
Tensor-based Complementary Product
Recommendation

Negin Entezari*
Department of Computer Science and Engineering

University of California Riverside

Riverside, CA, USA

nente001@ucr.edu

Evangelos E. Papalexakis
Department of Computer Science and Engineering

University of California Riverside

Riverside, CA, USA

epapalex@cs.ucr.edu

Haixun Wang
Instacart

San Francisco, CA, USA

haixun.wang@instacart.com

Sharath Rao
Instacart

San Francisco, CA, USA

sharath@instacart.com

Shishir Kumar Prasad
Instacart

San Francisco, CA, USA

shishir@instacart.com

Abstract—In recent years, online grocery shopping has become
very popular, and platforms such as Instacart, Amazon Fresh,
Shipt, and Walmart Grocery have attracted millions of customers.
To satisfy the customers’ needs, it is vital to provide relevant
personalized recommendations and ease the customers’ shopping
experience. In this paper, we propose a tensor-based method
that utilizes a three-mode tensor to represent product-to-product
relations for users and applies tensor decomposition techniques
to jointly learn user and product embeddings that can be used to
infer within-basket recommendations. Products co-purchased in
a single transaction are modeled in the form of a tensor. Then,
we leverage RESCAL tensor decomposition technique to capture
the latent factors that reveal the inherent user and product
interactions. On the Instacart dataset, our proposed tensor-based
method achieves a recall@10 of 0.192, whereas recall@10 for
triple2vec, which is the state-of-the-art, is 0.149.

I. INTRODUCTION

Customers face millions of products in an online grocery

shopping experience, making the shopping process an ex-

hausting and confusing task for them. Recommender systems

are valuable tools that help the customer by narrowing down

the search space to products that the customer is desired

to see and purchase. Personalized recommender systems are

critical components of online shopping platforms. Personalized

recommendations based on customers’ shopping habits are

beneficial to customers and can lead to sales growth. In online

grocery shopping, customers often follow repetitive shopping

habits. They tend to purchase specific products over and over

and rarely switch to other similar products. Therefore, analyz-

ing customers’ shopping behavior and providing personalized

recommendations is of high importance in an online grocery

shopping platform.

*This work was done while the first author was an intern at Instacart.
Research was supported by the National Science Foundation CDS&E Grant

no. OAC-1808591.

Fig. 1. Example of complementary products recommended according to the
current product in the basket of the customer. Here different types of salsa are
recommended to the customer with a bag of chips in his/her shopping cart.

One of the main types of personalized recommendations

is complementary recommendations. Considering a single

shopping session, products that are often purchased together

in one basket are considered to be complementary to each

other. Complementary products are related to each other in

some way and together fulfill customer needs. Chips and salsa,

burger and burger buns, peanut butter and jelly are examples of

complementary products often purchased together. To improve

customer’s experience during online shopping, it is vital to

recommend relevant products according to what currently

exists in the customer’s basket.

A good complementary recommender system is essential

for various reasons:

• Shopping efficiency: It helps the customer to build the

shopping basket efficiently and reduces exploration time.978-1-6654-3902-2/21/$31.00 ©2021 IEEE

They can quickly find the relevant products from the

recommendation list, instead of having to search for them.

Thus, this can help customers save time. According to

Instacart platform, on average, it takes about 45 minutes

to build a basket. By providing relevant and personalized

recommendations, this time can be reduced and the shop-

ping process will get more convenient for the customer.

• Novel product recommendation: Novel products for a

customer are those that the customer has never purchased

before. Sometimes, customers have no idea about what

could be complementary to the products in their basket.

Such basket-contextual, personalized recommendations

can help customers discover novel products, especially

at the end of the shopping process.

• Business growth: From a business perspective, novel

product purchases can help to increase the basket size

of the customer and generates incremental Gross Mer-

chandise Value (GMV). Moreover, customers who have

a seamless experience are highly likely to come back for

future shopping.

This paper introduces a tensor-based method to address the

complementary recommendation problem in online grocery

shopping. Tensor is used to represent products co-purchased

by customers and tensor decomposition techniques are used

to find product and customer embeddings in low-dimensional

space. In the next step, the embeddings are used to score

products with respect to the current basket of the customer

and products with the highest scores are recommended as com-

plementary to the current basket. Tensor-based recommender

systems have shown great success by considering multiple

aspects of data and incorporating additional information such

as context. Tensor modeling and factorization learns a joint

representation of the items and the context, which has been

shown to result in richer representations that can provide better

estimation for missing ratings/scores [1].

