
Better Parameter-free Stochastic Optimization with ODE Updates for
Coin-Betting

Keyi Chen1 John Langford2 Francesco Orabona1

1 Boston University
2 Microsoft Research

keyichen@bu.edu, jcl@microsoft.com, francesco@orabona.com

Abstract

Parameter-free stochastic gradient descent (PFSGD) algo-
rithms do not require setting learning rates while achieving op-
timal theoretical performance. In practical applications, how-
ever, there remains an empirical gap between tuned stochastic
gradient descent (SGD) and PFSGD. In this paper, we close
the empirical gap with a new parameter-free algorithm based
on continuous-time Coin-Betting on truncated models. The
new update is derived through the solution of an Ordinary
Differential Equation (ODE) and solved in a closed form. We
show empirically that this new parameter-free algorithm out-
performs algorithms with the “best default” learning rates
and almost matches the performance of finely tuned baselines
without anything to tune.

1 Introduction

Most machine learning algorithms require solving an opti-
mization problem, minx∈Rd F (x). To solve this problem,
first-order stochastic optimization algorithms are the de-facto
choice for machine learning due to their speed across large
datasets and simplicity. These Stochastic (sub)Gradient De-
scent (SGD) algorithms start from an initial solution x1, iter-
atively update a vector xt moving in the negative direction
of a stochastic (sub)gradient gt such that E[gt] ∈ ∂F (xt):
xt+1 = xt − ηtgt, where ηt > 0 is the learning rate or step
size. Learning rates are the big caveat of SGD.

How do we set the learning rate? Intuitively, the learning
rates must become arbitrarily small to converge to the mini-
mum of the function. This is clear considering minimizing
the function F (x) = |x − 10| with SGD. In addition, the
step size must be large enough that not too many updates are
required to move from the initial to the optimal solution.

We can formalize the above intuitions with the standard
convergence rate of SGD with constant step size η after T
iterations with stochastic subgradients gt bounded by 1 in
L2 norm (Zinkevich 2003):

E

[

F

(

1

T

T
∑

t=1

xt

)]

− F (x⋆) ≤ ‖x1 − x⋆‖2
2ηT

+
ηT

2
. (1)

From the above, we have that the optimal worst-case step size

is η = ‖x1−x⋆‖2√
T

implying the optimal step size is inversely

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

proportional to the square root of the number of iterations and
proportional to the distance between the initial point and the
optimal one x⋆. Unfortunately, we do not know in advance
the distance from the initial point to the optimal solution nor
we can expect to reliably estimate it—again, consider the
function F (x) = |x − 10|. This lack of information about
‖x1 −x⋆‖2 is the primary difficulty of choosing the learning
rate in the stochastic setting.

From a practical point of view, this failure of the theory to
provide a way to automatically set the learning rates means
that most of the time the best way to achieve the best conver-
gence rate is to treat the learning rate as a hyperparameter and
exhaustively search for the best one. However, the computa-
tional cost of this search can be huge, basically multiplying
the entire learning process by the number of different learning
rates we have to try.

However, a new class of parameter-free algorithms has
been recently proposed (e.g. McMahan and Orabona 2014;
Orabona 2014; Cutkosky and Boahen 2016; Orabona and
Pal 2016; Cutkosky and Boahen 2017; Foster, Rakhlin, and
Sridharan 2018; Cutkosky and Orabona 2018; Kotłowski
2019; Kempka, Kotłowski, and Warmuth 2019; Cutkosky
and Sarlos 2019). These algorithms do not have a learning
rate parameter at all, while achieving essentially the same
theoretical convergence rate you would have obtained tuning
the learning rate in (1). The simplest parameter-free algo-
rithm (Orabona and Pal 2016) has an update rule of

xt+1 =
−
∑t

i=1 gi

L(1 + t)

(

1−
t
∑

i=1

〈gi,xi〉
)

, (2)

where L is the Lipschitz constant of F . These algorithms ba-
sically promise to trade-off a bit of accuracy for the removal
of tuning the learning rate. However, empirically they still
have a big gap with tuned optimization algorithms.

