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Abstract

In hypothesis testing, a false discovery occurs

when a hypothesis is incorrectly rejected due to

noise in the sample. When adaptively testing mul-

tiple hypotheses, the probability of a false discov-

ery increases as more tests are performed. Thus

the problem of False Discovery Rate (FDR) con-

trol is to find a procedure for testing multiple

hypotheses that accounts for this effect in deter-

mining the set of hypotheses to reject. The goal

is to minimize the number (or fraction) of false

discoveries, while maintaining a high true posi-

tive rate (i.e., correct discoveries). In this work,

we study False Discovery Rate (FDR) control in

multiple hypothesis testing under the constraint of

differential privacy for the sample. Unlike previ-

ous work in this direction, we focus on the online

setting, meaning that a decision about each hy-

pothesis must be made immediately after the test

is performed, rather than waiting for the output

of all tests as in the offline setting. We provide

new private algorithms based on state-of-the-art

results in non-private online FDR control. Our

algorithms have strong provable guarantees for

privacy and statistical performance as measured

by FDR and power. We also provide experimental

results to demonstrate the efficacy of our algo-

rithms in a variety of data environments.

1. Introduction

In the modern era of big data, data analyses play an impor-

tant role in decision-making in healthcare, information tech-

nology, and government agencies. The growing availability
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of large-scale datasets and ease of data analysis, while bene-

ficial to society, has created a severe crisis of reproducibility

in science. In 2011, Bayer HealthCare reviewed 67 in-house

projects and found that they could replicate fewer than 25

percent, and found that over two-thirds of the projects had

major inconsistencies (National Academies, 2019). One

major reason is that random noise in the data can often be

mistaken for interesting signals, which does not lead to valid

and reproducible results. This problem is particularly rel-

evant when testing multiple hypotheses, when there is an

increased chance of false discoveries based on noise in the

data. For example, an analyst may conduct 250 hypothesis

tests and find that 11 are significant at the 5% level. This

may be exciting to the researcher who publishes a paper

based on these findings, but elementary statistics suggests

that (in expectation) 12.5 of those tests should be significant

at that level purely by chance, even if the null hypotheses

were all true. To avoid such problems, statisticians have

developed tools for controlling overall error rates when per-

forming multiple hypothesis tests.

In hypothesis testing, the null hypothesis of no interesting

scientific discovery (e.g., a drug has no effect), is tested

against the alternative hypothesis of a particular scientific

theory being true (e.g., a drug has a particular effect). The

significance of each test is measured by a p-value, which is

the probability of the observed data occurring under the null

hypothesis, and a hypothesis is rejected if the correspond-

ing p-value is below some (fixed) significance level. Each

rejection is called a discovery, and a rejected hypothesis is a

false discovery if the null hypothesis is actually true. When

testing multiple hypotheses, the probability of a false dis-

covery increases as more tests are performed. The problem

of false discovery rate (FDR) control is to find a procedure

for testing multiple hypotheses that takes in the p-values

of each test, and outputs a set of hypotheses to reject. The

goal is to minimize the number of false discoveries, while

maintaining high true positive rate (i.e., true discoveries).

In many applications, the dataset may contain sensitive per-

sonal information, and the analysis must be conducted in a

privacy-preserving way. For example, in genome-wide asso-

ciation studies (GWAS), a large number of single-nucleotide

polymorphisms (SNPs) are tested for an association with a

disease simultaneously or adaptively. Prior work has shown

that the statistical analysis of these datasets can lead to
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privacy concerns, and it is possible to identify an individ-

ual’s genotype when only minor allele frequencies are re-

vealed (Homer et al., 2008). The field of differential pri-

vacy (Dwork et al., 2006) offers data analysis tools that

provide powerful worst-case privacy guarantees, and has

become a de facto gold standard in private data analysis.

Informally, an algorithm that is ε-differentially private en-

sures that any particular output of the algorithm is at most

eε more likely when a single data point is changed. This

parameterization allows for a smooth tradeoff between ac-

curate analysis and privacy to the individuals who have

contributed data. In the past decade, researchers have devel-

oped a wide variety of differentially private algorithms for

many statistical tasks; these tools have been implemented in

practice at major organizations including Google (Erlings-

son et al., 2014), Apple (Differential Privacy Team, Apple,

2017), Microsoft (Ding et al., 2017), and the U.S. Census

Bureau (Dajani et al., 2017).

