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Abstract

Stochastic Gradient Descent (SGD) is a popu-

lar tool in training large-scale machine learning

models. Its performance, however, is highly vari-

able, depending crucially on the choice of the

step sizes. Accordingly, a variety of strategies

for tuning the step sizes have been proposed,

ranging from coordinate-wise approaches (a.k.a.

“adaptive” step sizes) to sophisticated heuristics to

change the step size in each iteration. In this paper,

we study two step size schedules whose power has

been repeatedly confirmed in practice: the expo-

nential and the cosine step sizes. For the first time,

we provide theoretical support for them proving

convergence rates for smooth non-convex func-

tions, with and without the Polyak-Łojasiewicz

(PL) condition. Moreover, we show the surprising

property that these two strategies are adaptive to

the noise level in the stochastic gradients of PL

functions. That is, contrary to polynomial step

sizes, they achieve almost optimal performance

without needing to know the noise level nor tun-

ing their hyperparameters based on it. Finally, we

conduct a fair and comprehensive empirical eval-

uation of real-world datasets with deep learning

architectures. Results show that, even if only re-

quiring at most two hyperparameters to tune, these

two strategies best or match the performance of

various finely-tuned state-of-the-art strategies.

1. Introduction

In the last 10 years, non-convex machine learning formu-

lations have received more and more attention as they can
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typically better scale with the complexity of the predic-

tors and the amount of training data compared with convex

ones. One such example is the deep neural networks. Over

the years, various algorithms have been proposed and em-

ployed to optimize non-convex machine learning problems,

among which Stochastic Gradient Descent (SGD) (Robbins

& Monro, 1951) has become the most important ingredient

in Machine Learning pipelines. Practitioners prefer it over

more sophisticated methods for its simplicity and speed.

Yet, this generality comes with a cost: SGD is far from

the robustness of, e.g., second-order methods that require

little to no tweaking of knobs to work. In particular, the

step size is still the most important parameter to tune in the

SGD algorithm, carrying the actual weight of making SGD

adaptive to different situations.

The importance of step sizes in SGD is testified by the

numerous proposed strategies to tune step sizes (e.g., Duchi

et al., 2010; McMahan & Streeter, 2010; Tieleman & Hinton,

2012; Zeiler, 2012; Kingma & Ba, 2015). However, for most

of them, there is little or no theory that can really explain

their empirical success. Moreover, SGD with appropriate

step sizes is already optimal in all the possible situations, so

it is unclear what kind of advantage we might show.

An interesting viewpoint is to go beyond worst-case analyses

and show that these learning rates provide SGD with some

form of adaptivity to the characteristics of the function.

More specifically, an algorithm is considered adaptive (or

universal) if it has the best theoretical performance w.r.t. to a

quantity X without the need to know it (Nesterov, 2015). So,

for example, it is possible to design optimization algorithms

adaptive to scale (Orabona & Pál, 2015; Orabona & Pál,

2018), smoothness (Levy et al., 2018), noise (Levy et al.,

2018; Li & Orabona, 2019), and strong convexity (Cutkosky

& Orabona, 2018). On the other hand, as noted in Orabona

(2019), it is remarkable that even if most of the proposed

step size strategies for SGD are called “adaptive”, for most

of them their analyses do not show any provable advantage

over plain SGD nor any form of adaptation to the intrinsic

characteristics of the non-convex function.

In this paper, we look at the two simple to use and

empirically successful step size decay strategies, the ex-

ponential and the cosine step size (with and without
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restarts) (Loshchilov & Hutter, 2017; He et al., 2019). The

exponential step size is simply an exponential decaying step

size. It is less discussed in the optimization literature and

it is also unclear who proposed it first, even if it has been

known to practitioners for a long time and already included

in many deep learning software libraries (e.g., Abadi et al.,

2015; Paszke et al., 2019). The cosine step size, which an-

neals the step size following a cosine function, has exhibited

great power in practice but it does not have any theoretical

justification.

For both these step size decay strategies, we prove for the

first time a convergence guarantee. Moreover, we show that

they have (unsuspected!) adaptation properties. Moreover,

we also empirically test them showing that they have the

best empirical performance among various state-of-the-art

strategies. Finally, our proofs reveal the hidden similarity

between these two step sizes.

