant e, X € (0,1) and in-
tegers q,k > 1, with probability at least 0.9, constructs an e-coreset for GLSE}, of size

0] <5‘4)\_2Mk2 max {q7d47 q5d6} -log @ log %) and runs in time O(NTq + NTd?).

Similar to GLSE, this coreset for GLSE; (k > 2) contains at most (¢ + 1) -
0] (5*4)\’2Mk2 max {q7d4, q5d6} -log % log %) points (x;¢, y;+ ), which is independent of both
N and T when M is constant. Note that the size contains an addtional factor M which can be

unbounded. Our algorithm is summarized in Algorithm 2 and the proof of Theorem 5.2 can be found
in Section E. Due to the space limit, we outline Algorithm 2 and discuss the novelty in the following.

Algorithm 2: CGLSE,: Coreset construction of GLSEj

Input: an M-bounded (constant M/ > 1) panel dataset X € RV*T*4 and Y € RV*T constant
g, A € (0,1), integers k,q > 1 and parameter space P’)f.
Output: asubset S C [N] x [T'] together with a weight function w : S — Rx.

% Constructing a subset of individuals
1: '+ O (6_2/\_1Mk‘2 max {q4d2, q3d3} -log %)
2: For each i € [N], let matrix Z() € RT>*(@+1) be whose ¢-th row is 2\ = (21, yit) € R4
3: For each i € [N], construct the SVD decomposition of Z(*) and compute

Ui 2= Amax((Z) T ZD) and £; := Apin (Z2D) T 2D).

4: Foreachi € [N], S(O)(l) — #1/;&’

5 For each i € [N], s(i) + min {1, AatD) . S(O)(i)}.
6: Pick a random sample Is C [N] of size M, where each i € Ig is selected with probability
5(i)
Zi’e[N] s(i’) "

7: Foreachi € Ig, w'(i) + Zirey 3G

T-s(z)

% Constructing a subset of time periods for each selected individual
8: Foreach i € I, apply CGLSE(X;, y;, 5, 20%, A, ¢) and construct a subset Jg; C [T together
with a weight function w : Jg; — Rx.
9: Let S < {(i,t) € [N] x [T] : i € Ig,t € Jg;}.
10: For each (i,t) € S, w(i,t) < w'(i) - w® ().
11: Output (S, w).

Remark 5.3 Algorithm 2 is a two-staged framework, which captures the min operations in GLSE},.

First stage. We construct an §-coreset Is C [N] together with a weight function w' : Is — Rxq
satisfying » ;. w'(i) - ng’q’k)(C) € (1+¢)-pGR)(C). The idea is similar to Algorithm 1
except that we consider N sub-functions ng,q,k) instead of NT. In Lines 2-4 of Algorithm 2, we

first construct a sensitivity function s'©) of OLSE}. The definition of s'©) captures the impact of
min operations in the objective function of OLSE}, and the total sensitivity of s(©) is guaranteed to
be upper bounded by Definition 5.1. The key is showing that the maximum influence 0{ individual
i is at most dﬁ (Lemma E.3), which implies that the total sensitivity of s\©) is at most

M. Then in Line 5, we construct a sensitivity function s of GLSE}, based on a reduction from s(°)
(Lemma E.4). The key observations are that for any = (3, p) € Px we have ng’Q) ) > )\-7,/12(0) (B)



that provides an upper bound of the individual objective gap between GLSE and OLSE, and for
any ¢ = (80,88, pM .. o) € Pk, @I () < 2(q + 1) - minyepyy P (8D), that

%

provides a lower bound of the individual objective gap between GLSE}, and OLSE}.

Second stage. In Line 8, for each i € Is, apply CGLSE(X;,y;, §, m, A, q) and construc-

t a subset Jg; C [T together with a weight function w@® Jsi — Rxo. Outpur S =
{(i,t) € [N] x [T] : i € Ig,t € Js;} together with a weight function w : S — R defined as
follows: for any (i,t) € S, w(i,t) := w' (i) - w (¢).

We also provide a lower bound theorem which shows that the size of a coreset for GLSE}, can be up
to (). It indicates that the coreset size should contain additional factors than k, g, d, 1 /¢, which
reflects the reasonability of the M -bounded assumption. The proof can be found in Section E.

Theorem 5.4 (Size lower bound of GLSE) Let T = land d = k = 2 and \ € (0,1). There
exists X € RN*Txd qnd Y € RN*T such that any 0.5-coreset for GLSE}, should have size Q(N).