Related Work. The only prior work on differentially pri-

vate FDR control (Dwork et al., 2018) considers the classic

offline multiple testing problem, where an analyst has all the

hypotheses and corresponding p-values upfront. Their pri-

vate method repeatedly applies REPORTNOISYMIN (Dwork

& Roth, 2014) to the celebrated Benjamini-Hochberg (BH)

procedure (Benjamini & Hochberg, 1995) in offline multiple

testing to privately pre-screen the p-values, and then applies

the BH procedure again to select the significant p-values.

The (non-private) BH procedure first sorts all p-values, and

then sequentially compares them to an increasing thresh-

old, where all p-values below their (ranked and sequential)

threshold are rejected. The REPORTNOISYMIN mechanism

privatizes this procedure by repeatedly (and privately) find-

ing the hypothesis with the lowest p-value.

Although the work of (Dwork et al., 2018) showed that

it was possible to integrate differential privacy with FDR

control in multiple hypothesis testing, the assumption of

having all hypotheses and p-values upfront is not reason-

able in many practical settings. For example, a hospital

may conduct multi-phase clinical trials where more patients

join over time, or a marketing company may perform A/B

testings sequentially. In this work, we focus on the more

practical online hypothesis testing problem, where a stream

of hypotheses arrive sequentially, and decisions to reject

hypotheses must be made based on current and previous

results before the next hypothesis arrives. This sequence of

the hypotheses could be independent or adaptively chosen.

Due to the fundamental difference between the offline and

online FDR procedures, the method of (Dwork et al., 2018)

based on REPORTNOISYMIN cannot be applied to the on-

line setting. Instead, we use SPARSEVECTOR, described in

Section 2.1, as a starting point. Discussion of non-private

online multiple hypothesis testing appears in Section 2.2.

Our Results. We develop a differentially private online

FDR control procedure for multiple hypothesis testing,

which takes a stream of p-values and a target FDR level

and privacy parameter ε, and outputs discoveries that can

control the FDR at a certain level at any time point. Such a

procedure provides unconditional differential privacy guar-

antees (to ensure that privacy will be protected even in the

worst case) and satisfy the theoretical guarantees dictated

by the FDR control problem.

Our algorithm, Private Alpha-investing P-value Rejecting It-

erative sparse veKtor Algorithm (PAPRIKA, Algorithm 1),

is presented in Section 3. Its privacy and accuracy guaran-

tees are stated in Theorem 3 and 4, respectively. While the

full proofs appear in the appendix, we describe the main

ideas behind the algorithms and proofs in the surrounding

prose. In Section 4, we provide a thorough empirical inves-

tigation of PAPRIKA, with additional empirical results in

Appendix C.

2. Preliminaries

2.1. Background on Differential Privacy

Differential Privacy bounds the maximal amount that one

data entry can change the output of the computation.

Databases belong to the space Dn and contain n entries–

one for each individual–where each entry belongs to data

universe D. We say that D,D′ ∈ Dn are neighboring

databases if they differ in at most one data entry.

Definition 1 (Differential Privacy (Dwork et al., 2006)). An

algorithm M : Dn → R is (ε, δ)-differentially private if

for every pair of neighboring databases D,D′ ∈ R
n, and

for every subset of possible outputs S ⊆ R, Pr[M(D) ∈
S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ. If δ = 0, we say that M
is ε-differentially private.

The additive sensitivity of a real-valued query f : Dn → R

is denoted ∆f , and is defined to be the maximum change in

the function’s value that can be caused by changing a single

entry. That is, ∆f = maxD,D′ neighbors |f(D)− f(D′)| .
Differential privacy guarantees are often achieved by adding

Laplace noise at various places in the computation, where

the noise scales with ∆f/ε. A Laplace random variable

with parameter b is denoted Lap(b), and has probability

density function, pLap(b)(x) =
1
2b exp

(
−|x|
b

)
∀x ∈ R.

The SPARSEVECTOR algorithm, first introduced by (Dwork

et al., 2010) and refined to its current form by (Dwork &

Roth, 2014), privately reports the outcomes of a potentially

very large number of computations, provided that only a

few are “significant.” It takes in a stream of queries and

releases a bit vector indicating whether or not each noisy

query answer is above the fixed noisy threshold. Pseudocode

appears in Appendix A. We build off this algorithm, using
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it as a framework for our online private false discovery rate

control algorithm as new hypotheses arrive online, and we

only care about those “significant” hypotheses when the p-

value is below a certain threshold. We note that the standard

presentation below checks for queries with values above a

threshold, but by simply changing signs this framework can

be used to check for values below a threshold, as we will do

with the p-values.