Specifically, the contributions of this paper are:

• In the case when the function satisfies the PL condi-

tion (Polyak, 1963; Łojasiewicz, 1963; Karimi et al.,

2016), both exponential step size and cosine step size

strategies automatically adapt to the level of noise of

the stochastic gradients.

• Without the PL condition, we show that SGD with

either exponential step sizes or cosine step sizes has

an (almost) optimal convergence rate for smooth non-

convex functions.

• We also conduct an empirical evaluation on deep learn-

ing architectures: Exponential and cosine step sizes

have essentially matching or better empirical perfor-

mance than polynomial step decay, stagewise step de-

cay, Adam (Kingma & Ba, 2015), and stochastic line

search (Vaswani et al., 2019b), while requiring at most

two hyperparameters.

The rest of the paper is organized as follows: We first dis-

cuss the relevant literature (Section 2). In Section 3, we

introduce the notation, setting, and precise assumptions.

Then, in Section 4 we describe in detail the step sizes and

the theoretical guarantees. We show our empirical results

in Section 5. Finally, we conclude with a discussion of the

results and future work.

2. Related Work

Adaptation in non-convex optimization Adaptation is a

general concept and an algorithm can be adaptive to any

characteristic of the optimization problem. The idea is for-

malized in (Nesterov, 2015) with the equivalent name of

universality, but it goes back at least to the “self-confident”

strategies in online convex optimization (Auer et al., 2002).

Indeed, the famous AdaGrad algorithm (McMahan &

Streeter, 2010; Duchi et al., 2010) uses exactly that method

to design an algorithm adaptive to the gradients. Nowadays,

“adaptive step size” tend to denote coordinate-wise ones,

with no guarantee of adaptation to any particular property.

There is an abundance of adaptive optimization algorithm in

the convex setting (e.g., McMahan & Streeter, 2010; Duchi

et al., 2010; Kingma & Ba, 2015; Reddi et al., 2018), while

only a few in the more challenging non-convex setting (e.g.,

Chen et al., 2018). The first analysis to show adaptivity to

noise of non-convex SGD with appropriate step sizes is in

Li & Orabona (2019) and later in Ward et al. (2019; 2020)

under stronger assumptions. Then, Li & Orabona (2020)

studied the adaptivity to noise of AdaGrad plus momentum,

with a high probability analysis.

Exponential step size To the best of our knowledge, the

exponential step size has been incorporated in Tensor-

flow (Abadi et al., 2015) and PyTorch (Paszke et al., 2019),

yet no convergence guarantee have ever been proved for

it. The closest strategy is the stagewise step decay, which

corresponds to the discrete version of the exponential step

size we analyze. The stagewise step decay uses a piece-wise

constant step size strategy, where the step size is cut by a

factor in each “stage”. This strategy is known with many

different names: “stagewise step size” (Yuan et al., 2019),

“step decay schedule” (Ge et al., 2019), “geometrically de-

caying schedule” (Davis et al., 2021), and “geometric step

decay” (Davis et al., 2019). In this paper, we will call it

stagewise step decay. The stagewise step decay approach

was first introduced in (Goffin, 1977) and used in many

convex optimization problem (e.g., Hazan & Kale, 2011;

Aybat et al., 2019; Kulunchakov & Mairal, 2019; Ge et al.,

2019). Interestingly, Ge et al. (2019) also shows promising

empirical results on non-convex functions, but instead of us-

ing their proposed decay strategy, they use an exponentially

decaying schedule, like the one we analyze here. The only

use of the stagewise step decay for non-convex functions

we know are for sharp functions (Davis et al., 2019) and

weakly-quasi-convex functions (Yuan et al., 2019). How-

ever, they do not show any adaptation property and they

still do not consider the exponential step size but its discrete

version. As far as we know, we prove the first theoretical

guarantee for the exponential step size.