6 Empirical results

We implement our coreset algorithms for GLSE, and compare the performance with uniform sampling
on synthetic datasets and a real-world dataset. The experiments are conducted by PyCharm on a
4-Core desktop CPU with §GB RAM.!

Datasets. We experiment using synthetic datasets with N = T" = 500 (250k observations), d = 10,
q = 1and A = 0.2. For each individual i € [N], we first generate a mean vector Z; € R? by first
uniformly sampling a unit vector / € R%, and a length 7 € [0, 5], and then letting 7; = 7. Then
for each time period ¢ € [T], we generate observation x;; from a multivariate normal distribution
N (T, ||Z:]|3 - T) [50].2 Next, we generate outcomes Y. First, we generate a regression vector 3 € R?
from distribution N (0, ). Then we generate an autoregression vector p € R? by first uniformly
sampling a unit vector p’ € R? and a length 7 € [0,1 — A], and then letting p = 7p’. Based on p,
we generate error terms e;; as in Equation (2). To assess performance robustness in the presence
of outliers, we simulate another dataset replacing N (0, I) in Equation (2) with the heavy tailed
Cauchy(0,2) distribution [38]. Finally, the outcome y;; = x; B + e;; is the same as Equation (1).

We also experiment on a real-world dataset involving the prediction of monthly profits from cus-
tomers for a credit card issuer as a function of demographics, past behaviors, and current balances
and fees. The panel dataset consisted of 250k observations: 50 months of data (7" = 50) from 5000
customers (N = 5000) with 11 features (d = 11). Weset g = 1 and A = 0.2.

Baseline and metrics. As a baseline coreset, we use uniform sampling (Uni), perhaps the simplest
approach to construct coresets: Given an integer I', uniformly sample I' individual-time pairs
(i,t) € [N] x [T'] with weight &L for each.

Given regression parameters ¢ and a subset S C [N] x [T], we define the empirical error as

‘wgg=q>(<> L

wen ~ 1 We summarize the empirical errors ey, ..., e, by maximum, average, standard

2
7

deviation (std) and root mean square error (RMSE), where RMSE= % > ic(n] €i- By penalizing

larger errors, RMSE combines information in both average and standard deviation as a performance
metric,. The running time for solving GLSE on dataset X and our coreset S are Tx and T
respectively. T¢ is the running time for coreset S construction .

Simulation setup. We vary € = 0.1,0.2,0.3,0.4, 0.5 and generate 100 independent random tuples
¢ = (B,p) € R4 (the same as described in the generation of the synthetic dataset). For each e,
we run our algorithm CGLSE and Uni to generate coresets. We guarantee that the total number of
sampled individual-time pairs of CGLSE and Uni are the same. We also implement IRLS [32] for
solving GLSE. We run IRLS on both the full dataset and coresets and record the runtime.

'Codes are in https://github.com/huanglx12/Coresets-for-regressions-with-panel-data.
The assumption that the covariance of each individual is proportional to ||Z;||3 is common in econometrics.
We also fix the last coordinate of z;; to be 1 to capture individual specific fixed effects.


https://github.com/huanglx12/Coresets-for-regressions-with-panel-data

Table 1: performance of e-coresets for GLSE w.rt. varying €. We report the maxi-
mum/average/standard deviation/RMSE of the empirical error w.r.t. the 100 tuples of generated
regression parameters for our algorithm CGLSE and Uni. Size is the # of sampled individual-time
pairs, for both CGLSE and Uni. T¢ is construction time (seconds) of our coresets. Ts and T'x are the
computation time (seconds) for GLSE over coresets and the full dataset respectively. “Synthetic (G)”
and “Synthetic (C)” represent synthetic datasets with Gaussian errors and Cauchy errors respectively.

avg./std./RMSE of emp. err.

max. emp. err.