Theorem 1 ((Dwork et al., 2010)). For any sequence of

k queries f1, . . . , fk with sensitivity ∆ such that |{i :
fi(D) ≥ T − αSV }| ≤ c, SPARSEVECTOR outputs with

probability at least 1− β a stream of a1, . . . , ak ∈ {>,⊥}
such that ai = ⊥ for every i ∈ [m] with f(i) < T − αSV

and ai = > for every i ∈ [m] with f(i) > T +αSV as long

as αSV ≥ 8∆c log(2kc/β)
ε .

Unlike the conventional use of additive sensitivity, (Dwork

et al., 2018) defined the notion of multiplicative sensitivity

specifically for p-values. It is motivated by the observation

that, although the additive sensitivity of a p-value may be

large, the relative change of the p-value on two neighboring

datasets is stable unless the p-value is very small. This

notion allows us to treat the logarithm of the p-values as

having additive sensitivity η, substantially reducing the scale

of noise required to preserve privacy.

Definition 2 (Multiplicative Sensitivity (Dwork et al.,

2018)). A p-value function p is said to be (η, µ)-
multiplicative sensitive if for all neighboring databases D
and D′, either both p(D), p(D′) ≤ µ or

exp(−η)p(D) ≤ p(D′) ≤ exp(η)p(D).

2.2. Background on Online False Discovery Rate

Control

In the online false discovery rate (FDR) control problem, a

data analyst receives a stream of hypotheses on the database

D, or equivalently, a stream of p-values p1, p2, . . .. The

analyst must pick a threshold αt at each time t to reject

the hypothesis when pt ≤ αt; this threshold can depend on

previous hypotheses and discoveries, and rejection must be

decided before the next hypothesis arrives.

The error metric is the false discovery rate, formally de-

fined as: FDR = E [FDP] = E

[
|H0∩R|

|R|

]
, where H0 is

the (unknown to the analyst) set of hypotheses where the

null hypothesis is true, and R is the set of rejected hy-

potheses. We will also write these terms as a function of

time t to indicate their values after the first t hypotheses:

FDR(t), FDP(t), H0(t), R(t). The goal of FDR control

is to guarantee that for any time t, the FDR up to time t is

less than a pre-determined quantity α ∈ (0, 1).

Such a problem was first investigated by (Foster & Stine,

2008), who proposed a framework known as online alpha-

investing that models the hypothesis testing problem as an

investment problem. The analyst is endowed with an initial

budget, can test hypotheses at a unit cost, and receives an

additional reward for each discovery. The alpha-investing

procedure ensures that the analyst always maintains an α-

fraction of their wealth, and can therefore continue testing

future hypotheses indefinitely. Unfortunately, this approach

only controls a slightly relaxed version of FDR, known as

mFDR, which is given by mFDR(t) =
E[|H0∩R|]

E[|R|] . This

approach was later extended to a class of generalized alpha-

investing (GAI) rules (Aharoni & Rosset, 2014).

A generalized alpha-investing procedure starts with an ini-

tial wealth W (0) = α, where α is the testing level. It

uses a GAI rule IW (0) that takes in past rejections to de-

termine three quantities at each time t: the level of the

test αt, the amount ϕt subtracted from the wealth, and

the reward ψt received for each discovery. (αt, ϕt, ψt) =
IW (0)({R1, R2, . . . , Rt−1}). The wealth updating rule is

W (t) = W (t − 1) − ϕt + Rtψt. A GAI rule maintains

nonnegative wealth W (t) ≥ 0 for any t, and the following

ineuqality holds:

0 ≤ ψt ≤ min(
ϕt

ρt
+ α,

ϕt

ρt
+ α− 1), (1)

where ρt is the best power of the t-th test.

One subclass of GAI rules, the Level based On Recent Dis-

covery (LORD), was shown to have consistently good per-

formance in practice (Javanmard & Montanari, 2015; 2018).

GAI++ in (Ramdas et al., 2017) improves the class of GAI,

with LORD++ as an explicit example. The SAFFRON

procedure, proposed by (Ramdas et al., 2018), further im-

proves the LORD procedures by adaptively estimating the

proportion of true nulls, and is the current state-of-the-art in

online FDR control for multiple hypothesis testing.

To understand the main differences between the SAFFRON

and the LORD procedures, we first introduce an oracle

estimate of the FDP as FDP∗(t) =
∑

j≤t,j∈H0 αj

|R(t)| . The nu-

merator
∑

j≤t,j∈H0 αj overestimates the number of false

discoveries, so FDP∗(t) overestimates the FDP. The or-

acle estimator FDP∗(t) cannot be calculated since H0 is

unknown. LORD’s naive estimator
∑

j≤t αj/|R(t)| is a

natural overestimate of FDP∗(t). The SAFFRON’s thresh-

old sequence is based on a novel estimate of FDP as

F̂DPSAFFRON(t) =

∑
j≤t αj

I(pj>λj)

1−λj

|R(t)| , where {λj}
∞
j=1 is a

sequence of user-chosen parameters in the interval (0, 1),
which can be a constant or a deterministic function of the

information up to time t − 1. This estimate provides the

null-proportion adaptivity basis for SAFFRON.