Our contributions are as follows:

1) Novel tensor-based formulation: We introduce a tensor-

based method that represents complementary product

pairs in the form of a three-mode tensor and we use

tensor decomposition techniques to infer product and user

embeddings.

2) Efficient Solution: We consider mini-batch tensors that

allow parallel and sequential tensor decomposition to

handle large-scale datasets.

The rest of this paper is organized as follows. In Section II

we discuss related work. We introduce our proposed method

in Section III and provide experimental results in Section IV.

Finally, in Section V we offer conclusions and discuss future

work.

II. RELATED WORK

A. Frequent Purchase Mining

In the field of complementary product recommendation, one

basic and trivial method is to recommend products according

to their frequency of purchase [2]. In a non-personalized

recommendation task, most frequently purchased products by

all customers are recommended to the user, whereas in a

personalized task, most frequently bought products by the

current user are recommended to him/her. In both cases,

recommended products ignore the current basket content.

B. Collaborative Filtering and Matrix Factorization

Many of the recent work use collaborative filtering and

matrix factorization techniques to model user-product and

product-product relationships. Basket-sensitive Factorization

Machine (BFM) and constrained BFM (CBFM) methods use

a combination of matrix factorization and association rules to

provide complementary recommendations [3]. Collaborative

filtering and matrix factorization technique only consider user-

item interactions and do not take advantage of additional infor-

mation available such as product/user features and contextual

information. However, tensor-based recommender systems are

able to incorporate this additional information and improve

the performance of the recommendation. When there is an

inherent structure between the interactions, then unfolding that

structure may not be efficient in terms of our ability to learn

a good representation with the given amount of data. This

observation has also been shown in non-factorization-based

scenarios where structure is not ignored and helps learn better

recommenders [4]. Powerful recommender systems also con-

sider contextual features and matrix factorization techniques

only consider first-order interaction of users and items and

ignore the additional contextual features that can improve

personalized recommendation. For instance, considering con-

textual information such as time and location lead to stronger

recommendations [5], while matrix factorization methods can-

not be easily adapted to leverage such information.

C. Representation Learning

Another group of studies use popular word representation

learning techniques in NLP, like skip-gram, to generate prod-

uct recommendations. Liang et al. [6] combined matrix factor-

ization and word2vec item embeddings to learn product rec-

ommendations. Item2vec [7] is an extension of word2vec that

infers item-item relations by learning items representations in a

low-dimensional space. Prod2vec [8] is another method in this

category that learns product representations from user purchase

histories. An important characteristic of a complementary

recommender system is to jointly learn product-product and

user-product relations, and the aforementioned methods fail in

this aspect . In a three-mode tensor representation where one

aspect is product-product relationships and another aspect is

user-product interactions, tensor decomposition provides latent

factors that capture the hidden structure of data by jointly

optimizing on both aspects. For instance, in a three-mode

tensor, tensor factorization’s objective is as follows:

minimize
A,B,C

‖X− [[A,B,C]]‖2F (1)

where A, B, and C are latent factor matrices derived from the

tensor factorization and the factor matrices that minimize the

objective function are learned at the same time.

One of the state-of-the-art methods in complementary

product recommendation is the triple2vec method [9]. This

method also utilizes skip-gram embedding learning frame-

work. Triple2vec performs Skip-gram with negative sampling

over (product i, product j, user u) triples. Two products co-

purchased in a basket by a user form a triple. Triples are

used to generate product and user embeddings. Triple2vec

inference time increases with basket size. To address this

problem, RTT2vec (Real-Time Triple2vec) [10] was proposed

by Mantha et al. that transforms inference into a similarity

search problem and improves the inference time by utilizing

approximate nearest neighbor indexing methods such as AN-

NOY, Faiss, and ScaNN [11], [12], [13].

