Tensor-based Complementary Product
Recommendation

Negin Entezari*

Department of Computer Science and Engineering
University of California Riverside
Riverside, CA, USA
nente001 @ucr.edu

Sharath Rao
Instacart

Haixun Wang
Instacart
San Francisco, CA, USA
haixun.wang @instacart.com

Abstract—In recent years, online grocery shopping has become
very popular, and platforms such as Instacart, Amazon Fresh,
Shipt, and Walmart Grocery have attracted millions of customers.
To satisfy the customers’ needs, it is vital to provide relevant
personalized recommendations and ease the customers’ shopping
experience. In this paper, we propose a tensor-based method
that utilizes a three-mode tensor to represent product-to-product
relations for users and applies tensor decomposition techniques
to jointly learn user and product embeddings that can be used to
infer within-basket recommendations. Products co-purchased in
a single transaction are modeled in the form of a tensor. Then,
we leverage RESCAL tensor decomposition technique to capture
the latent factors that reveal the inherent user and product
interactions. On the Instacart dataset, our proposed tensor-based
method achieves a recall@10 of 0.192, whereas recall@10 for
triple2vec, which is the state-of-the-art, is 0.149.

I. INTRODUCTION

Customers face millions of products in an online grocery
shopping experience, making the shopping process an ex-
hausting and confusing task for them. Recommender systems
are valuable tools that help the customer by narrowing down
the search space to products that the customer is desired
to see and purchase. Personalized recommender systems are
critical components of online shopping platforms. Personalized
recommendations based on customers’ shopping habits are
beneficial to customers and can lead to sales growth. In online
grocery shopping, customers often follow repetitive shopping
habits. They tend to purchase specific products over and over
and rarely switch to other similar products. Therefore, analyz-
ing customers’ shopping behavior and providing personalized
recommendations is of high importance in an online grocery
shopping platform.

*This work was done while the first author was an intern at Instacart.
Research was supported by the National Science Foundation CDS&E Grant
no. OAC-1808591.

978-1-6654-3902-2/21/$31.00 ©2021 IEEE

San Francisco, CA, USA
sharath @instacart.com

Evangelos E. Papalexakis
Department of Computer Science and Engineering
University of California Riverside
Riverside, CA, USA
epapalex @cs.ucr.edu

Shishir Kumar Prasad
Instacart
San Francisco, CA, USA
shishir@instacart.com

< Personal Cart

My Carts
Doritos Party Size Cool
Ranch Tortilla Chips 1 $3.98
[# Instructions [l Remove
Frequently bought with
Doritos Party Size Cool Ranch Tortilla Chips
() = W =
|eroezd
RAS
R po4
) f’._.:_.l'.z
e
e
$3.28 $1.84 $1.72
Tostitos Chunky Herdez Mild Salsa Ragu Che:

Creations
Cheddar ¢
160z

Verde
160z

Salsa Medium
1550z

Fig. 1. Example of complementary products recommended according to the
current product in the basket of the customer. Here different types of salsa are
recommended to the customer with a bag of chips in his/her shopping cart.

One of the main types of personalized recommendations
is complementary recommendations. Considering a single
shopping session, products that are often purchased together
in one basket are considered to be complementary to each
other. Complementary products are related to each other in
some way and together fulfill customer needs. Chips and salsa,
burger and burger buns, peanut butter and jelly are examples of
complementary products often purchased together. To improve
customer’s experience during online shopping, it is vital to
recommend relevant products according to what currently
exists in the customer’s basket.

A good complementary recommender system is essential
for various reasons:

« Shopping efficiency: It helps the customer to build the

shopping basket efficiently and reduces exploration time.

They can quickly find the relevant products from the
recommendation list, instead of having to search for them.
Thus, this can help customers save time. According to
Instacart platform, on average, it takes about 45 minutes
to build a basket. By providing relevant and personalized
recommendations, this time can be reduced and the shop-
ping process will get more convenient for the customer.

« Novel product recommendation: Novel products for a
customer are those that the customer has never purchased
before. Sometimes, customers have no idea about what
could be complementary to the products in their basket.
Such basket-contextual, personalized recommendations
can help customers discover novel products, especially
at the end of the shopping process.

« Business growth: From a business perspective, novel
product purchases can help to increase the basket size
of the customer and generates incremental Gross Mer-
chandise Value (GMV). Moreover, customers who have
a seamless experience are highly likely to come back for
future shopping.