Our private algorithm is built upon the LORD++ and the

SAFFRON algorithms, which are given formally in Al-

gorithm 3 and 4 in Appendix A. As a class of GAI, the
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LORD++ and the SAFFRON both start off with an er-

ror budget, which will be allocated to different tests over

time. The wealth budget decays as each hypothesis is tested,

and it earns back wealth on every rejection except for the

first. The decay factors γj that depreciate past wealth is a

non-increasing sequence summing to one, which ensures

that the sum of the wealth budget is always below the de-

sired level α. SAFFRON involves an additional candidacy

checking step to be null-proportion adaptive: it never loses

wealth when testing candidate p-values with pj < λj . The

sequence {λj}
∞
j=1 can be defined by any coordinatewise

non-decreasing function gt. For example, {λj}
∞
j=1 can be a

deterministic sequence of constants, or λt = αt, as in the

case of alpha-investing. These λj values serve as a weak

overestimate of αj . The algorithm first checks if a p-value is

below λj , and if so, adds it to the candidate set of hypothe-

ses that may be rejected. It then computes the αj threshold

based on current wealth, current size of the candidate set,

and the number of rejections so far, and decides to reject the

hypothesis if pj ≤ αj .

Both LORD++ and SAFFRON require that the input se-

quence of p-values are still valid p-values given past infor-

mation. which is formalized as conditional super-uniformity

of null p-values, with respect to a filtration process on the

sequence of rejection decisions {Rj} and candidacy {Cj}
(for SAFFRON). This is stated formally in Appendix A.

Intuitively, it means that the sequence of hypotheses cannot

be overly adaptive. Independent p-values is a special case

of conditional super-uniformity.

SAFFRON provides the following accuracy guarantees un-

der this condition.

Theorem 2 ((Ramdas et al., 2018)). If the null p-values are

conditionally super-uniformly distributed, then we have:

(a) E
[∑

j≤t,j∈H0 αj
I(pj>λj)

1−λj

]
≥ E

[
|H0 ∩R(t)|

]
;

(b) The condition F̂DPSAFFRON(t) ≤ α for all t ∈ N implies

that mFDR(t) ≤ α for all t ∈ N.

If the null p-values are independent of each other

and of the non-null p-values, and {αt} and {λt} are

coordinatewise non-decreasing functions of the vector

R1, . . . , Rt−1, C1, . . . , Ct−1, then

(c) E
[
F̂DPSAFFRON(t)

]
≥ E [FDP (t)] := FDR(t) for all

t ∈ N;

(d) The condition F̂DPSAFFRON(t) ≤ α for all t implies that

FDR(t) ≤ α for all t ∈ N.

3. Private online false discovery rate control

In this section, we provide our algorithm for private on-

line false discovery rate control, PAPRIKA, given formally

in Algorithm 1. It starts with SAFFRON, using SPARSE-

VECTOR to ensure privacy of the rejection set. However,

the combination of these tools is far from immediate, and

several algorithmic innovations are required, including: dy-

namic thresholds in SPARSEVECTOR to accommodate the

alpha-investing rule, adding noise that scales with the multi-

plicative sensitivity of p-values to reduce the noise required

for privacy, shifting the SparseVector threshold to accom-

modate FDR as a novel accuracy metric, and the candidacy

indicator step which cannot be done privately and requires

modifications to the wealth updates. We resolve this by

using a similar wealth updating rule as in LORD++. We

provide new analysis for both privacy and accuracy. Com-

plete proofs of our privacy and accuracy results appear in

the appendix; we elaborate here on the algorithmic details

and why these modifications are needed to ensure privacy

and FDR control.

The non-private online false discovery rate control algo-

rithms decide to reject hypothesis t if the corresponding

p-value pt is less than the rejection threshold αt; that is, if

pt ≤ αt. We instantiate the SPARSEVECTOR framework

in this setting, where pt plays the role of the tth query an-

swer ft(X), and αt plays the role of the threshold. Note

that SPARSEVECTOR uses a single fixed threshold for all

queries, while our algorithm PAPRIKA allows for a dy-

namic threshold that depends on the previous output. Our

privacy analysis of the algorithm accounts for this change

and shows that dynamic thresholds do not affect the privacy

guarantees of SPARSEVECTOR. However, the algorithm

would not be private if the dynamic thresholds also depend

on the data. Note that SAFFRON never loses wealth when

testing candidate p-values with pj ≤ λj , and the threshold

αj depends on the data since it is based on current wealth.