D. Tensor-based Recommenders

Tensor-based methods can be considered as an extension of

matrix factorization recommender system . In matrix factoriza-

tion, we are dealing with 2-dimensional data, while in tensor

factorization techniques, data is represented in higher dimen-

sions (≥ 3). Tensor-based methods are able to analyze multiple

aspects of data simultaneously and jointly. Matrix factorization

models extract user-product interactions, while tensors are able

to capture multi-aspect interactions. Tensors are great tools to

represent multidimensional data and by considering multiple

aspects of data into decomposition, they have been successful

in recommender systems [5], [14], [15], [16]. In this paper,

we leverage the multi-aspect property of tensors to model

product-product interaction within each basket for different

users as a three-mode tensor. Decomposing this tensor allows

us to find latent components that reveal product-product and

user-product interaction to infer personalized complementary

recommendations.

III. PROPOSED METHOD

A. Tensor decomposition to learn product and user embed-

dings

Let P = {p1, p2, ..., pM} be the set of M products and

U = {u1, u2, ..., uN} be the set of N users. Given Bu ⊂ P ,

the set of products in the current basket of user u ∈ U , the goal

of complementary product recommendation is to recommend

top-k products R = {p∗1, p
∗
2, ..., p

∗
k} such that p∗j /∈ Bu. Theses

p∗j products are considered complementary to products in the

current basket Bu.

To model complementary products, we consider product-to-

product relationships for each user . Representing product-to-

product relationships per user allows us to provide personal-

ized complementary recommendations. Two products that are

always purchased together by a user may not be complemen-

tary for another user. For instance, user A mostly purchases

chips and salsa, but user B purchases chips and guacamole

most of the time. If we only consider global product-to-

product relationships, complementary recommendations may

be compatible with the need of the majority of users, but it

does not fulfill the needs of users who do not behave like

others and have their own preferences. For instance, assume

most of the users consume meat, but there are small number

of users who are vegetarian. By only considering the global

product-to-product relations, we ignore the minority group.

However, someone who is vegetarian does not want to see

meat recommendations. Therefore, we require to capture the

behavior of each user separately and recommend products

compatible with their shopping profile. We represent this infor-

mation in the form of a three-mode tensor (three-dimensional

array) X. In this paper, A tensor is denoted by an underlined

bold uppercase. Next, we learn product and user embeddings

using tensor decomposition techniques. The idea behind tensor

factorization is to represent users and products in a lower-

dimensional space. Each element of the three-mode tensor

X represents the number of times two products have been

purchased together by a user:

X (i, j, k) = cijk; pi, pj ∈ P and uk ∈ U (2)

where cijk is the number of times that user uk has purchased

two products pi and pj together.

To capture complementary relationships between products,

we need to track products that are co-purchased in a single

basket. Traditional matrix factorization methods ignore such

information and only consider user-product interactions. To

better elaborate the difference between matrix and tensor

representations, consider the following example. Given 3 users

uA, uB , and uc, assume the following transactions for them:

• User uA performs one transaction:

– Hot dog, hot dog buns, coke, and mustard

• User uB performs the following three transactions sepa-

rately:

– Basket #1: Hot dog and hot dog buns

– Basket #2: Coke

– Basket #3: Mustard

• User uC performs a single transaction:

– Hot dog, hot dog buns, and mustard

Fig. 2 shows matrix vs. tensor representation corresponding

to the aforementioned example. Using the matrix represen-

tation, users uA and uB are exactly similar because they

have purchased the same products. However, using the tensor

representation, users uA is more similar to uC than user uB ,

and this is what we expect as users uA and uB have performed

similar transactions. Classical matrix factorization methods

predict the probability of recommending an item given a user

(P (item|user), whereas for the task of complementary rec-

ommendation, we are interested in computing the probability

of recommending an item given a user and their current basket

(P (item|user, basket)).
Traditional and popular tensor decomposition like CANDE-

COMP/PARAFAC (CP) [17] and Tucker [18] generate three

different latent matrices corresponding to each mode of the

tensor. Here, in our problem, the first two modes of tensor

X are identical and corresponds to products. Therefore, we

only require two of the latent factor matrices. Tucker-2 is a

restricted form of Tucker decomposition in which two of the

factor matrices are equal. Another decomposition technique

that can be applied to our problem is RESCAL [19]. RESCAL

has been used to learn the inherent structure of relational

(a) Matrix representation

(b) Tensor representation

Fig. 2. (a) Matrix representation vs. (b) Tensor representation of transactions data.

data. Here, we are also interested in learning the relationship

between products purchased together and RESCAL tensor de-

composition method is able to capture this type of relationship

between products. Interested readers may refer to [20], [21]

for a detailed comparison of tensor decomposition techniques.