This paper introduces a tensor-based method to address the
complementary recommendation problem in online grocery
shopping. Tensor is used to represent products co-purchased
by customers and tensor decomposition techniques are used
to find product and customer embeddings in low-dimensional
space. In the next step, the embeddings are used to score
products with respect to the current basket of the customer
and products with the highest scores are recommended as com-
plementary to the current basket. Tensor-based recommender
systems have shown great success by considering multiple
aspects of data and incorporating additional information such
as context. Tensor modeling and factorization learns a joint
representation of the items and the context, which has been
shown to result in richer representations that can provide better
estimation for missing ratings/scores [1].

Our contributions are as follows:

1) Novel tensor-based formulation: We introduce a tensor-
based method that represents complementary product
pairs in the form of a three-mode tensor and we use
tensor decomposition techniques to infer product and user
embeddings.

2) Efficient Solution: We consider mini-batch tensors that
allow parallel and sequential tensor decomposition to
handle large-scale datasets.

The rest of this paper is organized as follows. In Section II
we discuss related work. We introduce our proposed method
in Section III and provide experimental results in Section IV.
Finally, in Section V we offer conclusions and discuss future
work.

II. RELATED WORK

A. Frequent Purchase Mining

In the field of complementary product recommendation, one
basic and trivial method is to recommend products according
to their frequency of purchase [2]. In a non-personalized
recommendation task, most frequently purchased products by

all customers are recommended to the user, whereas in a
personalized task, most frequently bought products by the
current user are recommended to him/her. In both cases,
recommended products ignore the current basket content.

B. Collaborative Filtering and Matrix Factorization

Many of the recent work use collaborative filtering and
matrix factorization techniques to model user-product and
product-product relationships. Basket-sensitive Factorization
Machine (BFM) and constrained BFM (CBFM) methods use
a combination of matrix factorization and association rules to
provide complementary recommendations [3]. Collaborative
filtering and matrix factorization technique only consider user-
item interactions and do not take advantage of additional infor-
mation available such as product/user features and contextual
information. However, tensor-based recommender systems are
able to incorporate this additional information and improve
the performance of the recommendation. When there is an
inherent structure between the interactions, then unfolding that
structure may not be efficient in terms of our ability to learn
a good representation with the given amount of data. This
observation has also been shown in non-factorization-based
scenarios where structure is not ignored and helps learn better
recommenders [4]. Powerful recommender systems also con-
sider contextual features and matrix factorization techniques
only consider first-order interaction of users and items and
ignore the additional contextual features that can improve
personalized recommendation. For instance, considering con-
textual information such as time and location lead to stronger
recommendations [5], while matrix factorization methods can-
not be easily adapted to leverage such information.

C. Representation Learning

Another group of studies use popular word representation
learning techniques in NLP, like skip-gram, to generate prod-
uct recommendations. Liang et al. [6] combined matrix factor-
ization and word2vec item embeddings to learn product rec-
ommendations. Item2vec [7] is an extension of word2vec that
infers item-item relations by learning items representations in a
low-dimensional space. Prod2vec [8] is another method in this
category that learns product representations from user purchase
histories. An important characteristic of a complementary
recommender system is to jointly learn product-product and
user-product relations, and the aforementioned methods fail in
this aspect . In a three-mode tensor representation where one
aspect is product-product relationships and another aspect is
user-product interactions, tensor decomposition provides latent
factors that capture the hidden structure of data by jointly
optimizing on both aspects. For instance, in a three-mode
tensor, tensor factorization’s objective is as follows:

inimize|| X — [A, B 2 1
minimize||X —[A, B, C]|F (D
where A, B, and C are latent factor matrices derived from the

tensor factorization and the factor matrices that minimize the
objective function are learned at the same time.

One of the state-of-the-art methods in complementary
product recommendation is the triple2vec method [9]. This
method also utilizes skip-gram embedding learning frame-
work. Triple2vec performs Skip-gram with negative sampling
over (product i, product j, user u) triples. Two products co-
purchased in a basket by a user form a triple. Triples are
used to generate product and user embeddings. Triple2vec
inference time increases with basket size. To address this
problem, RTT2vec (Real-Time Triple2vec) [10] was proposed
by Mantha et al. that transforms inference into a similarity
search problem and improves the inference time by utilizing
approximate nearest neighbor indexing methods such as AN-
NOY, Faiss, and ScaNN [11], [12], [13].