We remove such dependence in PAPRIKA by losing wealth

at every step regardless of whether we test a candidate p-

values, similar to LORD++. This will result in stricter

FDR control (and potentially weaker power) because our

wealth decays faster.

Similar to prior work on private offline FDR control (Dwork

et al., 2018), we use multiplicative sensitivity as described

in Definition 2, as p-values may have high sensitivity and

require unacceptably large noise to be added to preserve

privacy. We assume that our input stream of p-values

p1, p2, . . . , each has multiplicative sensitivity (η, µ). As

long as µ is small enough (i.e., less than the rejection thresh-

old), we can treat the logarithm of the p-values as the queries

with additive sensitivity η. Because of this change, we must

make rejection decisions based on the logarithm of the p-

values, so our reject condition is log pt +Zt ≤ logαt +Zα

for Laplace noise terms Zt, Zα drawn from the appropriate

distributions.
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Algorithm 1 PAPRIKA(α, λ,W0, γ, c, ε, δ, s)

Input: stream of p-values {p1, p2, . . .} with mutiplica-

tive sensitivity (η,µ), target FDR level α, initial wealth

W0 < α, positive non-increasing sequence {γj}
∞
j=0 of

summing to one, expected number of rejections c, privacy

parameters ε, δ, threshold shift magnitude s, maximum

number of p-values k.

Let Z0
α ∼ Lap(2ηc/ε), count = 0,

A = scη
ε log 2

3min{δ,1−((1−δ)/ exp(ε))1/k}

for each p-value pt do

if count ≥ c then Output Rt = 0
else

Sample Zt ∼ Lap(4ηc/ε). Set λt =
gt(R1:t−1, C1:t−1). Set the indicator for candi-

dacy Ct = I(log pt < log 2λt).
if t = 1
then Set α1 = (1− 2λ1)γ1W0

else

Compute αt = (1 − 2λt)(W0γt + (α −W0)γt−τ1 +∑
j≥2 αγt−τj )

if Ct = 1 and log pt + Zt ≤ logαt −A+ Zcount
α

then OutputRt = 1. Set count = count +1 and sample

Zcount
α ∼ Lap(2ηc/ε)

else Output Rt = 0
end for

The accuracy guarantees of SPARSEVECTOR ensure that

if a value is reported to be below threshold, then with

high probability it will not be more than αSV above the

threshold. However, to ensure that our algorithm satis-

fies the desired bound FDR ≤ α, we require that re-

ports of “below threshold” truly do correspond to p-values

that are below the desired threshold αt. To accommodate

this, we shift our rejection threshold logαt down by a pa-

rameter A. A is chosen such that the algorithm satisfies

(ε, δ)-differential privacy, but the choice can be seen as in-

spired by the αSV -accuracy term of SPARSEVECTOR as

given in Theorem 1. Therefore our final reject condition is

log pt + Zt ≤ logαt − A+ Zα. This ensures that “below

threshold” reports are below (logαt −A) + αSV ≈ logαt

with high probability. Empirically, we see that the bound of

A in Theorem 3 may be overly conservative and lead to no

hypotheses being rejected, so we allow an additional scaling

parameter s that will scale the magnitude of shift by a factor

of s. The conservative bounds of Theorem 3 correspond

to s = 4, but in many scenarios a smaller value of s = 1
or 2 will lead to better performance while still satisfying

the privacy guarantee. Further guidance choosing this shift

parameter is given in Appendix C.1.

Even with these modifications, a naive combination of

SPARSEVECTOR and SAFFRON would still not satisfy

differential privacy. This is due to the candidacy indicator

step of the algorithm. In the SAFFRON algorithm, a pre-

processing candidacy step occurs before any rejection deci-

sions. This step checks whether each p-value pt is smaller

than a loose upper bound λt on the eventual reject threshold

αt. The algorithm chooses αt using an α-investing rule

that depends on the number of candidate hypotheses seen

so far, and ensures that αt ≤ λt, so only hypotheses in

this candidate set can be rejected. These λ values are used

to control F̂DPSAFFRON(t), which serves as a conservative

overestimate of FDP(t). (For a discussion of how to choose

λt, see Lemma 1 or our experimental results in Section 4.

Reasonable choices would be λt = αt or a small constant

such as 0.2.)

