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Abstract

In this work we consider the problem of on-
line submodular maximization under a car-
dinality constraint with differential privacy
(DP). A stream of T submodular functions
over a common finite ground set U arrives on-
line, and at each time-step the decision maker
must choose at most k£ elements of U before
observing the function. The decision maker
obtains a profit equal to the function evalu-
ated on the chosen set and aims to learn a
sequence of sets that achieves low expected
regret.

In the full-information setting, we develop
an (e,6)-DP algorithm with expected (1 —

2 .
1/e)-regret bound of O K log U1 v Tlogk/0 ).

This algorithm contains k£ ordered experts
that learn the best marginal increments
for each item over the whole time hori-
zon while maintaining privacy of the func-
tions. In the bandit setting, we pro-
vide an (g,0 + O(e‘Tl/S))—DP algorithm
with expected (1 — 1/e)-regret bound of

0 @(’fﬂw10g|U|)1/3)2T2/3>. One

challenge for privacy in this setting is that
the payoff and feedback of expert ¢ depends
on the actions taken by her i —1 predecessors.
This particular type of information leakage
is not covered by post-processing, and new
analysis is required. Our techniques for main-
taining privacy with feedforward may be of
independent interest.
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1 INTRODUCTION

Ensuring users’ privacy has become a critical task in
online learning algorithms. As an illustrative example,
sponsored search engines aim to maximize the proba-
bility that displayed ads or products are clicked by in-
coming customers, but prospective customers do not
want their privacy infringed after clicking on a prod-
uct. Users visiting online retailer web-pages such as
Amazon, Walmart or Target leave behind an abun-
dance of sensitive personal information that can be
used to predict their behaviors or preferences, poten-
tially leading to catastrophic results (Zhang et al.,
2014)!. In this work, we introduce the first algorithms
for privacy-preserving online monotone submodular
maximization under a cardinality constraint.

A submodular set function f : 2V — R exhibits dimin-
ishing returns, meaning that adding an element x to a
larger set B creates less additional value than adding
x any subset of B. (See Definition 1 in Section 2 for a
formal definition.) Submodular functions have found
widespread application in economics, computer science
and operations research (see, e.g., Bach et al. (2013)
and Krause and Golovin (2014)), and have recently
gained attention as a modeling tool for data summa-
rization and ad display (Ahmed et al., 2012; Streeter
et al., 2009; Badanidiyuru et al., 2014). We addition-
ally consider monotone submodular functions, where
adding elements to a set can only increase the value of
f- Since unconstrained monotone submodular maxi-
mization is trivial—f(S) can be maximized by choos-
ing the entire universe S = U—we consider cardinality
constrained maximization, where the decision-maker
solves: maxgscy f(9) s.t. |S| < k.

In the online learning setting, at each time-step t a
learner must choose a set Sy C U of size at most k
and receives payoff f;(S;) for a monotone submodular
function f;. Importantly, the learner does not know f;
before she chooses S;, but this set can be chosen based
on previous functions f1,..., fi—1. Two types of infor-

!See also https://www.nytimes.com/2012/02/19/
magazine/shopping-habits.html
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mational feedback are commonly studied in the online
learning literature. In the full-information setting, the
learner gets full oracle access to the function f; after
choosing S, and thus is able to incorporate the en-
tirety of previous functions into her future decisions.
In the bandit setting, the learner only observes her own
payoff f;(S;) as feedback.

Performance of an online learner is typically mea-
sured by the regret, which is the difference between
the best fixed decision in hindsight and the cumula-
tive payoff obtained by the learner (Zinkevich, 2003;
Hazan et al., 2016; Shalev-Shwartz et al., 2012). More
precisely, the regret of a learner after T rounds is:
max|s|<k Zthl fe(S) — 23:1 f+(St). The aim often is
to design algorithms with sublinear regret, i.e., o(T),
so that the average payoff over time of the algorithm is
comparable with the best average fixed profit in hind-
sight. Offline monotone submodular maximization un-
der a cardinality constraint is NP-hard to approximate
with a factor better than (1 — 1/e) (Feige, 1998; Mir-
rokni et al., 2008), so we instead measure the quality
of our algorithms using the more restrictive notion of
(1 — 1/e)-regret (Streeter and Golovin, 2009; Streeter
et al., 2009):