Fig. 3 shows the RESCAL decomposition of user-product

tensor X . RESCAL decomposition can be formulated as

follows:

X ≈ ARAT (3)

Xk = ARkA
T (4)

where A is an M×d latent factor matrix that contains products

embeddings and tensor R which is an d× d×N is the latent

factor corresponding to user embeddings. Xk = X(:, :, k) is

called a frontal slice of the tensor X and represents product co-

purchased by user uk. Likewise, frontal slice Rk = R(:, :, k)
is the user embedding corresponding to user uk.

Fig. 3. RESCAL tensor decomposition

The factor matrices A and R are computed by solving the

regularized minimization problem [19]:

minA,R
k
f(A,Rk) + g(A,Rk) (5)

f(A,Rk) =
1

2

(

∑

k

‖Xk −ARkA
T ‖2F

)

(6)

g(A,Rk) =
1

2

(

‖A‖2F +
∑

k

‖Rk‖
2
F

)

(7)

where f(A,Rk) tries to minimise the distance and g(A,Rk)
is the regularization part to avoid overfitting.

The product embedding matrix A is shared across all users

and by taking the dot product of this matrix and its transpose,

products most frequently bought together will have a higher

score. On the other hand, the user embedding matrix Rk

captures the interaction between products that are mostly

purchased by a specific user uk. Therefore, the matrix Rk

is used to adjusts the product-to-product scores for the user

uk and therefore product pj that maximizes AiRkA
T
j is the

personalized complementary product with respect to product

pi . To elaborate the idea further, consider the element-wise

form of the equation 6:

f(A,Rk) =
1

2





∑

i,j,k

(

Xijk −AiRkA
T
j

)2



 (8)

where Ai = A(i, :) and Aj = A(j, :) are rows of latent factor

matrix A that are embedding vectors of length d corresponding

to products pi and pj , respectively. Assume, user uk currently

has product pi in their basket and our goal is to find a product

that is complementary to pi. To minimize f(A,Rk), the term

AiRkA
T
j should be as close as possible to the value Xijk.

If products pi and pj are frequently purchased together by

user uk, the value of Xijk will be large and therefore the

term AiRkA
T
j should be maximized. Given a product pi,

its complementary product pj will have an embedding which

is closest to the embedding corresponding to pi, i.e. the dot

product of AiA
T
j will have the highest score. Thus, product(s)

that maximize the following equations are considered as top

N complementary products with respect to product pi:

argmax
j∈P\Buk

AiRkA
T
j i ∈ Buk

(9)

B. Optimizing RESCAL Decomposition

The algorithm to compute factor matrices in RESCAL

decomposition performs alternating updates of matrices A and

Rk for all k until
f(A,R

k
)

‖X||2
F

converges to some small threshold

or a maximum number of iterations is exceeded.

For a large-scale dataset with millions of users and thou-

sands of products, we will have a huge sparse tensor, and the

alternating algorithm is very slow and inefficient. RESCAL is

a restricted form of TUCKER decomposition in which one of

the modes is left uncompressed, i.e., one of the latent factors

is the identity matrix. This restricted Tucker decomposition

is known as Tucker-2 [18]. To speed up the decomposition

algorithm, we use Higher-Order Singular Value Decomposi-

tion (HOSVD) algorithm [22]to approximate factor matrices.

HOSVD algorithm does not compute the optimal solution,

however, it is very popular due to its simplicity. HOSVD

algorithm computes the factor matrices by performing singular

value decomposition on the matricized form of the tensor

across each mode (dimension).

Moreover, performing tensor decomposition on such a large

tensor requires lots of memory. To solve this problem, instead

of performing decomposition on a single tensor containing

all users’ data, we split the tensor into smaller batches that

only contain a subset of users and perform decomposition on

each batch separately. This allows us to run the decomposition

on datasets with millions of users. Also, adding new users to

the dataset does not require retraining the model on the entire

dataset and we can only train our model on the batch of recent

users.

C. Optimizing Inference Time

To achieve real-time inference, we need further improve-

ments. With a large number of products in the dataset,

computing product scores is very time-consuming and model

inference time increases with the basket size. To find top-k

products that maximize the score with respect to the current

basket, we need to perform dot product between basket product

embeddings and all other products in the dataset. To speed up

the process, we use hashing technique by using Approximation

Nearest Neighbor (ANN) indexing library, ANNOY1. This

1https://github.com/spotify/ annoy

allows us to perform the approximate dot product efficiently.