Cosine step decay Cosine step decay was originally pre-

sented in Loshchilov & Hutter (2017) with two tunable

parameters. Later, He et al. (2019) proposed a simplified

version of it with one parameter. However, there is no theory

for this strategy though it is popularly used in the practical

world (Liu et al., 2018; Zhang et al., 2019b; Lawen et al.,

2019; Zhang et al., 2019a; Ginsburg et al., 2019; Cubuk

et al., 2019; Zhao et al., 2020; You et al., 2020; Chen et al.,

2020; Grill et al., 2020). As far as we know, we prove the

first theoretical guarantee for the cosine step decay and the
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first ones to hypothesize and prove the adaptation properties

of the cosine decay step size.

SGD on non-convex smooth functions The first paper to

analyze SGD on smooth functions with generic step sizes

is Ghadimi & Lan (2013). Their analysis show that the

optimal step size strategy strongly depends on the level of

noise, but they do not offer any automatic strategy to adapt

to it.

SGD with the PL condition The PL condition was pro-

posed by Polyak (1963) and Łojasiewicz (1963). It is the

weakest assumption we know to prove linear rates on non-

convex functions. For SGD, Karimi et al. (2016) proved

the rate of O
(

1/µ2T
)

for polynomial step sizes assuming

Lipschitz and smooth functions, where µ is the PL constant.

Note that the Lipschitz assumption hides the dependency

of convergence and step sizes from the noise. It turns out

that the Lipschitz assumption is not necessary to achieve

the same rate, see Theorem 5 in the Appendix. Considering

functions with finite-sum structure, Reddi et al. (2016), Lei

et al. (2017) and Li et al. (2020) proved improved rates for

variance reduction methods. The convergence rate that we

show for the exponential step size is new in the literature

on minimization of PL functions. Independently and the

same time1 with us, Khaled & Richtárik (2020) obtained the

same convergence result in the PL condition for SGD with

a stepsize that is constant in the first half and then decreases

polynomially.

3. Problem Set-up

Notation We denote vectors by bold letters, e.g., x ∈ R
d.

We denote by E[·] the expectation with respect to the under-

lying probability space and by Et[·] the conditional expecta-

tion with respect to the past. Any norm in this work is the

ℓ2 norm.

Setting and Assumptions We consider the unconstrained

optimization problem min
x∈Rd f(x), where f(x) : Rd →

R is a function bounded from below and we denote its

infimum by f⋆. Note that we do not require f to be convex

nor to have a finite-sum structure.

We focus on SGD, where, after an initialization of the first

iterate as any x1 ∈ R
d, in each round t = 1, 2, . . . , T we

receive gt, an unbiased estimate of the gradient of f at point

xt, i.e., Etgt = ∇f(xt). We update xt with a step size ηt,
i.e., xt+1 = xt − ηtgt.

We assume that

(A1) f is L-smooth, i.e., f is differentiable and its gra-

dient ∇f(·) is L-Lipschitz, namely: ∀x,y ∈ R
d,

1The first version of Khaled & Richtárik (2020) was released on
Feb. 9th 2020 on ArXiv while our very first version was available
online on Feb. 12th 2020 on ArXiv as well.

‖∇f(x) − ∇f(y)‖ ≤ L‖x − y‖. This implies for

∀x,y ∈ R
d (Nesterov, 2004, Lemma 1.2.3)

|f(y)− f(x)− 〈∇f(x),y − x〉| ≤
L

2
‖y − x‖2 . (1)

(A2) f satisfies the µ-PL condition, that is, for some µ > 0,
1
2‖∇f(x)‖2 ≥ µ (f(x)− f⋆) , ∀x.

(A3) For t = 1, 2, . . . , T , we assume Et[‖gt
−∇f(xt)‖

2] ≤

a‖∇f(xt)‖
2 + b, where a, b ≥ 0.

Discussion on the assumptions It is worth stressing that

non-convex functions are not characterized by a particular

property, but rather from the lack of a specific property:

convexity. In this sense, trying to carry out any meaning-

ful analyses on the entire class of non-convex functions is

hopeless. So, the assumptions we use balance the trade-off

of approximately model many interesting machine learning

problems while allowing to restrict the class of non-convex

functions on particular subsets where we can underline in-

teresting behaviours.