Without adding noise to the candidacy condition, there may

be neighboring databases with p-values pt, p
′
t for some hy-

pothesis such that log pt < log λt < log p′t, and hence the

hypothesis would have positive probability of being rejected

under the first database and zero probability of rejection un-

der the neighbor. This would violate the (ε, 0)-differential

privacy guarantee intended under SPARSEVECTOR. If we

were to privatize the condition for candidacy using, for ex-

ample, a parallel instantiation of SPARSEVECTOR, then we

would have to reuse the same realizations of the noise when

computing the rejection threshold αt to still control FDP,

but this would no longer be private.

Since we cannot add noise to the candidacy condition, we

weaken it in PAPRIKA to be log pt < log 2λt
1 Then if a

hypothesis has different candidacy results under neighbor-

ing databases and the multiplicative sensitivity η is small,

then the hypothesis is still extremely unlikely to be rejected

even under the database for which it was candidate. To

see this, consider a pair of neighboring databases that in-

duce p-values where log pt < log 2λt < log p′t. Due

to the multiplicative sensitivity constraint, we know that

log pt ≥ log 2λt − η. Plugging this into the rejection

condition log pt + Zt ≤ logαt − A + Zα, we see that

we would need the difference of the noise terms to satisfy

Zt−Zα ≤ log 1
2 −A+η, which by analysis of the Laplace

distribution, will happen with exponentially small probabil-

ity in n when η = poly−1(n).2 Our PAPRIKA algorithm

is thus (ε, δ)-differentially private, and we account for this

1We note that although this change is algorithmically equiva-
lent to scaling up the parameter λt by a factor of 2, this slack is
relevant for certain instantiations of PAPRIKA that set λt = αt,
which we show perform well empirically. (See Section 4 for more
details.) We write this step as a relaxation of the candidacy con-
dition both for notational consistency with existing non-private
alpha-investing-based FDR control methods, such as SAFFRON
AI (Ramdas et al., 2018), that also choose λt = αt, and to em-
phasize that this slack in the candidacy condition is necessary in
ensuring differential privacy of the overall algorithm.

2Such values of η are typical; see examples in Section 4 where
η =

1
√

n
. The shift term A also has dependence on η which

contributes to the bound.
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failure probability in our (exponentially small) δ parameter,

as stated in Theorem 3.

One may wonder whether this candidacy step in necessary

at all. Since we have removed the dependence of αt on

the size of the candidate set in PAPRIKA, the threshold

αt is no longer null-proportion sensitive. The advantage of

being null-proportion adaptive in SAFFRON increases as

the proportion of non-nulls increases, but we focus on the

case where the non-nulls are sparse, and thus it has little

impact in our setting. In Section 4, we empirically compare

PAPRIKA to two private versions of LORD++, which

we call PrivLORD and PrivLORD2. The former combines

SPARSEVECTOR and LORD++, with the same threshold

shifting as described earlier in this section. The latter adds

the candidacy checking step on top of PrivLORD. We see

in Section 4.2 that both methods provide poor FDR control

relative to PAPRIKA, thus providing empirical evidence

that the candidacy step in PAPRIKA plays a vital role in

FDR control, even if αt is not null-proportion sensitive. Fur-

ther details about PrivLORD and PrivLORD2 are deferred

to Appendix C.

Our PAPRIKA algorithm allows analysts to specify a max-

imum number of hypotheses tested k and rejections c. We

require a bound on the maximum number of hypotheses

tested because the accuracy guarantees of SPARSEVECTOR

only allows exponentially (in the size of the database) many

queries to be answered accurately. Once the total number of

rejections reaches c, the algorithm will fail to reject all future

hypotheses. We do not halt the algorithm as in SPARSEVEC-

TOR and therefore, PAPRIKA does not have a stopping

criterion, and we can safely talk about the FDR control at

any fixed time, just like SAFFRON and LORD++.

Our algorithm also controls at each time t,

F̂DPPAPRIKA(t) ≤

∑
j≤t αt

I(pj>2λj)

1−2λj

|R(t)| . We note that

this is equivalent to F̂DPSAFFRON(t) by scaling down λj by

a factor of 2. By analyzing and bounding this expression,

we achieve FDR bounds for our PAPRIKA algorithm, as

stated in Theorem 4.

Theorem 3. For any stream of p-values {p1, p2, . . .}, PA-

PRIKA is (ε, δ)-differentially private.

As a starting point, our privacy comes from SPARSEVEC-

TOR, but as discussed above, many crucial modifications are

required. To briefly summarize the key considerations, we

must handle different thresholds at different times, multi-

plicative rather than additive sensitivity, a modified notion

of the candidate set, and introducing a small delta parameter

to account for the new candidate set definition and the shift.