The dot product of two vectors is maximized when they are

most similar to each other. We create the ANN index on all

products in the dataset. For each basket, the query vector Qi is

AiRkfor all products pi ∈ Buk
and we would like to find the

products in the dataset which are closest to the query vector.

Therefore, the inference problem can be rewritten as follows:

argmax
j∈ANN(Qi)

QiA
T
j

Qi = AiRk; i ∈ Buk

(10)

Now, instead of searching through all products in the dataset

to find top-K recommendations, we only need to search

through L products where L = |ANN(Qi)| << M .

IV. EXPERIMENTS

A. Dataset and Experiment Setup

In our experiments we used Instacart public dataset pub-

lished for Kaggle competition in 20172. Th statistics of the

Instacart dataset is reported in Table I.

To split transaction data into train/validation/test sets, we

follow the setting mentioned in [9]: Transactions are sorted

chronologically. For each user, the most recent transaction

is used for testing, the second-to-last transaction is used for

validation and all other transactions are used for training. For

users with only one transaction, it will be used for training,

and for users with two transactions, the first transaction is used

for training and the last one is used for testing.

B. Evaluation

1) Metrics: We evaluate the performance of models with

the following metrics: Recall@K, NDCG@K, and Preci-

sion@K. Recall@K measures the fraction of relevant items

correctly recommended in the top-K items. NDCG@K (Nor-

malized Discounted Cumulative Gain) is a ranking metric that

uses position in the recommendation list to measure gain.

Metrics are reported at K=10.
2) Results: To evaluate the performance of our method on

the test dataset, we randomly select 80% of the products in

the basket as input, and the rest of the products are used as

reference for evaluation.

We compare our method with two baselines: popularity,

and triple2vec [9]. Popularity method always recommends the

most frequently purchased products by all users. For tensor-

based and triple2vec methods, we report results for two dif-

ferent embedding dimensions 32 and 128 to better understand

2https://www.kaggle.com/c/instacart-market-basket-analysis/data

TABLE I
INSTACART DATASET STATISTICS

No. of transactions 3,345,786
No. of users 206,209
No. of products 49,684
No. of products purchased at least 10 times 42,987
Average basket size 10.10

TABLE II
PEFORMANCE OF THE PROPOSED MODEL VS. POPULARITY AND

TRIPLE2VEC BASELINE METHODS.

Method Recall@10 NDCG@10 Precision@10

Popularity 0.104 0.081 0.029
triple2vec (d = 32) 0.103 0.162 0.022
tensor (d = 32) 0.145 0.172 0.037
triple2vec (d =128) 0.149 0.178 0.030
tensor (d=128) 0.192 0.193 0.047

the impact of embedding dimension on the recommendation

performance. Table II shows the results. Popularity does not

consider the context of the current basket and always recom-

mends the most frequent products which might be irrelevant

with respect to the current basket. The popularity method

memorizes frequent purchases and lacks generalization power

since it is unable to capture product semantics. However,

customers are often loyal to certain products and brands

and repeatedly purchase the same products and are reluctant

to switch to some other products. Therefore, the popularity

method achieves an acceptable performance by memorizing

the shopping history of users. Our proposed tensor-based

method outperforms popularity and triple2vec in all cases. A

larger value of the embedding dimension (d=128 vs. d=32)

helps to better estimate the original tensor and thus improves

the performance of the model.

We also evaluate the proposed method and triple2vec for

novel product recommendations. Novel purchases are products

that customer is purchasing for the first time. Introducing

novel products to customers and encouraging them to pur-

chase more products leads to larger basket size and higher

GMV for the business. In the novel product recommendation

experiment, we are interested to see how many of the top

K recommended items are novel and the customer has never

purchased them before. Sometimes customers are not aware of

possible complementary products and novel recommendations

give them the chance to try new complementary products that

are frequently purchased by other customers. For the test data

in this experiment, we only considered transactions including

at least 3 novel products. These 3 novel products are used

for inference and the rest of the basket is used as input of

the recommender system. The result for the novel comple-

mentary recommendation is shown in Table III. Both tensor-

based method and triple2vec perform poorly in recommending

novel products. They mostly recommend products that have

already been purchased by the user. For future work, we

aim to utilized coupled matrix-tensor factorization to leverage

product features and improve the performance of novel product

recommendations.