D. Tensor-based Recommenders

Tensor-based methods can be considered as an extension of
matrix factorization recommender system . In matrix factoriza-
tion, we are dealing with 2-dimensional data, while in tensor
factorization techniques, data is represented in higher dimen-
sions (> 3). Tensor-based methods are able to analyze multiple
aspects of data simultaneously and jointly. Matrix factorization
models extract user-product interactions, while tensors are able
to capture multi-aspect interactions. Tensors are great tools to
represent multidimensional data and by considering multiple
aspects of data into decomposition, they have been successful
in recommender systems [5], [14], [15], [16]. In this paper,
we leverage the multi-aspect property of tensors to model
product-product interaction within each basket for different
users as a three-mode tensor. Decomposing this tensor allows
us to find latent components that reveal product-product and
user-product interaction to infer personalized complementary
recommendations.

III. PROPOSED METHOD

A. Tensor decomposition to learn product and user embed-
dings

Let P = {pi1,p2,...,pnm} be the set of M products and
U = {uy,us,...,un} be the set of N users. Given B, C P,
the set of products in the current basket of user v € U, the goal
of complementary product recommendation is to recommend
top-k products R = {p7,p5, ..., pj.} such that p; ¢ B,. Theses
p; products are considered complementary to products in the
current basket B,,.

To model complementary products, we consider product-to-
product relationships for each user . Representing product-to-
product relationships per user allows us to provide personal-
ized complementary recommendations. Two products that are
always purchased together by a user may not be complemen-
tary for another user. For instance, user A mostly purchases
chips and salsa, but user B purchases chips and guacamole
most of the time. If we only consider global product-to-
product relationships, complementary recommendations may
be compatible with the need of the majority of users, but it
does not fulfill the needs of users who do not behave like
others and have their own preferences. For instance, assume
most of the users consume meat, but there are small number

of users who are vegetarian. By only considering the global
product-to-product relations, we ignore the minority group.
However, someone who is vegetarian does not want to see
meat recommendations. Therefore, we require to capture the
behavior of each user separately and recommend products
compatible with their shopping profile. We represent this infor-
mation in the form of a three-mode tensor (three-dimensional
array) X. In this paper, A tensor is denoted by an underlined
bold uppercase. Next, we learn product and user embeddings
using tensor decomposition techniques. The idea behind tensor
factorization is to represent users and products in a lower-
dimensional space. Each element of the three-mode tensor
X represents the number of times two products have been
purchased together by a user:

X(iajv k) = Cijk; Di, Pj € P and ug € U (2)

where ¢;;1; is the number of times that user uj, has purchased
two products p; and p; together.

To capture complementary relationships between products,
we need to track products that are co-purchased in a single
basket. Traditional matrix factorization methods ignore such
information and only consider user-product interactions. To
better elaborate the difference between matrix and tensor
representations, consider the following example. Given 3 users
u4, up, and u., assume the following transactions for them:

o User uy performs one transaction:

— Hot dog, hot dog buns, coke, and mustard
o User up performs the following three transactions sepa-
rately:
— Basket #1: Hot dog and hot dog buns
— Basket #2: Coke
— Basket #3: Mustard
o User uc performs a single transaction:
— Hot dog, hot dog buns, and mustard

Fig. 2 shows matrix vs. tensor representation corresponding
to the aforementioned example. Using the matrix represen-
tation, users u4 and up are exactly similar because they
have purchased the same products. However, using the tensor
representation, users u4 is more similar to uc than user up,
and this is what we expect as users u4 and up have performed
similar transactions. Classical matrix factorization methods
predict the probability of recommending an item given a user
(P(item|user), whereas for the task of complementary rec-
ommendation, we are interested in computing the probability
of recommending an item given a user and their current basket
(P(item|user, basket)).