1 T T
Rr = <1e> ‘Igl‘igi;ft(s)*;ft(st)- (1)

The privacy notion we consider in this work is differ-
ential privacy (Dwork et al., 2006), which enables ac-
curate estimation of population-level statistics while
ensuring little can be learned about the individuals
in the database. Informally, a randomized algorithm
is said to be differentially private if changing a sin-
gle entry in the input database results in only a small
distributional change in the outputs. (See Definition
2 in Section 2 for a formal definition.) This means
that an adversary cannot information-theoretically in-
fer whether or not a single individual participated in
the database. Differentially private algorithms have
been deployed by major organizations including Apple,
Google, Microsoft, Uber, and the U.S. Census Bureau,
and are seen as the gold standard in privacy-preserving
data analysis. In this work, the input database to our
learning algorithm consists of a stream of functions
F = {f1,..., fr}, and each individual’s data corre-
sponds to a function f;. Our privacy guarantees ensure
that the stream of chosen sets Si,..., St are differen-
tially private with respect to this database of func-
tions,

In both the full-information and bandit settings,
we present differentially private online learning algo-
rithms that achieve sublinear expected (1—1/¢e)-regret.

Motivating Example. While there are countless ex-

amples of practical online submodular maximization
problems using sensitive data, we offer this motivating
example for concreteness. Consider an online prod-
uct display model where a website has k display slots
and wants to maximize the probability of any dis-
played product being clicked. Each customer ¢ has
a (privately known) probability p! of clicking a dis-
play for product a € U, independently of the other
products displayed. Let f;(S) denote the probabil-
ity that customer t clicks on any product in a dis-
play set S. We can write this function in closed form
as fy(S) = 1 —[[,es(1 — pl). Note that this func-
tion is submodular because adding products to the
set S exhibits diminishing returns in total click prob-
ability. Each customer’s click-probabilities {p! }.ctr
contain sensitive information about his preferences or
habits, and require formal privacy protections.

1.1  Our Results

Our main results are differentially private algorithms
for online submodular maximization under a cardinal-
ity constraint. We provide algorithms that achieve
sublinear expected (1 — 1/e)-regret in both the full-
information and bandit settings.

Our algorithms are based on the approach of Streeter
and Golovin (2009), who designed (non-private) on-
line algorithms with low expected (1 — 1/e)-regret for
submodular maximization. We adapt and extend their
techniques to additionally satisfy differential privacy.
Following the spirit of Streeter and Golovin (2009),
our algorithms have k ordered online learning algo-
rithms, or experts, that together pick k items at ev-
ery time-step and learn from their decisions over time.
Roughly speaking, expert ¢ learns how to choose an
item that complements the decisions of the previous
i — 1 experts. The expected (1 — 1/e)-regret can be
bounded by the regret of these k experts, so to show a
low (1 — 1/e)-regret algorithm that preserves privacy,
we simply need to find no-regret experts that together
preserve privacy. Ideally, we would like each expert
to be differentially private so that simple composition
and post-processing arguments would yield overall pri-
vacy guarantees. Unfortunately this is not possible for
k > 1 because the choices of all previous experts alter
the distribution of payoffs for expert 7.

Specifically, the i-th expert non-privately queries the
function (i.e., accesses the database) at |U| points that
depend on the action of the previous experts. A naive
solution is to allow each expert to query the function at
any of its 2/Yl values, and then privacy would be sat-
isfied by post-processing on the differentially private
outputs of previous experts. However, this larger do-
main size requires large quantities of noise that would
harm the experts’ no-regret guarantees. Effectively,
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this decouples the advice of the k experts, so that ex-
perts are not learning from each other. This naturally
helps privacy but harms learning. Instead, we restrict
each expert to a domain of size |U| that is defined
by the actions of previous experts. This ensures no-
regret learning, but post-processing no longer ensures
privacy. We overcome this challenge by showing that
together the experts are differentially private and suf-
ficiently low quantities of noise are needed.

Theorem 1 below is an informal version of our main
results in the full-information setting (Theorems 5 and
6 in Section 3).