Contributions. In this paper, we greatly reduce this gap
with a new class of parameter-free stochastic optimization
algorithms that performs better than SGD, AdaGrad, and
Adam with the “best default” parameter, see Figure 1. We
achieve it by designing a parameter-free algorithm that is
more aware of the geometry of the loss functions by avoid-
ing overshooting their minima. In particular, we modify the
optimization algorithm based on coin-betting in (2) to make
an infinite number of infinitesimally small updates on a trun-
cated linear model for optimization (Asi and Duchi 2019).



Figure 1: Difference between the normalized competitor and
CODE test losses on 17 regression datasets using “best de-
fault” parameters. Each point represents a dataset. Points
located above the line y = 0 represent datasets on which
CODE outperforms competitors.

The final update is a closed formula solution of an Ordinary
Differential Equation (ODE), hence we call our algorithm
CODE: Coin-betting ODE.

Related Work. Parameter-free learning algorithms are dis-
cussed in Section 2. The main inspiration here is the Im-
portance Weight Aware updates (Karampatziakis and Lang-
ford 2011) which make infinitely many infinitesimal SGD
updates for each sampled loss. We provide two improve-
ments: making the approach work for a parameter-free up-
date rule and generalizing the set of losses. In particular, we
consider any convex Lipschitz function instead of an expecta-
tion of losses of the form satisfying ℓt(xt) = ℓ(〈zt,xt〉, yt).
Achieving closed-form solutions requires using a truncated
linear model (Asi and Duchi 2019). The Importance Weight
Aware updates (Karampatziakis and Langford 2011) are also
close to the ones in the truncated model from Asi and Duchi
(2019), perfectly coinciding in some cases. Both these ap-
proaches are also similar to Passive-Aggressive online learn-
ing algorithms (Crammer et al. 2006), implicit updates (Kivi-
nen and Warmuth 1997; Kulis and Bartlett 2010), and the
proximal point method (Rockafellar 1976).

There is a long history relating ODE to optimization. The
corresponding ODEs of a numerical optimization algorithm
are established by taking infinitesimal step sizes so that the
trajectory converges to a curve modeled by the ODE. The
continuous trajectory provides new insights into numerical
optimization such as the continuous-time interpretation of
Nesterov’s method (Su, Boyd, and Candes 2015) and the
accelerated Mirror Descent inspired by continuous-time anal-
ysis (Krichene, Bayen, and Bartlett 2015). This paper is the
first attempt to combine a parameter-free algorithm with an
ODE approach. The technique is general and we believe it
points out an interesting new direction for research.

Organization of the paper. In Section 2, after introduc-
ing some definitions, we briefly review the theory behind

parameter-free optimization algorithms through the simpli-
fied lens of coin-betting algorithms. Then, in Section 3 we
introduce our algorithm CODE. Finally, in Section 4 we
present empirical results and we conclude with a discussion
and future work in Section 5.

2 Preliminaries

In this section, we introduce the needed mathematical back-
ground and the basic idea of parameter-free coin-betting
optimization algorithms and truncated linear models.

Notation. We denote vectors by bold letters and matrices
by capital letters, e.g. x ∈ R

d and A ∈ R
d×m. We denote by

subscript t a variable that changes in a discrete way, while
using a function of t for a variable that changes over time in a
continuous way, e.g., xt and x(t). 1[E] denotes the indicator
function of an event E, i.e., 1[E] is equal to 1 if E is true
and 0 otherwise.

Convex Analysis. We denote by ‖·‖ the L2 norm in R
d.

Let f : Rd → R ∪ {±∞}, the Fenchel conjugate of f is

f⋆ : Rd → R∪{±∞} with f⋆(θ) = supx∈Rd θ
⊤x−f(x).

A vector x is a subgradient of a convex function f at v
if f(v) − f(u) ≤ (v − u)⊤x for any u ∈ dom f . The
differential set of f at v, denoted by ∂f(v), is the set of all
the subgradients of f at v. If f is also differentiable at v, then
∂f(v) contains a single vector, ∇f(v), which is the gradient
of f at v.

Betting on a coin. We describe here how to reduce sub-
gradient descent to betting on the outcome of a binary event
(i.e. a coin flip). This is not an exhaustive review of the
topic—interested readers are referred to, e.g., Orabona and
Pal (2016) and Orabona (2019, Chapter 9).