Traditional and popular tensor decomposition like CANDE-
COMP/PARAFAC (CP) [17] and Tucker [18] generate three
different latent matrices corresponding to each mode of the
tensor. Here, in our problem, the first two modes of tensor
X are identical and corresponds to products. Therefore, we
only require two of the latent factor matrices. Tucker-2 is a
restricted form of Tucker decomposition in which two of the
factor matrices are equal. Another decomposition technique
that can be applied to our problem is RESCAL [19]. RESCAL
has been used to learn the inherent structure of relational

Gt

u | 1 1 1] 1
u, | 1| 1| 1
u | 1 1 1 1

(a) Matrix representation

il

N< f & N< f @ ~< f &
~ 1] 1)1 ~ 1 S 1 1
< | ! L | 2 < | ~- 1 1
1|1 g
& 1111 g = 1] 1

Useruy (XG,:,1)) Userug (X(G,:,2)) W useruc (XC,:,3))

(b) Tensor representation

Fig. 2. (a) Matrix representation vs. (b) Tensor representation of transactions data.

data. Here, we are also interested in learning the relationship
between products purchased together and RESCAL tensor de-
composition method is able to capture this type of relationship
between products. Interested readers may refer to [20], [21]
for a detailed comparison of tensor decomposition techniques.

Fig. 3 shows the RESCAL decomposition of user-product
tensor X. RESCAL decomposition can be formulated as
follows:

X ~ ARAT 3)

X, = AR, AT “4)
where A is an M x d latent factor matrix that contains products
embeddings and tensor R which is an d x d x N is the latent
factor corresponding to user embeddings. X, = X(:,:, k) is
called a frontal slice of the tensor X and represents product co-
purchased by user uy. Likewise, frontal slice R, = R(:,:, k)
is the user embedding corresponding to user ug.

o

AT

B

dxdxN

Mxd

Fig. 3. RESCAL tensor decomposition

The factor matrices A and R are computed by solving the
regularized minimization problem [19]:

minar, f(A,Ry) + g(A,Ry) &)
1
fARy) = b} (Z Xy — ARkAT”%) (6)
k
1
9(ARy) =5 (IIAII% +y IIRkII%> ™
k

where f(A,R,;) tries to minimise the distance and g(A, Ry;,)
is the regularization part to avoid overfitting.

The product embedding matrix A is shared across all users
and by taking the dot product of this matrix and its transpose,
products most frequently bought together will have a higher
score. On the other hand, the user embedding matrix R,
captures the interaction between products that are mostly
purchased by a specific user ug. Therefore, the matrix R,
is used to adjusts the product-to-product scores for the user
uy, and therefore product p; that maximizes AinAf is the
personalized complementary product with respect to product
p; . To elaborate the idea further, consider the element-wise
form of the equation 6:

1 2

FAAR) =5 | D (X — AiRy A7) ®)
i3,k

where A; = A(4,:) and A; = A(j,:) are rows of latent factor

matrix A that are embedding vectors of length d corresponding

to products p; and p;, respectively. Assume, user uy, currently

has product p; in their basket and our goal is to find a product
that is complementary to p;. To minimize f(A, Ry), the term
AiEkAf should be as close as possible to the value X, ;.
If products p; and p; are frequently purchased together by
user uy, the value of X, will be large and therefore the
term AiEkA;‘-F should be maximized. Given a product p;,
its complementary product p; will have an embedding which
is closest to the embedding corresponding to p;, i.e. the dot
product of AiA;‘-F will have the highest score. Thus, product(s)
that maximize the following equations are considered as top
N complementary products with respect to product p;:

arg maxA; R, AJT
JEP\Buy,

i € By, 9)

B. Optimizing RESCAL Decomposition

The algorithm to compute factor matrices in RESCAL
decomposition performs alternating updates of matrices A and
R, for all k until % converges to some small threshold
or a maximum number of iterations is exceeded.

For a large-scale dataset with millions of users and thou-
sands of products, we will have a huge sparse tensor, and the
alternating algorithm is very slow and inefficient. RESCAL is
a restricted form of TUCKER decomposition in which one of
the modes is left uncompressed, i.e., one of the latent factors
is the identity matrix. This restricted Tucker decomposition
is known as Tucker-2 [18]. To speed up the decomposition
algorithm, we use Higher-Order Singular Value Decomposi-
tion (HOSVD) algorithm [22]to approximate factor matrices.
HOSVD algorithm does not compute the optimal solution,
however, it is very popular due to its simplicity. HOSVD
algorithm computes the factor matrices by performing singular
value decomposition on the matricized form of the tensor
across each mode (dimension).

Moreover, performing tensor decomposition on such a large
tensor requires lots of memory. To solve this problem, instead
of performing decomposition on a single tensor containing
all users’ data, we split the tensor into smaller batches that
only contain a subset of users and perform decomposition on
each batch separately. This allows us to run the decomposition
on datasets with millions of users. Also, adding new users to
the dataset does not require retraining the model on the entire
dataset and we can only train our model on the batch of recent
users.