Theorem 1 (Informal). In the full-information
setting,  Algorithm 2 for online monotone k-
cardinality-constrained — submodular — mazimization
is (g,0)-differentially private and guarantees

E[RT]:@<k210g|U|\§JW>.

In the bandit setting, each expert only receives its own
payoff as feedback, and does not have oracle access to
the entire function. For this setting, we modify the
full-information algorithm by using a biased estimator
of the marginal increments for other actions.

The algorithm also requires additional privacy con-
siderations. The non-private approach of Streeter
and Golovin (2009) randomly decides in each round
whether to explore or exploit. In exploit rounds, the
experts sample a new set but play the current-optimal
action, providing both learning and exploitation. Di-
rectly privatizing this algorithm incurs additional pri-
vacy loss from the exploit rounds, which leads to a
weak bound of O(T?/*) for the expected (1 — 1/e)-
regret, far from the best known O(T?/3). Instead,
we have the experts sample new sets only after an
exploration round has occurred. The choice to ex-
plore is data-independent, so privacy is maintained by
post-processing. If the exact number and timing of
explore rounds are known in advance, this results in
an (g,0)-DP algorithm. However, this approach re-
quires Q(T%/3 4 k|U|) space, which is not appealing in
practical settings where T is substantially larger than
U. Instead we allow explore-exploit decisions to be
made online and obtain a high probability bound on
the number of explore rounds based on the sampling
parameter. At the expense of an exponentially small
loss in the § privacy parameter—resulting from the
failure of the high probability bound—we obtain the
asymptotically optimal O(T?/3) expected (1 — 1/e)-
regret.

Theorem 2 is an informal version of our main results

in the more challenging bandit feedback setting (The-
orems 7 and 8 in Section 4).

Theorem 2 (Informal). In the bandit feedback set-
ting, Algorithm 8 for online monotone k-cardinality-
constrained submodular mazimization is (e,0 +

6*8T1/3)—diﬁerentially private and guarantees

E[Rsr] =0 (Vlofk/é(k(m log |U|)1/3)2T2/3> .

The best known non-private expected (1 — 1/e)-
regret in  the  full-information  setting is

(’)(x/k‘Tlog|U\) and in the bandit setting is
(’)(k(\U|log|U|)1/3T2/3) (Streeter and  Golovin,

2009). Comparing our expected (1 — 1/e)-regret
bounds to these, we see that our bounds match
asymptotically the best known bounds in 7', and have
slight gaps in terms of £ and U. Typically, the domi-
nating term is the time horizon T with k < |U| < T,
so our results match the best expected (1 —1/e)-regret
asymptotically in T. At each time step t = 1,...,T,
our algorithms have time complexity O(k|U]).

Additionally, we show that our algorithms can be ex-
tended to a continuous generalization of submodular
functions, know as DR-submodular functions. We pro-
vide a differentially private online learning algorithm
for DR-submodular maximization that achieves low
expected regret. A brief overview of this extension
is given in Section 5, with further details in the ap-
pendix.

1.2 Related Work

Online learning (Zinkevich, 2003; Cesa-Bianchi and
Lugosi, 2006; Hazan et al., 2016; Shalev-Shwartz et al.,
2012) has gained increasing attention for making de-
cisions in dynamic environments when only partial in-
formation is available. Its applicability in ad place-
ment (Chatterjee et al., 2003; Chapelle and Li, 2011;
Tang et al., 2014) has made this model attractive from
a practical viewpoint.

Submodular optimization has been widely studied, due
to the large number of important submodular func-
tions, such as the cut of a graph, entropy of a set
of random variables, and the rank of a matroid, to
name only a few. For more applications see (Schri-
jver, 2003; Williamson and Shmoys, 2011; Bach et al.,
2013). While (unconstrained) submodular minimiza-
tion can be solved with polynomial number of or-
acle calls (Schrijver, 2003; Bach et al., 2013), sub-
modular maximization is known to be NP-hard for
general submodular functions. Nemhauser and Wolsey
(1978) showed that algorithms that evaluate submod-
ular functions in a polynomial number of sets cannot
guarantee factors better than (1 — 1/e) of the optimal
value, even for monotone functions under cardinality
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constraint. The greedy algorithm (Fisher et al., 1978)
achieves this factor. For further results with more
general constraints, we refer the reader to the survey
(Krause and Golovin, 2014). In the online setting,
Streeter and Golovin (2009) and Streeter et al. (2009)
were the first to study online monotone submodular
maximization, respectively with cardinality /knapsack
constraints and partition matroid constraints. Re-
cently, continuous submodularity, has gained attention
in the optimization community Bian et al. (2017); Has-
sani et al. (2017); Niazadeh et al. (2018); Zhang et al.
(2020). See Chen et al. (2018a,b) for online continuous
submodular optimization.