We consider a gambler making repeated bets on the out-
comes of adversarial coin flips. The gambler starts with
$1. In each round t, he bets on the outcome of a coin flip
ct ∈ {−1, 1}, where +1 denotes heads and −1 denotes tails.
We do not make any assumption on how ct is generated.

The gambler can bet any amount, although no additional
money may be borrowed. We encode the gambler’s bet in
round t by xt ∈ R, where sign(xt) encodes whether the bet
is on heads or tails and |xt| encodes the betted amount. When
the bet succeeds, the gambler wins xtct, otherwise, xtct is
lost. We define Wealtht as the gambler’s wealth at the end
of round t, that is

Wealtht = 1 +
t
∑

i=1

xici . (3)

We enforce xt = βt Wealtht−1 for some betting frac-
tion βt ∈ [−1, 1] implying that the gambler cannot borrow
money. We also slightly generalize the problem by allowing
the outcome of the coin flip ct to be a vector in R

d with L2

norm bounded by 1, with the definition of the wealth in (3)
generalized through inner products.

Now, we give a proof sketch of how it is possible to
reduce optimization to a coin-betting algorithm. Consider
the function F (x) := |x − 10| and the optimization prob-
lem minx F (x). We set the outcome of the coin flip ct to
be equal to the negative subgradient gt of F in xt, that is
ct = −gt ∈ ∂[−F (xt)] ∈ {−1, 1}, where xt is the bet. Let’s





advantage of 10 subgradients with 10 small steps. See Fig-
ure 2 for a graphic representation of this idea. The exact same
phenomenon occurs in coin-betting optimization algorithms.
In CODE, by using truncated linear models, we get additional
gradient information at the corner of the hinge.

However, in the above example, it is clear that considering
10 updates with weights 1/10 is arbitrary. Indeed, we could
push this reasoning to the limit and have 1/δ updates over the
losses δℓt when δ goes to zero. In this case, the algorithm fol-
lows a continuous trajectory rather than a discrete one. While
this reasoning is compelling, calculating the trajectory along
the gradient flow is computationally difficult. For example,
with 10 updates of 1/10th size, the algorithm will request 10
gradients.

A first idea to solve this problem was proposed by Karam-
patziakis and Langford (2011), considering only objective
functions of the form F (x) = Et[ℓt(x)], where ℓt(x) =
ℓ(〈zt,x〉, yt). In this special case, only the derivative of ℓ
changes under updates, not the direction of the gradient. Tak-
ing advantage of this, it is possible to calculate the final xt+1

without computing the entire trajectory with additional in-
formation at the truncated linear models’ corners. In other
words, we do not need additional gradients to derive xt+1.

So, the last key component is to use the truncated linear
models described in Section 2. In particular, if we use the

updates in (5) on the function F̃t in (4), the subgradient of

F̃t always has the same direction and it is zero when we
are in the flat part of the function. Hence, using (5) with

infinitesimally small weights of the function F̃t the update

could never go beyond the point where F̃t(x) = F−. More-
over, a closed-form solution along the continuous trajectory
becomes possible.

Now that we have all the pieces, we state the closed-form
solution that gives the final update rule.

Theorem 1. Set Wealth1 = 1 and let F (x) be a 1-Lipschitz
convex function. Define θ1 = 0 ∈ R

d, H1 = 1, and gt ∈
∂F (xt) for t = 1, . . . , T . Then, the limit as δ approaches 0
of running (5) over 1/δ updates with the surrogate functions

δF̃t gives the update rule xt+1 = ψ(t, ht), where

ψ(t, h) := (6)

Wealtht e
−〈gt,θt〉 ln(1+ h

Ht
)+‖gt‖

2(h+Ht ln
Ht

Ht+h )
Ht+h

(θt − hgt) ,

ht := min(h̃t, 1),

the following quantities are defined recursively as

θt+1 := θt − htgt, Ht+1 := Ht + ht,

Wealtht+1 :=

Wealtht e
−〈gt,θt〉 ln(1+ ht

Ht
)+‖gt‖2(ht+Ht ln

Ht
Ht+ht

),

and h̃t is the zero of the function

φ(h) := F (xt) + 〈gt,ψ(t, h)− xt〉 − F− . (7)