C. Optimizing Inference Time

To achieve real-time inference, we need further improve-
ments. With a large number of products in the dataset,
computing product scores is very time-consuming and model
inference time increases with the basket size. To find top-k
products that maximize the score with respect to the current
basket, we need to perform dot product between basket product
embeddings and all other products in the dataset. To speed up
the process, we use hashing technique by using Approximation
Nearest Neighbor (ANN) indexing library, ANNOY'. This

Thttps://github.com/spotify/ annoy

allows us to perform the approximate dot product efficiently.
The dot product of two vectors is maximized when they are
most similar to each other. We create the ANN index on all
products in the dataset. For each basket, the query vector @); is
A;R for all products p; € B,, and we would like to find the
products in the dataset which are closest to the query vector.
Therefore, the inference problem can be rewritten as follows:

arg max QiA;‘«F
JEANN(Q:) (10)
Qi = AiRy; i€ By,

Now, instead of searching through all products in the dataset
to find top-K recommendations, we only need to search
through L products where L = [ANN(Q;)| << M.

IV. EXPERIMENTS
A. Dataset and Experiment Setup

In our experiments we used Instacart public dataset pub-
lished for Kaggle competition in 20172. Th statistics of the
Instacart dataset is reported in Table L.

To split transaction data into train/validation/test sets, we
follow the setting mentioned in [9]: Transactions are sorted
chronologically. For each user, the most recent transaction
is used for testing, the second-to-last transaction is used for
validation and all other transactions are used for training. For
users with only one transaction, it will be used for training,
and for users with two transactions, the first transaction is used
for training and the last one is used for testing.

B. Evaluation

1) Metrics: We evaluate the performance of models with
the following metrics: Recall@K, NDCG@K, and Preci-
sion@K. Recall@K measures the fraction of relevant items
correctly recommended in the top-K items. NDCG@K (Nor-
malized Discounted Cumulative Gain) is a ranking metric that
uses position in the recommendation list to measure gain.
Metrics are reported at K=10.

2) Results: To evaluate the performance of our method on
the test dataset, we randomly select 80% of the products in
the basket as input, and the rest of the products are used as
reference for evaluation.

We compare our method with two baselines: popularity,
and triple2vec [9]. Popularity method always recommends the
most frequently purchased products by all users. For tensor-
based and triple2vec methods, we report results for two dif-
ferent embedding dimensions 32 and 128 to better understand

Zhttps://www.kaggle.com/c/instacart-market-basket-analysis/data

TABLE 1
INSTACART DATASET STATISTICS
No. of transactions 3,345,786
No. of users 206,209
No. of products 49,684
No. of products purchased at least 10 times 42,987
Average basket size 10.10

TABLE II
PEFORMANCE OF THE PROPOSED MODEL VS. POPULARITY AND
TRIPLE2VEC BASELINE METHODS.

TABLE III
PERFORMANCE OF THE PROPOSED MODEL VS. TRIPLE2VEC ON NOVEL
COMPLEMENTARY PRODUCT RECOMMENDATION.

Method Recall@10 NDCG@10 Precision@10 Method Recall@10 NDCG@10 Precision@10
Popularity 0.104 0.081 0.029 triple2vec-novel (d = 32) 0.012 0.0 0.005
triple2vec (d = 32) 0.103 0.162 0.022 triple2vec-novel (d = 128) 0.015 0.0 0.007
tensor (d = 32) 0.145 0.172 0.037 tensor-novel (d = 32) 0.010 0.0 0.005
triple2vec (d =128) 0.149 0.178 0.030 tensor-novel (d = 128) 0.013 0.0 0.006
tensor (d=128) 0.192 0.193 0.047

the impact of embedding dimension on the recommendation
performance. Table II shows the results. Popularity does not
consider the context of the current basket and always recom-
mends the most frequent products which might be irrelevant
with respect to the current basket. The popularity method
memorizes frequent purchases and lacks generalization power
since it is unable to capture product semantics. However,
customers are often loyal to certain products and brands
and repeatedly purchase the same products and are reluctant
to switch to some other products. Therefore, the popularity
method achieves an acceptable performance by memorizing
the shopping history of users. Our proposed tensor-based
method outperforms popularity and triple2vec in all cases. A
larger value of the embedding dimension (d=128 vs. d=32)
helps to better estimate the original tensor and thus improves
the performance of the model.