3) Handling Cold-Start Users: For new customers, we do

not have a shopping history; therefore, it is not possible to

have a personalized recommendation. In this case, we can

either have a non-personalized recommendation and score

products just based on the product embedding, or consider

the average of all users’ embeddings as the user embedding

TABLE III
PERFORMANCE OF THE PROPOSED MODEL VS. TRIPLE2VEC ON NOVEL

COMPLEMENTARY PRODUCT RECOMMENDATION.

Method Recall@10 NDCG@10 Precision@10

triple2vec-novel (d = 32) 0.012 0.0 0.005
triple2vec-novel (d = 128) 0.015 0.0 0.007
tensor-novel (d = 32) 0.010 0.0 0.005
tensor-novel (d = 128) 0.013 0.0 0.006

for the new customer. In Table IV we report the performance

of the proposed model for the two mentioned cases. Here we

only report the result for the embedding dimension 128 that

achieves a higher performance.

The performance of personalized and non-personalized ap-

proaches to handle new users are about the same and both

have an acceptable performance to deal with cold-start users.
4) Evaluating inference time: Here, We compare the in-

ference time of the exact approach with the approximate

method using ANNOY library. Table V compares these two

approaches for different basket sizes. The exact inference

method which computes dot products between all product

embedding, gets very slow as the basket size increases and

makes it inapplicable.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a tensor-based model to address

the complementary product recommendation task in online

grocery shopping. A three-mode tensor was used to model

product-product co-purchases by users. Next, RESCAL tensor

decomposition technique was used to learn latent factors of

the tensor that corresponding to product and user embeddings.

These embeddings were utilized to infer complementary prod-

ucts given a current basket of a user. Tensor-based method

outperforms popularity baseline and state-of-the-art triple2vec

method. Tensor embedding performs poorly to predict novel

products. In future, to improve the performance of the tensor

method, we can consider product features as a side information

and perform Coupled Matrix-Tensor Factorization (CMTF).

CMTF will generate an embedding matrix corresponding to

the product features which allows us to find similar products

and use this information to increase the score for novel

products.

To improve training process to handle large scale datasets,

we performed decomposition on small tensors including a sub-

set of users and their transactions. Decomposition mini-batches

allows to train the model both in parallel and sequentially. If

enough memory is available, one can take advantage and run

the decomposition in parallel. However, in limited memory

systems, we can perfectly run the model sequential but in

a longer time. Moreover, we leveraged approximate nearest

neighbor indexing library, ANNOY, to speed up the inference

process and allow real-time inference.

ACKNOWLEDGMENT

Research was supported by the National Science Foundation

CDS&E Grant no. OAC-1808591. Any opinions, findings, and

TABLE IV
PERFORMANCE OF TENSOR-BASED METHOD IN HANDLING COLD-START USERS.

Method Recall@10 NDCG@10 Precision@10

tensor (d = 128)-average user 0.122 0.271 0.033
tensor (d = 128)-non-personalized 0.120 0.266 0.032

TABLE V
EXACT INFERENCE VS. APPROXIMATE INFERENCE USING ANNOY.

Inference Time (sec)

Basket size Exact method ANNOY

10 1.089 0.013
20 2.165 0.027
30 3.307 0.053
40 4.344 0.052
50 5.345 0.083
60 6.454 0.065
70 7.557 0.077
80 8.527 0.093
90 9.725 0.086
100 11.387 0.088
110 12.513 0.138
120 13.069 0.164

conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views

of the funding parties.

REFERENCES

[1] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell,
“Temporal collaborative filtering with bayesian probabilistic tensor fac-
torization,” in Proceedings of the 2010 SIAM international conference

on data mining. SIAM, 2010, pp. 211–222.
[2] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern mining: current

status and future directions,” Data mining and knowledge discovery,
vol. 15, no. 1, pp. 55–86, 2007.

[3] D. T. Le, H. W. Lauw, and Y. Fang, “Basket-sensitive personalized item
recommendation.” IJCAI, 2017.