Hence, to find the closed formula of the update, we only
need to find the value of ht in each round. This depends on
the zero of a one-dimensional function, hence it can be found
with any standard algorithm, like bisection or the Newton
algorithm. Given the closed-form update, we can now state

Algorithm 1: Coin-betting ODE (CODE) Algorithm

1: Initialize: Wealth0 = 1, H1 = 1, θ1 = 0 ∈ R
d

2: for t = 1, . . . , T do
3: Query point xt =

Wealtht

Ht
θt

4: Receive gt such that E[gt] ∈ ∂F (xt), ‖gt‖ ≤ 1

5: Calculate ht = min(1, h̃t), where h̃t is the zero of the
function φ in (7)

6: Update Wealtht+1 =

Wealtht e
−〈gt,θt〉 ln(1+ ht

Ht
)+‖gt‖2(ht+Ht ln

Ht
Ht+ht

)

7: Update Ht+1 = Ht + ht

8: Update θt+1 = θt − htgt
9: end for

our CODE algorithm, Algorithm 1. Note that, given the value
of ht, the computational complexity of each update is O(d),
like in SGD.

Proof of the update rule. To obtain the closed form solu-
tion in Theorem 1, we break each update of the coin-betting
optimization algorithm into 1/δ “mini-updates” over the trun-

cated surrogate functions δF̃i, then we take the limit for δ
that goes to 0 and derive the final update rule in Theorem 1.
This means that we have 1/δ mini-updates between xt and
xt+1, that give us the points xt+δ,xt+2δ, . . . ,xt+1−δ,xt+1.
The following lemma fully characterizes these mini-updates.

Lemma 2. Assume that at time t the Wealth of the coin-
betting optimization algorithm is Wealtht, the number of
non-zero subgradients received is Ht, and the sum of the pre-
vious weighted subgradients is θt. Receive the subgradient
gt, where ‖gt‖ ≤ 1. Then, breaking the update in (5) in 1/δ
mini-updates with weights δ over the truncated linear model

F̃t(xt) is equivalent to the updates

Wealtht+1 = Wealtht +wt+1,

θt+1 = θt − δgt

1−δ
∑

j=δ

sj , Ht+1 = Ht + δ
1−δ
∑

j=δ

sj ,

where for any j = 0, δ, 2δ, . . . , 1 − δ, we define wt :=
0, sj := 1[F̃t(xt+j) 6= F−], and wt+j+δ := wt+j −
δsj〈gt,xt+j〉.

Proof. We use the fact that F̃t is differentiable everywhere
but in xt where we choose as subgradient the zero vector.
So, overall the subgradient can only assume the value gt and
0. In particular, the subgradient is the null vector iff sj = 0.
This proves the updates of wt and θt, while θt and Ht are
updated accordingly to the update rules in (5).

We now consider the case when δ goes to 0 and prove the
Theorem 1.

Proof of Theorem 1. We now consider the limit of the pre-
vious mini-updates in Lemma 2 when δ goes to zero. We
immediately obtain that



w′
t(j) := lim

δ→0

wt+j+δ − wt+j

δ

= lim
δ→0

−δ1[F̃t(ψ(t, j)) 6= F−]〈gt,ψ(t, j)〉
δ

= −1[F̃t(ψ(t, j)) 6= F−]〈gt,ψ(t, j)〉, (8)

where ψ is some function that represents the continuous
trajectory of the iterates. In particular, xt = ψ(t, 0). Later,
we will prove that ψ coincides with the one we defined in
(6). Also, defining ht as

ht := lim
δ→0

δ

1−δ
∑

j=δ

sj =

∫ 1

0

1[F̃t(ψ(t, j)) 6= F−] dj,

we have

lim
δ→0

θt + δ

1−δ
∑

j=δ

sjgt = θt + htgt,

lim
δ→0

Ht + δ

1−δ
∑

j=δ

sj = Ht + ht .

Hence, using the above results in (5), we obtain the trajectory
of xt to xt+1 is described by

ψ(t, j) =
Wealtht +wt(j)

Ht + j
(θj − jgt).