Differential privacy (Dwork et al., 2006) has become
the gold standard for individual privacy, and there
as been a large literature developed of differentially
private algorithms for a broad set of analysis tasks.
See Dwork and Roth (2014) for a textbook treatment.
Due to privacy concerns in practical applications of
online learning, there has been growing interest in im-
plementing well-known methods—such as experts al-
gorithms and gradient optimization methods—in a dif-
ferentially private way. See for instance (Jain et al.,
2012; Thakurta and Smith, 2013).

Differential privacy and submodularity were first
jointly considered in (Gupta et al., 2010). They stud-
ied the combinatorial public projects problem, where
the objective function was a sum of monotone sub-
modular functions, each representing an agent’s pri-
vate valuation function, and a decision-maker must
maximize this objective subject to a cardinality con-
straint. The authors designed an (g,0)-DP algorithm
using the Exponential Mechanism of (McSherry and
Talwar, 2007) as a private subroutine, and achieved a
(1—1/e)-approximation to the optimal non-private so-
lution, plus an additional oc e =1 term. Later, Mitrovic
et al. (2017) extended these results to monotone sub-
modular functions in the cardinality, matroid and p-
system constraint cases. Their methods also used the
Exponential Mechanism to ensure differential privacy.
See also recent work by Rafiey and Yoshida (2020).

In the online learning framework, Cardoso and Cum-
mings (2019) study online (unconstrained) differen-
tially private submodular minimization. They use the
Lovész extension of a set function as a convex proxy to
apply known privacy tools that work in online convex
optimization (Jain et al., 2012; Thakurta and Smith,
2013). Since submodular minimization and maximiza-
tion are fundamentally different technical problems,
the techniques of Cardoso and Cummings (2019) do
not extend to our setting.

Fundamental to our analysis is the differentially pri-
vate Exponential Mechanism of McSherry and Talwar

(2007) and its inherent connection to multiplicative
weights algorithms (Hazan et al., 2016; Shalev-Shwartz
et al., 2012) to estimate probability distributions in the
simplex while preserving privacy.

2 PRELIMINARIES

In this section we review definitions and properties of
submodular functions and differential privacy.

Definition 1 (Submodularity). A function f : 2V —
R is submodular if it satisfies the following diminishing
returns property: For all AC B CU and x ¢ B,?

f(Au{a}) = f(A) = f(BU{z}) — f(B).

As is standard in the submodular maximization litera-
ture, we assume f(()) = 0. In our motivating example,
this means that if no items are shown to the incoming
customer, then the probability of selecting an item is
0. We let F denote the family of submodular functions
with finite ground set U. For the sake of simplicity, we
will additionally assume that all functions take value
in the interval [0,1]. This does not change our anal-
ysis as long as the functions take value in a bounded
interval [0, M]. Indeed, by rescaling appropriately the
learning rates in our algorithms (see below), we obtain
the same privacy guarantees, and regret guarantees up
to a factor of M—expected since functions take values
in [0, M]. In this work, we additionally consider set
functions f that are monotone or non-decreasing, i.e.,
f(A) < f(B) for all AC B.

In the problem of online monotone submodular maxi-
mization under a cardinality constraint, a sequence of
T monotone submodular functions fi,..., fr : 2V —
[0,1] arrive in an online fashion. At every time-step t,
the decision maker A has to choose a subset S; C U of
size at most k before observing f;. This decision must
be based solely on previous observations. The decision
maker A receives a payoff f;(S;) and her goal is to
minimize the (1 — 1/e)-expected-regret E[Rr], where
Re = (1—2)maxsi<x 3oy fi(S) = i, fi(Sh) as
defined in Equation (1), and the randomness is over
the algorithm’s choices.