More in detail, the smoothness assumption (A1) is consid-

ered “weak” and ubiquitous in analyses of optimization algo-

rithms in the non-convex setting. In many neural networks,

it is only approximately true because ReLUs activation func-

tions are non-smooth. However, if the number of training

points is large enough, it is a good approximation of the loss

landscape.

On the other hand, the PL condition (A2) is often consid-

ered a “strong” condition. However, it was formally proved

to hold locally in deep neural networks in Allen-Zhu et al.

(2019). Furthermore, Kleinberg et al. (2018) empirically

observed that the loss surface of neural networks has good

one-point convexity properties, and thus locally satisfies the

PL condition. Of course, in our theorems we only need

it to hold along the optimization path and not over the en-

tire space, as also pointed out in Karimi et al. (2016). So,

while being strong, it actually models the cases we are in-

terested in. Moreover, dictionary learning (Arora et al.,

2015), phase retrieval (Chen & Candes, 2015), and matrix

completion (Sun & Luo, 2016), all satisfy the one-point

convexity locally (Zhu, 2018), and in turn they all satisfy

the PL condition locally.

Our assumption on the noise (A3) is strictly weaker than the

common assumption of assuming a bounded variance, i.e.,

Et[‖gt
−∇f(xt)‖

2] ≤ σ2. Indeed, our assumption recovers

the bounded variance case with a = 0 while also allowing

for the variance to grow unboundedly far from the optimum

when a > 0. This is indeed the case when the optimal

solution has low training error and the stochastic gradients

are generated by mini-batches. This relaxed assumption on

the noise was first used by Bertsekas & Tsitsiklis (1996) in

the analysis of the asymptotic convergence of SGD.
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Exponential and Cosine Step Size We will use the follow-

ing definition for the exponential step size

ηt = η0 · αt (2)

and for cosine step sizes

ηt =
η0
2

(

1 + cos
tπ

T

)

, (3)

where η0 = (L(1 + a))−1. For the exponential step sizes,

we use α = (β/T )
1/T ≤ 1, a and L are defined in (A1, A3),

and β ≥ 1.

4. Convergence and Adaptivity of Cosine and

Exponential Step Sizes

Here, we present the guarantees of the exponential step size

and the cosine step size and their adaptivity property.

4.1. Noise and Step Sizes

For the stochastic optimization of smooth functions, the

noise plays a crucial role in setting the optimal step sizes:

To achieve the best performance, we need two completely

different step size decay schemes in the noisy and noise-

less case. In particular, if the PL condition holds, in the

noise-free case a constant step size is used to get a linear

rate (i.e., exponential convergence), while in the noisy case

the best rate O(1/T ) is given by time-varying step sizes

O(1/(µt)) (Karimi et al., 2016). Similarly, without the PL

condition, we still need a constant step size in the noise-free

case for the optimal rate whereas a O(1/
√
t) step size is

required in the noisy case (Ghadimi & Lan, 2013). Using

a constant step size in noisy cases is of course possible,

but the best guarantee we know is converging towards a

neighborhood of the critical point or the optimum, instead

of the exact convergence let alone the adaptivity to the noise,

as shown in Theorem 2.1 of (Ghadimi & Lan, 2013) and

Theorem 4 of (Karimi et al., 2016). Moreover, if the noise

decreases over the course of the optimization, we should

change the step size as well. Unfortunately, noise levels are

rarely known or measured. On the other hand, an optimiza-

tion algorithm adaptive to noise would always get the best

performance without changing its hyperparameters.

In the following, we will show that exponential and cosine

step sizes achieve exactly this adaptation to noise. It is

worth reminding the reader that any polynomial decay of

the step size does not give us this adaptation. So, let’s gain

some intuition on why this should happen with these two

step sizes. In the early stage of the optimization process, we

can expect that the disturbance due to the noise is relatively

small compared to how far we are from the optimal solution.

Accordingly, at this phase, a near-constant step size should

be used. More precisely, the proofs shows that to achieve

a linear rate we need
∑T

t=1 ηt = Ω(T ) or even
∑T

t=1 ηt =
Ω(T/ lnT ). This is exactly what happens with (2) and (3).