Together with (8), this implies that w′
t(j) = 0 for j ≥ ht,

while for j ≤ ht we have

w′
t(j) = −

〈

gt,
Wealtht +wt(j)

Ht + j
(θj − jgt)

〉

. (9)

To simplify the notation, denote by

P (j) =
1

Ht + j
〈gt,θt − jgt〉

and

Q(j) = −Wealtht
Ht + j

〈gt,θt − jgt〉 .

Note that Q(j) = −Wealthj P (j). Hence, we can rewrite
(9) as w′

t(j) + wt(j)P (j) = Q(j). Solving this first-order,
linear, inhomogeneous ODE, we get

w′
t(j)e

∫
P (j) dj =

[
∫

e
∫
P (j) djQ(j) dj + C

]

= −Wealtht

∫

e
∫
P (j) djd

(
∫

P (j) dj

)

+ C

= −Wealtht e
∫
P (j) dj + C,

where C is a constant. Next, we need to solve for C. Consider
that
∫ ht

0

P (j) dj =

∫ ht

0

1

Ht + j
〈gt,θt − jgt〉 dj

= 〈gt,θt〉
∫ ht

0

1

Ht + j
dj − ‖gt‖2

∫ ht

0

j

Ht + j
dj

= 〈gt,θt〉 ln(Ht + ht)− ‖gt‖2(ht −Ht ln(Ht + ht)) .

Hence, we have

wt(ht) = −Wealtht

+ Ce−〈gt,θt〉 ln(Ht+ht)+‖gt‖2(ht−Ht ln(Ht+ht)).

Since wt(0) = 0, we have

C = Wealtht e
〈gt,θt〉 ln(Ht)+‖gt‖2Ht ln(Ht)).

Finally, we have

wt(ht)

Wealtht
= e−〈gt,θt〉 ln(1+ ht

Ht
)+‖gt‖2(ht+Ht ln

Ht
Ht+ht

) − 1 .

Using the fact that
Wealtht+1

Wealtht
= 1 + wt(ht)

Wealtht
, we have the

closed form expression of the wealth. This also provides an
expression of the evolution of xt to xt+1, that coincides with
ψ(t, j) in (6).

4 Empirical Evaluation

Here, we compare CODE with SGD, SGD with truncated
models (aProx) (Asi and Duchi 2019), SGD with Impor-
tance Weight Aware updates (IWA) (Karampatziakis and
Langford 2011), AdaGrad (Duchi, Hazan, and Singer 2011),
Adam (Kingma and Ba 2015), the coin-betting algorithm in
(2) (Coin) (Orabona and Pal 2016) and the recursive coin-
betting algorithm (Recursive) (Cutkosky and Sarlos 2019).
For SGD, aProx and IWA, we use the optimal worst-case

step size for stochastic convex optimization: ηk = η0/
√
k,

and tune the initial step size η0. In the adaptive learning rate
methods, AdaGrad and Adam, we tune the initial step size
η0. CODE, Coin and Recursive do not have learning rates.

4.1 Train/Test on Real Datasets

We test the ability of CODE to get a good generalization
error. Hence, we perform experiments with 21 different ma-
chine learning binary classification datasets and 17 regression
datasets from the LIBSVM website (Chang and Lin 2011)
and OpenML(Vanschoren et al. 2013). We implement exten-
sive experiments on a large number of datasets to verify the
significance of our results. We pre-process the samples nor-
malizing them to unit norm vectors. We shuffle the data and
use 70% for training, 15% for validation, and hold out 15%
for testing. Given the lack of a regularizer, all the algorithms
pass on the training set once to avoid overfitting (see, e.g.,
Section 14.5.1 Shalev-Shwartz and Ben-David 2014). We
evaluate algorithms with 0-1 loss for classification tasks and
absolute loss for regression tasks, normalizing the scores by
the performance of the best constant predictor. In this way,
each dataset is weighted equally independently by how hard
it is. Otherwise, a single hard dataset would dominate the
average loss. All the experiments are repeated 3 times and
we take the mean of the 3 repetitions. See Appendix for more
details on datasets, experiments, and numerical values.

Best Fixed Learning Rates. Clearly, the process of tuning
hyperparameters is computationally expensive. For example,
if we want to try 2 different learning rates, we have to run
SGD twice per dataset. Hence, to have a fair comparison in
terms of computational cost, here we consider this setting:



Figure 3: Difference between normalized competitor and
CODE test losses using the “best default” parameter on 21
classification datasets.