[4] A. Beutel, P. Covington, S. Jain, C. Xu, J. Li, V. Gatto, and E. H.
Chi, “Latent cross: Making use of context in recurrent recommender
systems,” in Proceedings of the Eleventh ACM International Conference

on Web Search and Data Mining, 2018, pp. 46–54.
[5] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, “Multiverse

recommendation: n-dimensional tensor factorization for context-aware
collaborative filtering,” in Proceedings of the fourth ACM conference on

Recommender systems, 2010, pp. 79–86.
[6] D. Liang, J. Altosaar, L. Charlin, and D. M. Blei, “Factorization meets

the item embedding: Regularizing matrix factorization with item co-
occurrence,” in Proceedings of the 10th ACM conference on recom-

mender systems, 2016, pp. 59–66.
[7] O. Barkan and N. Koenigstein, “Item2vec: neural item embedding for

collaborative filtering,” in 2016 IEEE 26th International Workshop on

Machine Learning for Signal Processing (MLSP). IEEE, 2016, pp. 1–6.

[8] M. Grbovic, V. Radosavljevic, N. Djuric, N. Bhamidipati, J. Savla,
V. Bhagwan, and D. Sharp, “E-commerce in your inbox: Product
recommendations at scale,” in Proceedings of the 21th ACM SIGKDD

international conference on knowledge discovery and data mining, 2015,
pp. 1809–1818.

[9] M. Wan, D. Wang, J. Liu, P. Bennett, and J. McAuley, “Representing and
recommending shopping baskets with complementarity, compatibility
and loyalty,” in Proceedings of the 27th ACM International Conference

on Information and Knowledge Management, 2018, pp. 1133–1142.
[10] A. Mantha, Y. Arora, S. Gupta, P. Kanumala, Z. Liu, S. Guo, and

K. Achan, “A large-scale deep architecture for personalized grocery
basket recommendations,” in ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 3807–3811.

[11] M. Aumüller, E. Bernhardsson, and A. Faithfull, “Ann-benchmarks:
A benchmarking tool for approximate nearest neighbor algorithms,”
in International Conference on Similarity Search and Applications.
Springer, 2017, pp. 34–49.

[12] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” IEEE Transactions on Big Data, 2019.

[13] R. Guo, P. Sun, E. Lindgren, Q. Geng, D. Simcha, F. Chern, and
S. Kumar, “Accelerating large-scale inference with anisotropic vec-
tor quantization,” in International Conference on Machine Learning.
PMLR, 2020, pp. 3887–3896.

[14] H. Ge, J. Caverlee, and H. Lu, “Taper: A contextual tensor-based
approach for personalized expert recommendation,” in Proceedings of

the 10th ACM Conference on Recommender Systems, 2016, pp. 261–
268.

[15] H. Chen and J. Li, “Adversarial tensor factorization for context-aware
recommendation,” in Proceedings of the 13th ACM Conference on

Recommender Systems, 2019, pp. 363–367.
[16] Z. Zhu, X. Hu, and J. Caverlee, “Fairness-aware tensor-based recom-

mendation,” in Proceedings of the 27th ACM International Conference

on Information and Knowledge Management, 2018, pp. 1153–1162.
[17] R. Harshman, “Foundations of the parafac procedure: Models and

conditions for an” explanatory” multimodal factor analysis,” 1970.
[18] L. Tucker, “Some mathematical notes on three-mode factor analysis,”

Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.
[19] M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model for collective

learning on multi-relational data,” in Icml, 2011.
[20] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Tensors

for data mining and data fusion: Models, applications, and scalable
algorithms,” ACM Transactions on Intelligent Systems and Technology

(TIST), vol. 8, no. 2, p. 16, 2017.
[21] T. Kolda and B. Bader, “Tensor decompositions and applications,” SIAM

review, vol. 51, no. 3, 2009.
[22] H. Huang, C. Ding, D. Luo, and T. Li, “Simultaneous tensor subspace

selection and clustering: the equivalence of high order svd and k-means
clustering,” in Proceedings of the 14th ACM SIGKDD international

conference on Knowledge Discovery and Data mining. ACM, 2008,
pp. 327–335.

	Introduction
	Related Work
	Frequent Purchase Mining
	Collaborative Filtering and Matrix Factorization
	Representation Learning
	Tensor-based Recommenders

	Proposed Method
	Tensor decomposition to learn product and user embeddings
	Optimizing RESCAL Decomposition
	Optimizing Inference Time

	Experiments
	Dataset and Experiment Setup
	Evaluation
	Metrics
	Results
	Handling Cold-Start Users
	Evaluating inference time

	Conclusions and Future Work
	References