On the other hand, when the iterate is close to the optimal

solution, we have to decrease the step size to fight with the

effects of the noise. In this stage, the exponential step size

goes to 0 as O (1/T ), which is the optimal step size used

in the noisy case. Meanwhile, the last ith cosine step size

is ηT−i = η0

2 (1 − cos iπ
T ) = η0 sin

2 iπ
2T , which amounts

O(1/T 2) when i is much smaller than T .

Hence, the analysis shows that (2) and (3) are surprisingly

similar, smoothly varying from the near-constant behavior

at the start and decreasing with a similar pattern towards the

end, and both will be adaptive to the noise level. Next, we

formalize these intuitions in convergence rates.

4.2. Convergence Guarantees

We now prove the convergence guarantees for these two

step sizes. First, we consider the case where the function is

smooth and satisfies the PL condition.

Theorem 1 (SGD with exponential step size). Assume (A1,

A2, A3). For a given T ≥ max{3, β} and η0 = (L(1 +
a))−1, with step size (2), SGD guarantees

Ef(xT+1)− f⋆ ≤ 5LC(β)

e2µ2

ln2 T
β

T
b

+ C(β) exp

(

−0.69µ

L+ a

(

T

ln T
β

))

· (f(x1)− f⋆),

where C(β) , exp ((2µβ)/(L(1 + a) lnT/β)).

Choice of β Note that if β = L(1 + a)/µ, we get

Ef(xT+1)− f⋆

≤ O

(

exp

(

− µ

L+ a

(

T

ln µT
L

))

+
b ln2 µT

L

µ2T

)

.

In words, this means that we are basically free to choose β,

but will pay an exponential factor in the mismatch between

β and L
µ , which is basically the condition number for PL

functions. This has to be expected because it also happens in

the easier case of stochastic optimization of strongly convex

functions (Bach & Moulines, 2011).

Theorem 2 (SGD with cosine step size). Assume (A1, A2,

A3). For a given T and η0 = (L(1 + a))−1, with step size

(3), SGD guarantees

Ef(xt+1)− f⋆ ≤ exp

(

− µ(T − 1)

2L(1 + a)

)

(f(x1)− f⋆)

+
π4b

32(1 + a)T 4

(

(

8T 2

µ

)4/3

+

(

6T 2

µ

)

5
3

)

.
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Adaptivity to Noise From the above theorems, we can see

that both the exponential step size and the cosine step size

have a provable advantage over polynomial ones: adaptivity

to the noise. Indeed, when b = 0, namely there is only noise

relative to the distance from the optimum, they both guar-

antee a linear rate. Meanwhile, if there is noise, using the

same step size without any tuning, the exponential step size

recovers the rate of O
(

1/(µ2T )
)

while the cosine step size

achieves the rate of O(1/(µ
5
3T

2
3 )) (up to poly-logarithmic

terms). In contrast, polynomial step sizes would require two

different settings—decaying vs constant—in the noisy vs

no-noise situation (Karimi et al., 2016). It is worth stressing

that the rate in Theorem 1 is one of the first results in the

literature on stochastic optimization of smooth PL functions

(Khaled & Richtárik, 2020).

Optimality of the bounds As far as we know, it is unknown

if the rate we obtain for the optimization of non-convex

smooth functions under the PL condition is optimal or not.

However, up to poly-logarithmic terms, Theorem 1 matches

at the same time the best-known rates for the noisy and

deterministic cases (Karimi et al., 2016) (see also Theorem 5

in the Appendix). We would remind the reader that this rate

is not comparable with the one for strongly convex functions

which is O(1/(µT )). Meanwhile, cosine step size achieves

a rate slightly worse in T (but better in µ) under the same

assumptions.