Single Learning Rate

Algorithm
Mean normalized

absolute loss
Mean normalized

0-1 loss

SGD 1.1440 0.1816
IWA 0.8787 0.1804
aProx 0.9192 0.1812
AdaGrad 1.0941 0.1757
Adam 1.2362 0.1806
Coin 0.9294 0.1906
Recursive 10.0576 0.2601
CODE 0.7668 0.1870

Table 1: Average normalized test set accuracies on 17 regres-
sion and 21 classification datasets with best fixed learning
rates.

we test the common belief that many optimization algorithms
have a “default” learning rate that works on every dataset.
If this were true, tuning would not be an extra cost. To test
this scenario, we tune the learning rate of the baselines to
achieve the best average of normalized performance over all
datasets directly on the test sets. In other words, we choose
the “best default” parameter of each algorithm to minimize
the numbers in Table 1. This is strictly better for the baselines
than just choosing some fixed default parameters for each of
them.

First, we compare all the algorithms on linear regression
problems with the absolute loss. We summarize the results
in Figure 1 in the Introduction and in Table 1. In the figure,
each point represents a baseline algorithm (x-axis) vs. the
normalized test loss difference between the algorithm and
CODE (y-axis) on one dataset. So, points located above y = 0
represent datasets where CODE outperforms the baseline
algorithm. We can see that CODE on average is superior to
all other algorithms. The mean of normalized absolute loss of
SGD, AdaGrad, Adam, Coin, and Recursive is greater than 1,

One Learning Rate per Dataset

Algorithm
Mean normalized

absolute loss
Mean normalized

0-1 loss

SGD 0.7150 0.1745
IWA 0.7133 0.1775
aProx 0.0.7201 0.1778
AdaGrad 0.7000 0.1544
Adam 0.7022 0.1596
Coin 0.9294 0.1906
Recursive 10.0576 0.2601
CODE 0.7668 0.1870

Table 2: Average normalized test set accuracies on 17 re-
gression and 21 classification datasets with tuned learning
rates.

indicating that these baseline algorithms perform worse than
the best constant predictor on average. The reason is clear: on
these datasets, no single learning rate can work on all of them.
Furthermore, CODE wins Coin by ∼ 0.16, which proves that
the ODE updates boost the performance of the parameter-free
algorithm. CODE also wins Recursive significantly. Overall,
CODE essentially guarantees the best performance without
any parameter tuning.

We also test the performance of all algorithms on classifi-
cation problems. In Figure 3 and in Table 1, we can see that
all algorithms except Recursive attained similar performance.
CODE is worse than AdaGrad on average ∼ 0.0113 and is
better than Coin and Recursive. We performed two-sample
paired t-test between CODE and competitors and failed to
reject the null hypothesis that the performance of CODE on
average is as good as the AdaGrad at the significant level
α = 0.05.

Tuned Learning Rates. We now turn to the case in which
we ignore the computational complexity and we tune all the
learning rates for SGD, IWA, aProx, AdaGrad, and Adam.
For each repetition and dataset, we use the validation set to
select the best learning rate, train using that learning rate,
test on the test set and report the average of normalized loss.
Results are summarized in Figure 4 and Table 2.

As just said, this is a very expensive procedure and not
a fair comparison for parameter-free algorithms in terms of
computational cost. Yet, in both regression and classification
tasks, the performance of CODE and other algorithms ex-
cept Recursive are close to each other. Remember the fact
that CODE achieves this performance without any tuning.
As a parameter-free algorithm, CODE only loses over the
best algorithm on average ∼ 0.0668 on regression problems
and ∼ 0.0326 on classification problems. The difference on
average is not significant in statistics at the significance level
0.05. We believe that there are many settings where such
loss of accuracy would be negligible compared to what we
gain from removing the need to tune the learning rate. It is
also instructive to notice how much the performance of the
baselines improves when we move from a “default” learning
rate to a tuned one. In other words, to achieve the best opti-



Figure 4: Difference between normalized competitor and
CODE test losses using a tuned learning rate on 17 regression
(1) and 21 classification (2) datasets.

mal performance with, for example, AdaGrad the parameter
tuning cannot be avoided, at least on regression problems.