The proof of Theorem 3 appears in Appendix D.

Next we describe the theoretical guarantees of FDR con-

trol for our private algorithm PAPRIKA which is an ana-

log of Theorem 2. We modify the notation of the condi-

tional super-uniformity assumption of SAFFRON to in-

corporate the added Laplace noise. The conditions are

otherwise identical. (See (2) in Appendix A for com-

parison.) We note that independent p-values is a spe-

cial case of conditional super-uniformity, but this require-

ment more generally allows for a broader class of de-

pendencies among p-values. Let Rj := I(pj + Zj ≤
αj + Zα) be the rejection decisions, and let Cj := I(pj ≤
2λj) be the indicators for candidacy. We let αt :=
ft(R1, . . . , Rt−1, C1, . . . , Ct−1), where ft is an arbitrary

function of the first t− 1 indicators for rejections and can-

didacy. Define the filtration formed by the sequences of σ-

fields F ′t := σ(R1, . . . , Rt, C1, . . . , Ct, Z1, . . . , Zt, Zα).
The null p-values are conditionally super-uniformly dis-

tributed with respect to the filtration F ′ if when the null

hypothesis Hi is true, then Pr(pt ≤ αt|F
′t−1

) ≤ αt. We

emphasize that this condition is only needed for FDR con-

trol, and that our privacy guarantee of Theorem 3 holds

for arbitrary streams of p-values, even those which do not

satisfy conditional super-uniformity.

Our FDR control guarantees for PAPRIKA mirror those of

SAFFRON (Theorem 2). The first two statements apply if

p-values are conditionally super-uniform, and the last two

statements apply if the p-values are additionally indepen-

dent under the null. The proof of Theorem 4 appears in

Appendix E.

Theorem 4. If the null p-values are conditionally super-

uniformly distributed, then we have:

(a) E
[∑

j≤t,j∈H0 αj
I(pj>2λj)

1−2λj

]
+ δt ≥ E

[
|H0 ∩R(t)|

]
;

(b)The condition F̂DPPAPRIKA(t) ≤ α for all t ∈ N implies

that mFDR(t) ≤ α+ δt for all t ∈ N.

If the null p-values are independent of each other

and of the non-null p-values, and {αt} and {λt} are

coordinate-wise non-decreasing functions of the vector

R1, . . . , Rt−1, C1, . . . , Ct−1, then

(c) E
[
F̂DPPAPRIKA(t)

]
+ δt ≥ E [FDP (t)] := FDR(t)

for all t ∈ N;

(d) The condition F̂DPPAPRIKA(t) ≤ α for all t implies that

FDR(t) ≤ α+ δt for all t ∈ N.

Relative to the non-private guarantees of Theorem 2, the

FDR bounds provided by PAPRIKA are weaker by an

additive of δt. In most differential privacy applications, δ is

typically required to be cryptographically small (i.e., at most

negligible in the size of the database) (Dwork & Roth, 2014),

so this additional term should have a minuscule effect on the

FDR.3 We note that ε plays a role in the analysis of Theorem

3Alternatively, δ could be treated like a tunable parameter to
balance the tradeoff between privacy and FDR control. If an
analyst has an upper bound on the allowable slack in FDR, say
0.01, then she could set δ = 0.01/t to ensure her desired bound.
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4, although it does not appear in FDR bounds. Equation

(22) in the appendix shows that the additive slack term δt

in Theorem 4 is in fact min
{
δ, 1− ((1− δ)/ exp(ε))

1
k

}
t,

which is upper bounded by δt.

The following lemma is a key tool in the proof of Theorem 4.

Though it is qualitatively similar to Lemma 2 in (Ramdas

et al., 2018), it is crucially modified to show an analogous

statement holds under the addition of Laplace noise. Its

proof appears in Appendix F.

Lemma 1. Assume p1, p2, . . . are all independent

and let h : {0, 1}k → R be any coordinate-wise

non-decreasing function. Assume ft and gt are

coordinate-wise non-decreasing functions and that

αt = ft(R1:t−1, C1:t−1) and λt = gt(R1:t−1, C1:t−1).
Then for any t ≤ k such that Ht ∈ H0, we have

E

[
αtI(pt>2λt)

(1−2λt)h(R1:k)
|F ′t−1

]
≥ E

[
αt

h(R1:k)
|F ′t−1

]

and E

[
min{αt exp(Zα−Zt−A),1}

h(R1:k)
|F ′t−1

]
≥

E

[
I(log pt+Zt≤logαt+Zα−A)

h(R1:k)
|F ′t−1

]
.