Cosine Step Size with Restarts The original cosine step-

size was proposed with a restarting strategy, yet it has been

commonly used without restarting and achieves good re-

sults (e.g., Loshchilov & Hutter, 2017; Gastaldi, 2017; Zoph

et al., 2018; He et al., 2019; Cubuk et al., 2019; Liu et al.,

2018; Zhao et al., 2020; You et al., 2020; Chen et al., 2020;

Grill et al., 2020). Indeed, the previous theorem has con-

firmed that the cosine stepsize alone is well worth studying

theoretically. Yet for completeness, we cover the analysis in

a restart scheme for SGD with cosine stepsize in the PL con-

dition in Appendix A.2. We obtain the same convergence

rate µ and T as that in the case of no restarts under the PL

condition.

Convergence without the PL condition The PL condition

tells us that all stationary points are optimal points (Karimi

et al., 2016), which is not always true for the parameter

space in deep learning (Jin et al., 2017). However, this

condition might still hold locally, for a considerable area

around the local minimum. Indeed, as we said, this is exactly

what was proven for deep neural networks (Allen-Zhu et al.,

2019). The previous theorems tell us that once we reach the

area where the geometry of the objective function satisfies

the PL condition, we can get to the optimal point with an

almost linear rate, depending on the noise. Nevertheless,

we still have to be able to reach that region. Hence, in the

following, we discuss the case where the PL condition is

not satisfied and show for both step sizes that they are still

able to move to a critical point at the optimal speed.

Theorem 3. Assume (A1), (A3) and c > 1. SGD with step

sizes (2) with η0 = (cL(1 + a))−1 guarantees

E‖∇f(x̃T )‖2 ≤
3Lc(a+ 1) ln T

β

T − β
· (f(x1)− f⋆)

+
bT

c(a+ 1)(T − β)
,

where x̃T is a random iterate drawn from x1, . . . ,xT with

P[x̃T = xt] =
ηt∑
T
i=1

ηi
.

Theorem 4. Assume (A1), (A3) and c > 1. SGD with step

sizes (3) with η0 = (cL(1 + a))−1 guarantees

E‖∇f(x̃T )‖2 ≤ 4Lc(a+ 1)

T − 1
· (f(x1)− f⋆)

+
21bT

4π4cL(a+ 1)(T − 1)
,

where x̃T is a random iterate drawn from x1, . . . ,xT with

P[x̃T = xt] =
ηt∑
T
i=1

ηi
.

If b 6= 0 in (A3), setting c ∝
√
T and β = O(1) would

give the Õ(1/
√
T ) rate2 and O(1/

√
T ) for the exponential

and cosine step size respectively. Note that the optimal rate

in this setting is O(1/
√
T ). On the other hand, if b = 0,

setting c = O(1) and β = O(1) yields a Õ(1/T ) rate and

O(1/T ) for the exponential and cosine step size respectively.

It is worth noting that the condition b = 0 holds in many

practical scenarios (Vaswani et al., 2019a). Note that both

guarantees are optimal up to poly-logarithmic terms (Arje-

vani et al., 2019).

In the following, we present the main elements of the proofs

of these theorems, leaving the technical details in the Ap-

pendix. The proofs also show the mathematical similarities

between these two step sizes.

Proofs of the Theorems Given that the space is limited,

we defer the proofs of Theorem 3 and Theorem 4 to the

Appendix.

We first introduce some technical lemmas whose proofs are

in the Appendix.

Lemma 1. Assume (A1), (A3), and ηt ≤ 1
L(1+a) . SGD

guarantees

Ef(xt+1)− Ef(xt) ≤ −ηt
2
E‖∇f(xt)‖2 +

Lη2t b

2
. (4)

Lemma 2. Assume Xk, Ak, Bk ≥ 0, k = 1, ..., and

Xk+1 ≤ AkXk +Bk, then we have

Xk+1 ≤
k
∏

i=1

AiX1 +

k
∑

i=1

k
∏

j=i+1

AjBi .

2The Õ notations hides poly-logarithmic terms.
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Lemma 3. For ∀T ≥ 1, we have
∑T

t=1 cos
tπ
T = −1.

Lemma 4. For T ≥ 3, α ≥ 0.69 and αT+1

(1−α) ≤
2β
ln T

β

.

Lemma 5. 1− x ≤ ln
(

1
x

)

, ∀x > 0.