A fundamental tool in our analysis is the Hedge al-
gorithm (Algorithm 1) of Freund and Schapire (1997)
which chooses an action from a set [N] = {1,..., N}
based on past payoffs from each action. The algorithm
takes as input a learning rate n and a stream of linear
functions g1, ..., g7 : [N] — [0,1], where the payoff of
playing action i at time ¢ is g4 ().

In our setting, the learner must select a set of at most &k

items from the ground set U. The learner does this by

2 Equivalently, f is submodular if f(ANB)+ f(AUB) <
f(A)+ f(B) for all A,BCU.
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implementing k ordered copies of the Hedge algorithm,
each of which choses one item, so the action space for
each instantiation is the ground set: N = U. The i-th
copy of Hedge learns the item with the best marginal
gain given the decisions made by the previous i — 1
Hedge algorithms.

Algorithm 1: HEDGE(7, ¢1, . . .
Initialize w; = (1,...,1) € RY
fort=1,...,7 do
Sample action i, € [N] w.p. z,(i) = EI.UZE:)(j)
J

,91)

Obtain payoff g;(i;) and full access to g;
Update wt+1(i) = Wy (i)engt ('L)

The Hedge algorithm exhibits the following guarantee,
which is useful for analyzing its regret, as well as the
regret of our algorithms which instantiate Hedge.

Theorem 3 (Freund and Schapire (1997)). For any
i € [N], the distributions X1,...,xp over [N] con-
structed by Algorithm 1 satisfy

T T T log N
gy =D x{gi<nd %/ gl + :
t=1 t=1 t=1

n

where g? is the vector g, with each coordinate squared.

For the privacy considerations of this work, we view
the input database as the ordered input sequence
of submodular functions F' = {f1,..., fr} and the
algorithm’s output as the sequence of chosen sets
S1,...,S7. We say that two sequences F, F’ of func-
tions are neighboring if f; # f/ for at most one ¢ € [T].

Definition 2 (Differential Privacy (Dwork et al.,
2006)). An online learning algorithm A : FT — (2U)T
is (e,90)-differentially private if for any neighboring
function databases F, F', and any event S C (2V)7,

Pr(A(F) € S) < e Pr(A(F') € S) + 4.

Differential privacy is robust to post-processing, mean-
ing that any function of a differentially private output
maintains the same privacy guarantee.

Proposition 1 (Post-Processing (Dwork et al.,
2006)). Let M : FT — R be an (g,5)-DP algorithm
and let h : R — R’ be an arbitrary function. Then,
M =hoM:FT' - R is also (¢,5)-DP.

Differentially private algorithms also compose, and the
privacy guarantees degrade gracefully as addition DP
computations are performed. This enables modular
algorithm design using simple differentially private
building blocks. Basic Composition (Dwork et al.,
2006) says that can simply add up the privacy parame-
ters used in an algorithm’s subroutines to get the over-
all privacy guarantee. The following Advanced Com-
position theorem provides even tighter bounds.

Theorem 4 (Advanced Composition (Dwork et al.,
2010b)). Let My,..., My each be (g,8)-DP algo-
rithms. Then, M = (M, ..., My) is (', kd +6')-DP
for e’ = /2klog(1/¢")e + ke(e® — 1) and any ¢’ > 0.

Our algorithms rely on the Exponential Mechanism
(EM) introduced by McSherry and Talwar (2007). The
EM takes in database F', a finite action set U, and
a quality score ¢ : F¥ x U — R, where q(F,i) as-
signs a numeric score to the quality of outputting ¢
on input database F. The sensitivity of the qual-
ity score, denoted Ag, is the maximum change in
the value of ¢ across neighboring databases: Aq =

max max lg(Fyi) — q(F’,i)|. Given these in-
i€U F,F’ neighbors

puts, the EM outputs ¢ € U with probability propor-
tional to exp(eqé%’;)). The Exponential Mechanism is

(€,0)-DP (McSherry and Talwar, 2007).

As noted by Jain et al. (2012) and Dwork et al.
(2010a), the Hedge algorithm can be converted into
a DP algorithm using advanced composition and EM.

\/32#71/5’ H@dge (AlgO-

Proposition 2. If n =
rithm 1) is (e,9)-DP.