€ CGLSE Uni CGLSE Uni size. Te To+Ts Tx ()
G 01 005 0I5 001/001/002 007/004/.008 116481 2 372 458
S 02 018 029 006004008 .010/007.013 23043 2 80 458
2 03 036 041 011/008/014 014/010/017 7217 2 29 458
£ 04 055 086 016/012/021 .026/020/032 3005 2 18 458
05 064 130 .019/015.024 068/.032/.075 1590 2 9 458
S 01 001 793 000/000/001 744/029/745 106385 2 1716 4430
S 02 018 939 013003014 .927.007/.927 21047 2 346 4430
203 102 937 072021075 .860/.055/862 6597 2 169 4430
£ 04 070 962 .051/011/053 .961/.001/96] 2851 2 54 4430
505 .09 998  .060/026/.065 992/.004/.992 a2 2 41 4430
— 01 029 162 005008009 016/026/031 50777 3 383 2488
2 02 054 154 017004017 012024026 13062 3 85 2488
S 03 .87 698  .039/038.054 .052/.106/.118 5393 3 24 2488
T 04 220 438 019033038 050/081.095 2734 3 20 2488
€ 05 204 1107 075038084 .074/017.183 1534 3 16 2488

Results. Table 1 summarizes the accuracy-size trade-off of our coresets for GLSE for different
error guarantees €. The maximum empirical error of Uni is always larger than that of our coresets
(1.16-793x). Further, there is no error guarantee with Uni, but errors are always below the error
guarantee with our coresets. The speed-up with our coresets relative to full data (TCTj_‘TS ) in solving
GLSE is 1.2x-108x. To achieve the maximum empirical error of .294 for GLSE in the real-world
data, only 1534 individual-time pairs (0.6%) are necessary for CGLSE. With Uni, to get the closest
maximum empirical error of 0.438, at least 2734 individual-time pairs) (1.1%) is needed; i.e.., CGLSE
achieves a smaller empirical error with a smaller sized coreset. Though Uni may sometimes provide
lower average error than CGLSE, it always has higher RMSE, say 1.2-745x of CGLSE. When there
are outliers as with Cauchy, our coresets perform even better on all metrics relative to Uni. This
is because CGLSE captures tails/outliers in the coreset, while Uni does not. Figure 1 in Section F
presents the boxplots of the empirical errors.

7 Conclusion, limitations, and future work

This paper initiates a theoretical study of coreset construction for regression problems with panel
data. We formulate the definitions of coresets for several variants of /5-regression, including OLSE,
GLSE, and GLSE. For each variant, we propose efficient algorithms that construct a coreset of size
independent of both NV and 7', based on the FL framework. Our empirical results indicate that our
algorithms can accelerate the evaluation time and perform significantly better than uniform sampling.

For GLSEy, our coreset size contains a factor M/, which may be unbounded and result in a coreset of
size Q(V) in the worst case. In practice, if M is large, each sensitivity s(¢) in Line 5 of Algorithm 2
will be close or even equal to 1. In this case, Ig is drawn from all individuals via uniform sampling
which weakens the performance of Algorithm 2 relative to Uni. Future research should investigate
whether a different assumption than the M -bound can generate a coreset of a smaller size.

There are several directions for future work. Currenly, ¢ and d have a relatively large impact on
coreset size; future work needs to reduce this effect. This will advance the use of coresets for machine
learning, where d is typically large, and ¢ is large in high frequency data. This paper focused on
coreset construction for panel data with /5-regression. The natural next steps would be to construct
coresets with panel data for other regression problems, e.g., ¢1-regression, generalized linear models
and logistic regression, and beyond regression to other supervised machine learning algorithms.



Broader impact

Many organizations have to routinely outsource data processing to external consultants and statis-
ticians. A major practical challenge for organizations in doing this is to minimize issues of data
security in terms of exposure of their data for potential abuse. Further, minimization of such exposure
is considered as necessary due diligence by laws such as GDPR and CCPA which mandates firms to
minimize security breaches that violate the privacy rights of the data owner [45, 34]. Coreset based
approaches to sharing data for processing can be very valuable for firms in addressing data security
and to be in compliance with privacy regulations like GDPR and CCPA.

Obtaining unbiased estimates of the regression relationships from observational data is often very
critical for making correct policy decisions in economics and many social sciences. Panel data is
one critical ingredient for obtaining unbiased estimates. As ML methods are being adopted by many
social scientists [5], ML scholars are becoming sensitive to these issues and our work in using coreset
methods for panel data can have significant impact for these scholars.

We don’t foresee immediate negative impact from using our method. However, one concern might be
that coresets constructed and shared for one purpose or model may be used by the data processor
for other kinds of models, which may lead to erroneous conclusions. There is also the potential for
issues of fairness to arise as different groups may not be adequately represented in the coreset without
incorporating fairness constraints [29]. These issues may need to be explored in future research.
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