Lemma 6. Let a, b ≥ 0. Then

T
∑

t=0

exp(−bt)ta ≤ 2 exp(−a)
(a

b

)a

+
Γ(a+ 1)

ba+1
.

We can now prove both Theorem 1 and Theorem 2.

Proof of Theorem 1 and Theorem 2. Denote Ef(xt) − f⋆

by ∆t. From Lemma 1 and the PL condition, we get

∆t+1 ≤ (1− µηt)∆t +
L

2
η2t b

2 .

By Lemma 2 and 1− x ≤ exp(−x), we have

∆T+1 ≤
T
∏

t=1

(1− µηt)∆1 +
L

2

T
∑

t=1

T
∏

i=t+1

(1− µηi)η
2
t b

≤ exp

(

−µ

T
∑

t=1

ηt

)

∆1 +
Lb

2

T
∑

t=1

exp

(

−µ

T
∑

i=t+1

ηi

)

η2t .

We then show that both the exponential step size and the

cosine step size satisfy
∑T

t=1 ηt = Ω(T ), which guarantees

a linear rate in the noiseless case.

For the cosine step size (3), we observe that

T
∑

t=1

ηt =
η0T

2
+

η0
2

T
∑

t=1

cos
tπ

T
=

η0(T − 1)

2
,

where in the last equality we used Lemma 3.

Also, for the exponential step size (2), we can show

T
∑

t=1

ηt = η0
α− αT+1

1− α
≥ η0α

1− α
− 2η0β

ln T
β

≥ T · 0.69η0
ln T

β

− 2η0β

ln T
β

,

where we used Lemma 4 in the first inequality and Lemma 5

in the second inequality.

Next, we upper bound
∑T

t=1 exp
(

−µ
∑T

i=t+1 ηi

)

η2t for

these two kinds of step sizes respectively.

For the exponential step size, by Lemma 4, we obtain

T
∑

t=1

exp

(

−µ
T
∑

i=t+1

ηi

)

η2t

= η20

T
∑

t=1

exp

(

−µη0
αt+1 − αT+1

1− α

)

α2t

≤ η20C(β)
T
∑

t=1

exp

(

−µη0α
t+1

1− α

)

α2t

≤ η20C(β)

T
∑

t=1

(

e

2

µαt+1

L(1 + a)(1− α)

)−2

α2t

≤ 4L2(1 + a)2

e2µ2

T
∑

t=1

1

α2
ln2
(

1

α

)

≤
10L2(1 + a)2 ln2 T

β

e2µ2T
,

where in the second inequality we used exp(−x) ≤
(

γ
ex

)γ
, ∀x > 0, γ > 0.

For the cosine step size, using the fact that sinx ≥ 2
πx for

0 ≤ x ≤ π
2 , we can lower bound

∑T
i=t+1 ηi by

T
∑

i=t+1

ηi =
η0
2

T
∑

i=t+1

(

1 + cos
iπ

T

)

=
η0
2

T−t−1
∑

i=0

sin2
iπ

2T
≥ η0

2T 2

T−t−1
∑

i=0

i2

≥ η0(T − t− 1)3

6T 2
.

Then, we proceed

T
∑

t=1

exp

(

−µ

T
∑

i=t+1

ηi

)

η2t

≤ η20
4

T
∑

t=1

(

1 + cos
tπ

T

)2

exp

(

−µη0(T − t− 1)3

6T 2

)

=
η20
4

T−1
∑

t=1

(

1− cos
tπ

T

)2

exp

(

−η0µ(t− 1)3

6T 2

)

= η20

T−1
∑

t=1

sin4
tπ

2T
exp

(

−η0µ(t− 1)3

6T 2

)

≤ η20π
4

16T 4

T−1
∑

t=0

t4 exp

(

−η0µt
3

6T 2

)

≤ η0π
4

16T 4

(

2 exp

(

−4

3

)(

8T 2

µ

)4/3

+

(

6T 2

µ

)

5
3

)

,

where in the third line we used cos(π − x) = − cos(x), in

the forth line we used 1− cos(2x) = 2 sin2(x), and in the

last inequality we applied Lemma 6.

Putting things together, we get the stated bounds.
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