4.2 Sub-Optimality Gap on Synthetic Datasets

We also generate synthetic data and test the algorithms fol-
lowing the protocol in Asi and Duchi (2019), to observe the
sensitivity of the algorithms to the setting of the step sizes.
Of course, the parameter-free ones do not have any step size
to set. For A ∈ R

m×d and y ∈ R
m×1 the objective func-

tion we want to minimize is F (x) = 1
m
‖Ax− y‖1, which

corresponds to a regression problem with the absolute loss.
In each experiment, we generate x⋆ ∼ N(0, Id) ∈ R

d, and
set y = Ax⋆ + σv for v ∼ N(0, Id), where σ controls the
amount of noise. We generate A with uniformly random or-
thogonal columns, with m = 1000 and d = 40. Then, we
normalize the L2 norm of each sample. We repeat the above
data generation process 10 times and show the average results
in the plots. We also consider the classification setting, see
similar experiments and plots in the Appendix.

As in Asi and Duchi (2019), we study how many itera-
tions are needed to reach a suboptimality gap of 0.05, that
is we plot the smallest k such that F (xk)− F (x⋆) ≤ 0.05.
In Figure 5, we show the results. As expected, the perfor-

Figure 5: Synthetic dataset with absolute loss. Number of
iteration to reach 0.05 suboptimality gap versus initial step
sizes η0. (1) noiseless setting, (2) σ = 1/2.

mance of SGD, Adam, and AdaGrad is extremely sensitive
to the setting of the step size. We really need to find the
right one, otherwise the convergence slows down catastrophi-
cally. Instead, IWA and aProx have a much better range of
acceptable step sizes for the noise-free case. However, their
advantage almost disappears in the noisy case. On the other
hand, we can see that the parameter-free algorithms, CODE,
perform very well, with CODE achieving essentially optimal
performance in both regimes. Moreover, CODE inherits the
better performance of aProx in the noise-free case, gaining a
big advantage over Coin, but still maintaining a closed-form
solution.

5 Discussion

We have presented a new parameter-free method called
CODE, which is the first work combining the truncated linear
approximation and continuous updates for Coin-Betting opti-
mization algorithms. The empirical results show that CODE
can outperform algorithms with a “default” learning rate and
be very competitive with finely-tuned ones. In future work,
we plan to investigate theoretical guarantees for CODE.



Acknowledgements

This material is based upon work supported by the National
Science Foundation under grants no. 1925930 “Collaborative
Research: TRIPODS Institute for Optimization and Learn-
ing”, no. 1908111 “AF: Small: Collaborative Research: New
Representations for Learning Algorithms and Secure Com-
putation”, and no. 2046096 “CAREER: Parameter-free Opti-
mization Algorithms for Machine Learning”.

References

Asi, H.; and Duchi, J. C. 2019. Stochastic (approximate)
proximal point methods: Convergence, optimality, and adap-
tivity. SIAM Journal on Optimization, 29(3): 2257–2290.

Beck, A.; and Teboulle, M. 2003. Mirror descent and nonlin-
ear projected subgradient methods for convex optimization.
Operations Research Letters, 31(3): 167–175.

Chang, C.-C.; and Lin, C.-J. 2011. LIBSVM: a library for
support vector machines. ACM Transactions on Intelligent
Systems and Technology, 2(3). Software available at http:
//www.csie.ntu.edu.tw/∼cjlin/libsvm.

Crammer, K.; Dekel, O.; Keshet, J.; Shalev-Shwartz, S.; and
Singer, Y. 2006. Online Passive-Aggressive Algorithms. Jour-
nal of Machine Learning Research, 7: 551–585.

Cutkosky, A.; and Boahen, K. 2017. Online Learning With-
out Prior Information. In Proc. of the 2017 Conference on
Learning Theory, volume 65 of Proc. of Machine Learning
Research, 643–677. Amsterdam, Netherlands: PMLR.

Cutkosky, A.; and Boahen, K. A. 2016. Online convex opti-
mization with unconstrained domains and losses. In Advances
in Neural Information Processing Systems, 748–756.