3 FULL INFORMATION SETTING

In this section, we introduce our first algorithm for on-
line submodular maximization under cardinality con-
straint. It is both differentially private and achieves
the best known expected (1—1/e)-regret in T'. For car-
dinality k, the learner implements k ordered copies of
the Hedge algorithm. Each copy is in charge of learn-
ing the marginal gain that complements the choices of
the previous Hedge algorithms. At time-step ¢, each
Hedge algorithm selects an element a € U and the
learner gathers these choices to play the corresponding
set. When she obtains oracle access to the submodu-
lar function, for each ¢ € [k], she constructs a vector
g¢ with a-th coordinate given by the marginal gain of
adding a € U to the choices made by the previous i —1
Hedge algorithms. Finally, she feeds back the vector
g¢ to Hedge algorithm i. A formal description of this
procedure is presented in Algorithm 2.

To ensure differential privacy, it would be enough to
show that each Hedge &; is (e/k,0/k)-DP. Indeed, if
the sequence (at,...,ak) constructed by each Hedge
algorithm ¢ is (¢/k, §/k)-DP, then by Basic Composi-
tion and post-processing, the sequence (S, ..., S7) is
(¢,0)-DP, where S; = {ai}k_,. However, for i > 2, the
output of expert & depends on the choices made by al-
gorithms &, ...,&;_1. Moreover, algorithm &; by itself
is again accessing the database F', hence ruling out a
post-processing argument. More specifically, &; takes
as input not just the private output of &,...,&_1,
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Algorithm 2: FI-DP(F = {f;}L |, k,¢,9)
Initialize: Set n =

k+/32T log(k/d)

Instantiate k parallel copies &1, ..
algorithm with rate 7.

fort=1,...,7 do

For each i = 1,...,k, sample a! given by &;.

Play S, = Ui, {a}}.

Obtain f;(S;) and oracle access to f;.

For each ¢ = 1,..., k, define linear function
gl U —[0,1]:

gi(a) = fu(Si™" +a) = fi(S;7H),

where S} = U;:l{a{}.
| Feed back each Hedge algorithm &; with gi

., & of Hedge

Va € U,

namely SZ ~1 but also a function of this private output
that also depends on the database, namely the vector
g:. This precludes using post-processing arguments to
show privacy of &;. Despite this, we show that all ex-
perts together are (¢,4)-DP even though individually
we cannot ensure they preserve (¢/k,d/k)-DP.

It is worth noting that the Hedge algorithms &1, ..., &
in Algorithm 2 can be replaced by any other no-
regret DP method that selects items over U, and the
same proof structure would follow—although the re-
gret bound would depend on the choice of no-regret
algorithm. For instance, if we utilize the private ex-
perts method of(Thakurta and Smith, 2013) instead of
the Hedge algorithm, Algorithm 2 would be (g,0)-DP

with a regret bound of O <k‘2 VIUTEIOg”T)

Theorem 5. Algorithm 2 is (e,9)-differentially pri-
vate.

Theorem 6. Algorithm 2 has (1 — 1/e)-expected-
regret

E[Ra] < O <k2 1ogU|\/Tlog(k:/6)) '
- g

Proof of Theorem 5 The output of Algorithm 2 is
the stream of sets (Si,...,S57). Before showing that
this output preserves privacy, we deal with a simpler
case from which we can deduce an inductive argument.

Note that &£ (F) receives as feedback the functions
gt = (fi(a))eer at each time step. By Proposi-
tion 2, we have that & is (¢/k,0/k)-DP given that
n = ’C\/#TW' On the other hand & (F') receives
as feedback the functions g7 = (fi(af +a) — fi(ai))acv
at each time-step, where a} is computed by & (F).
Therefore, the output of & depends uniquely on the
choices of &1, hence, conditioning on these choices, &

should also be (¢/k,d/k)-DP. We generalize and for-
malize this in the next few paragraphs.