There are no known theoretical bounds on the statistical

power of SAFFRON even in the non-private setting. In-

stead, we validate power empirically through the experimen-

tal results in Section 4.

4. Experiments

We experimentally compare the FDR and the statistical

power of variations of the PAPRIKA and SAFFRON pro-

cedures, under different sequences of {λj}. Following the

convention of (Ramdas et al., 2018), we define PAPRIKA-

Alpha-Investing, or PAPRIKA AI, to be the instantiation

of Algorithm 1 with the sequence λj = αj , where the

rejection threshold matches the α-investing rule, and we

use PAPRIKA to denote Algorithm 1 instantiated with a

sequence of constant of λj , which in our experiments is

λj = 0.2. We use λj = 0.5 in SAFFRON.4 We gener-

ally observe that, even under moderately stringent privacy

restrictions, PAPRIKA and its AI variant perform compa-

rably to the non-private alternatives, with PAPRIKA AI

typically outperforming PAPRIKA. This suggests that even

though setting λj as a fixed constant may be easier for imple-

mentation, parameter optimization can lead to meaningful

performance improvements. We chose the sequence {γj} to

be a constant 1/k up to time k. Note that the sequence can be

decreasing such as of the form γj ∝ j−s in (Ramdas et al.,

2018), which controls the wealth to be more concentrated

around small values of j. See (Ramdas et al., 2018) for more

discussion on the choice of {γj}. In our experiments, we

set the target FDR level α+ δt = 0.2, and thus our privacy

4Recall from Section 3 that our λj is equivalent to the λj in
SAFFRON scaling down by a factor of 2.

parameter δ is set to be bounded by 0.2/800 = 2.5× 10−4.

The maximum number of rejections c = 40. All the results

are averaged over 100 runs. We investigate two settings: the

observations come Bernoulli distributions in Section 4.1,

and the observations are generated from truncated exponen-

tial distributions in Section 4.3. In Section 4.2, we com-

pare our algorithm against other private algorithms. In Ap-

pendix C.1, we discuss our choice of the shift parameter A
and give guidance on how to choose this parameter in prac-

tice. Code for PAPRIKA and our experiments is available

at https://github.com/wanrongz/PAPRIKA.

4.1. Testing with Bernoulli Observations

We assume that the database D contains n individuals with

k independent features. The ith feature is associated with n
i.i.d. Bernoulli variables ξi1, . . . , ξ

i
n, each of which takes the

value 1 with probability θi, and takes the value 0 otherwise.

Let ti be the sum of the ith features. A p-value for testing

null hypothesis Hi
0 : θi ≤ 1/2 against Hi

1 : θi > 1/2
is given by pi(D) =

∑n
k=ti

1
2n

(
n
k

)
. (Dwork et al., 2018)

showed that pi is (µ, η)-multiplicatively sensitive for µ =

m−1−c and η �
√

logn
n , where m ≤ poly(n) and c is

any small positive constant. We choose θi = 0.5 with

probability 1− π1, and θi = 0.75 with probability π1, for

varying values of π1, which represents the expected fraction

of non-null hypotheses. We consider relatively small values

of π1 as most practical applications of FDR control (such

as GWAS studies) will have only a small fraction of true

“discoveries” in the data.

In the following experiments, we sequentially test Hi
0 ver-

sus Hi
1 for i = 1, . . . , k. We use n = 1000 as the size of

the database D, and k = 800 as the number of features

as well as the number of hypotheses. Our experiments

are run under several different shifts A, but due to space

constraints, we only report results in the main body with

A = cη
ε log 2

3min{δ,1−((1−δ)/ exp(ε))1/k}
(i.e., when s = 1),

which still satisfies our privacy guarantee. Further discus-

sion on the choice of A and additional results under other

shift parameters s are deferred to Appendix C.1. The re-

sults are summarized in Figure 1, which plots the FDR and

statistical power against the expected fraction of non-nulls,

π1. In Figure 1(a) and (b), we compare our algorithms

with privacy parameter ε = 5 to the non-private baseline

methods of LORD (Javanmard & Montanari, 2015; 2018),

Alpha-investing (Aharoni & Rosset, 2014), and SAFFRON

and SAFFRON AI from (Ramdas et al., 2018). In Figure

1(c,d) and (e,f), we compare the performance of PAPRIKA

AI and PAPRIKA, respectively, with varying privacy pa-

rameters ε = 3, 5, 10. We also list these values in Table 1

in Appendix C.2.

As expected, the performance of PAPRIKA generally di-

minishes as ε decreases. A notable exception is that FDR
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