Cutkosky, A.; and Orabona, F. 2018. Black-Box Reductions
for Parameter-free Online Learning in Banach Spaces. In
Proc. of the Conference on Learning Theory (COLT).

Cutkosky, A.; and Sarlos, T. 2019. Matrix-Free Precondition-
ing in Online Learning. arXiv:1905.12721.

Duchi, J. C.; Hazan, E.; and Singer, Y. 2011. Adaptive
Subgradient Methods for Online Learning and Stochastic
Optimization. Journal of Machine Learning Research, 12:
2121–2159.

Foster, D. J.; Rakhlin, A.; and Sridharan, K. 2018. Online
Learning: Sufficient Statistics and the Burkholder Method.
In Proc. of the Conference on Learning Theory.

Karampatziakis, N.; and Langford, J. 2011. Online Impor-
tance Weight Aware Updates. In Proc. of the Twenty-Seventh
Conference on Uncertainty in Artificial Intelligence, UAI’11,
392—-399. Arlington, Virginia, USA: AUAI Press.

Kempka, M.; Kotłowski, W.; and Warmuth, M. K. 2019.
Adaptive Scale-Invariant Online Algorithms for Learning
Linear Models. In Chaudhuri, K.; and Salakhutdinov, R.,
eds., Proc. of the 36th International Conference on Machine
Learning, volume 97 of Proc. of Machine Learning Research,
3321–3330. Long Beach, California, USA: PMLR.

Kingma, D. P.; and Ba, J. 2015. Adam: A method for stochas-
tic optimization. In International Conference on Learning
Representations (ICLR).

Kivinen, J.; and Warmuth, M. 1997. Exponentiated Gradient
versus Gradient Descent for Linear Predictors. Information
and Computation, 132(1): 1–63.

Kotłowski, W. 2019. Scale-invariant unconstrained online
learning. Theoretical Computer Science.

Krichene, W.; Bayen, A.; and Bartlett, P. L. 2015. Accelerated
Mirror Descent in Continuous and Discrete Time. In Cortes,
C.; Lawrence, N. D.; Lee, D. D.; Sugiyama, M.; and Garnett,
R., eds., Advances in Neural Information Processing Systems
28, 2845–2853. Curran Associates, Inc.

Krichevsky, R.; and Trofimov, V. 1981. The performance
of universal encoding. IEEE Trans. on Information Theory,
27(2): 199–207.

Kulis, B.; and Bartlett, P. L. 2010. Implicit Online Learning.
In ICML, 575–582.

McMahan, H. B.; and Orabona, F. 2014. Unconstrained
Online Linear Learning in Hilbert Spaces: Minimax Algo-
rithms and Normal Approximations. In Proc of the Annual
Conference on Learning Theory, COLT.

Orabona, F. 2014. Simultaneous Model Selection and Op-
timization through Parameter-free Stochastic Learning. In
Advances in Neural Information Processing Systems 27.

Orabona, F. 2019. A Modern Introduction to Online Learning.
arXiv preprint arXiv:1912.13213.

Orabona, F.; and Pal, D. 2016. Coin Betting and Parameter-
Free Online Learning. In Lee, D. D.; Sugiyama, M.; Luxburg,
U. V.; Guyon, I.; and Garnett, R., eds., Advances in Neural
Information Processing Systems 29, 577–585. Curran Asso-
ciates, Inc.

Rockafellar, R. T. 1976. Monotone operators and the proxi-
mal point algorithm. SIAM journal on control and optimiza-
tion, 14(5): 877–898.

Shalev-Shwartz, S.; and Ben-David, S. 2014. Understanding
Machine Learning: From Theory to Algorithms. New York,
NY, USA: Cambridge University Press.

Su, W.; Boyd, S.; and Candes, E. J. 2015. A Differential Equa-
tion for Modeling Nesterov’s Accelerated Gradient Method:
Theory and Insights. arXiv:1503.01243.

Vanschoren, J.; van Rijn, J. N.; Bischl, B.; and Torgo, L.
2013. OpenML: Networked Science in Machine Learning.
SIGKDD Explorations, 15(2): 49–60.

Zinkevich, M. 2003. Online Convex Programming and Gen-
eralized Infinitesimal Gradient Ascent. In Proc. of ICML,
928–936.