We also evaluate the proposed method and triple2vec for
novel product recommendations. Novel purchases are products
that customer is purchasing for the first time. Introducing
novel products to customers and encouraging them to pur-
chase more products leads to larger basket size and higher
GMV for the business. In the novel product recommendation
experiment, we are interested to see how many of the top
K recommended items are novel and the customer has never
purchased them before. Sometimes customers are not aware of
possible complementary products and novel recommendations
give them the chance to try new complementary products that
are frequently purchased by other customers. For the test data
in this experiment, we only considered transactions including
at least 3 novel products. These 3 novel products are used
for inference and the rest of the basket is used as input of
the recommender system. The result for the novel comple-
mentary recommendation is shown in Table III. Both tensor-
based method and triple2vec perform poorly in recommending
novel products. They mostly recommend products that have
already been purchased by the user. For future work, we
aim to utilized coupled matrix-tensor factorization to leverage
product features and improve the performance of novel product
recommendations.

3) Handling Cold-Start Users: For new customers, we do
not have a shopping history; therefore, it is not possible to
have a personalized recommendation. In this case, we can
either have a non-personalized recommendation and score
products just based on the product embedding, or consider
the average of all users’ embeddings as the user embedding

for the new customer. In Table IV we report the performance
of the proposed model for the two mentioned cases. Here we
only report the result for the embedding dimension 128 that
achieves a higher performance.

The performance of personalized and non-personalized ap-
proaches to handle new users are about the same and both
have an acceptable performance to deal with cold-start users.

4) Evaluating inference time: Here, We compare the in-
ference time of the exact approach with the approximate
method using ANNOY library. Table V compares these two
approaches for different basket sizes. The exact inference
method which computes dot products between all product
embedding, gets very slow as the basket size increases and
makes it inapplicable.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a tensor-based model to address
the complementary product recommendation task in online
grocery shopping. A three-mode tensor was used to model
product-product co-purchases by users. Next, RESCAL tensor
decomposition technique was used to learn latent factors of
the tensor that corresponding to product and user embeddings.
These embeddings were utilized to infer complementary prod-
ucts given a current basket of a user. Tensor-based method
outperforms popularity baseline and state-of-the-art triple2vec
method. Tensor embedding performs poorly to predict novel
products. In future, to improve the performance of the tensor
method, we can consider product features as a side information
and perform Coupled Matrix-Tensor Factorization (CMTF).
CMTF will generate an embedding matrix corresponding to
the product features which allows us to find similar products
and use this information to increase the score for novel
products.

To improve training process to handle large scale datasets,
we performed decomposition on small tensors including a sub-
set of users and their transactions. Decomposition mini-batches
allows to train the model both in parallel and sequentially. If
enough memory is available, one can take advantage and run
the decomposition in parallel. However, in limited memory
systems, we can perfectly run the model sequential but in
a longer time. Moreover, we leveraged approximate nearest
neighbor indexing library, ANNOY, to speed up the inference
process and allow real-time inference.

ACKNOWLEDGMENT

Research was supported by the National Science Foundation
CDS&E Grant no. OAC-1808591. Any opinions, findings, and

TABLE IV
PERFORMANCE OF TENSOR-BASED METHOD IN HANDLING COLD-START USERS.

Method Recall@10 NDCG@10 Precision@10
tensor (d = 128)-average user 0.122 0.271 0.033
tensor (d = 128)-non-personalized 0.120 0.266 0.032

TABLE V
EXACT INFERENCE VS. APPROXIMATE INFERENCE USING ANNOY.

Inference Time (sec)

Basket size Exact method = ANNOY
10 1.089 0.013
20 2.165 0.027
30 3.307 0.053
40 4.344 0.052
50 5.345 0.083
60 6.454 0.065
70 7.557 0.077
80 8.527 0.093
90 9.725 0.086
100 11.387 0.088
110 12.513 0.138
120 13.069 0.164

conclusions or recommendations expressed in this material are

tho

se of the author(s) and do not necessarily reflect the views

of the funding parties.

[1]

[2]

[3]
[4]

[5]

[6]

[7]

REFERENCES

L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell,
“Temporal collaborative filtering with bayesian probabilistic tensor fac-
torization,” in Proceedings of the 2010 SIAM international conference
on data mining. SIAM, 2010, pp. 211-222.

J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern mining: current
status and future directions,” Data mining and knowledge discovery,
vol. 15, no. 1, pp. 55-86, 2007.

D. T. Le, H. W. Lauw, and Y. Fang, “Basket-sensitive personalized item
recommendation.” IJCAI, 2017.

A. Beutel, P. Covington, S. Jain, C. Xu, J. Li, V. Gatto, and E. H.
Chi, “Latent cross: Making use of context in recurrent recommender
systems,” in Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining, 2018, pp. 46-54.

A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, “Multiverse
recommendation: n-dimensional tensor factorization for context-aware
collaborative filtering,” in Proceedings of the fourth ACM conference on
Recommender systems, 2010, pp. 79-86.

D. Liang, J. Altosaar, L. Charlin, and D. M. Blei, “Factorization meets
the item embedding: Regularizing matrix factorization with item co-
occurrence,” in Proceedings of the 10th ACM conference on recom-
mender systems, 2016, pp. 59-66.

O. Barkan and N. Koenigstein, “Item2vec: neural item embedding for
collaborative filtering,” in 2016 IEEE 26th International Workshop on
Machine Learning for Signal Processing (MLSP). 1EEE, 2016, pp. 1-6.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]
[19]

[20]

[21]

[22]

M. Grbovic, V. Radosavljevic, N. Djuric, N. Bhamidipati, J. Savla,
V. Bhagwan, and D. Sharp, “E-commerce in your inbox: Product
recommendations at scale,” in Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, 2015,
pp. 1809-1818.

M. Wan, D. Wang, J. Liu, P. Bennett, and J. McAuley, “Representing and
recommending shopping baskets with complementarity, compatibility
and loyalty,” in Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, 2018, pp. 1133-1142.

A. Mantha, Y. Arora, S. Gupta, P. Kanumala, Z. Liu, S. Guo, and
K. Achan, “A large-scale deep architecture for personalized grocery
basket recommendations,” in ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 3807-3811.

M. Aumiiller, E. Bernhardsson, and A. Faithfull, “Ann-benchmarks:
A benchmarking tool for approximate nearest neighbor algorithms,”
in International Conference on Similarity Search and Applications.
Springer, 2017, pp. 34-49.

J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” IEEE Transactions on Big Data, 2019.

R. Guo, P. Sun, E. Lindgren, Q. Geng, D. Simcha, F. Chern, and
S. Kumar, “Accelerating large-scale inference with anisotropic vec-
tor quantization,” in International Conference on Machine Learning.
PMLR, 2020, pp. 3887-3896.

H. Ge, J. Caverlee, and H. Lu, “Taper: A contextual tensor-based
approach for personalized expert recommendation,” in Proceedings of
the 10th ACM Conference on Recommender Systems, 2016, pp. 261—
268.

H. Chen and J. Li, “Adversarial tensor factorization for context-aware
recommendation,” in Proceedings of the 13th ACM Conference on
Recommender Systems, 2019, pp. 363-367.

Z. Zhu, X. Hu, and J. Caverlee, “Fairness-aware tensor-based recom-
mendation,” in Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, 2018, pp. 1153-1162.

R. Harshman, “Foundations of the parafac procedure: Models and
conditions for an” explanatory” multimodal factor analysis,” 1970.

L. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279-311, 1966.

M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model for collective
learning on multi-relational data,” in Icml, 2011.

E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Tensors
for data mining and data fusion: Models, applications, and scalable
algorithms,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 8, no. 2, p. 16, 2017.

T. Kolda and B. Bader, “Tensor decompositions and applications,” SIAM
review, vol. 51, no. 3, 2009.

H. Huang, C. Ding, D. Luo, and T. Li, “Simultaneous tensor subspace
selection and clustering: the equivalence of high order svd and k-means
clustering,” in Proceedings of the 14th ACM SIGKDD international
conference on Knowledge Discovery and Data mining. ACM, 2008,
pp. 327-335.

	Introduction
	Related Work
	Frequent Purchase Mining
	Collaborative Filtering and Matrix Factorization
	Representation Learning
	Tensor-based Recommenders

	Proposed Method
	Tensor decomposition to learn product and user embeddings
	Optimizing RESCAL Decomposition
	Optimizing Inference Time

	Experiments
	Dataset and Experiment Setup
	Evaluation
	Metrics
	Results
	Handling Cold-Start Users
	Evaluating inference time

	Conclusions and Future Work
	References