Consider the following family of algorithms: For
at,...,at € UT let §1 = {a'"!,...,a'}. For
t=1,...,T, let MS"" : FT — A(U) be the EM
that outputs @ € U with probability proportional
to e Xr<e (ST W) =1-(S27) - Each of these mech-
anisms is 2n-DP by Proposition 2. Therefore, by Ad-
vanced Composition and our choice of 7, MST =
(MS L MET s (¢/k,8/k)-DP. Note that for
S C UT we have

PI‘(SZ(F) es ‘ (81;1, .
= Pr(MS"(F) € 5)

E)(F) =871

and the latter expression describes the output of an
(e/k,8/k)-DP algorithm. This formalizes the idea that
&y is (e/k,d/k)-DP if the choices of & are fixed. We
utilize this idea to show that together (&,...,&E1) are
(€,06)-DP. This is formally presented in Lemma 1. The
proof of this result (formally given in Appendix A.1)
is an inductive argument that takes advantage of the

DP guarantee of the mechanisms M5

Lemma 1. For any ¢ € [k], the function
(i &1y &1) + FT = UT x oo x UT which is
the composition of the first i Hedge algorithms is
(ie/k,id/k)-DP.

Lemma 1 with ¢ = k£ and post-processing ensures that
Algorithm 2 is (g, 6)-DP. O

Proof of Theorem 6 The key idea is to bound the
(1 —1/e)-regret of Algorithm 2 by the regret incurred
by the k Hedge algorithms &;,...,&;. We formalize
this in Proposition 3 below. With this bound, we can
utilize the regret bound of the Hedge algorithm and
conclude the proof. The regret incurred by &; is

T T
— % i
r; = max ;—1 gi(a) — ;—1 gi(ar).

where g = (f:(S{™" U {a}) = fo(S;1))acu
Proposition 3. The (1 — 1/e)-regret of Algorithm 2
is bounded by the expected regret of £1,...,E.

While a full proof of Proposition 3 is deferred to in Ap-
pendix A.2, we describe the key idea here. To bound
the (1 — 1/e)-regret, we rewrite the regret r; via the
function F : 27XV — [0,1], F(A) = =37 f(A),
where Ay = {u e U : (t,u) € A} as:

r

TZ S r;leaécF(gi_l U{a}) — F(gi)

where S¢ = (JI_, {t} x S*. We show that F(S%) —

F(gifl) > %F(giq) — %, where OPT is the
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extension of OPT = argmax|g|<j, Zthl f+(S) to [T] x
U. Upon unrolling this recursion, we obtain the result.
To finish the proof of Theorem 6 we need to bound
the overall regret of all £;. Observe that once we have
fixed STI, el S’ZTfl, the feedback of expert i is com-

pletely determined since the elements aj, ..., ai_l de-
pend only on experts 1,...,7 — 1. Therefore, we have

. . 1
Blre | 81757 < o B

by the Hedge regret guarantee. Integrating from k to
1 we get E[Ryp] < Zf:l E[r;)] <k (77T—|— %), and

€

the result follows with our choice of n = T o)
O

4 BANDIT SETTING

In the bandit case, the algorithm only receives as feed-
back the value f;(S;). Given this restricted infor-
mation, the algorithm must trade-off exploration of
the function with exploiting current knowledge. As
in (Streeter and Golovin, 2009), our algorithm con-
trols this tradeoff using a parameter v € [0, 1], and by
randomly exploring in each time-step independently
with probability ~.

The non-private approach of Streeter and Golovin
(2009) obtains O(T?/3) expected (1 — 1/e)-regret, and
works as follows: In exploit rounds (prob. 1—+), play
the experts’ sampled choice S; and feed back 0 to each
&;. In explore rounds (prob. =), select i € [k] and
a € U uniformly at random. Play set S, = S~ ! + a,
observe feedback f;(S;~! + a), give this value to &;,
and feedback 0 to the remaining experts.

As we show in Appendix B.1, directly privatizing
this algorithm using the Hedge method from the full-
information setting results in an expected (1 — 1/e)-
regret of O(T?/4), far from the known O(T?/3). The
problem with this naive approach is that a new sample
is obtained via the Hedge algorithms at every time-
step, including exploit steps, so to ensure (g,6)-DP, a
learning rate of n = ——=——— is required.
k+/32T log(k/d)
We improve upon this by calling the Hedge algorithm
only after an exploration time-step has occurred, and
new information is available. The learner continues
playing this same set until the next exploration round,
and privacy of these exploitation rounds follows from
post-processing. This dramatically reduces the num-
ber of rounds that access the dataset, and reduces the
overall amount of noise required for privacy.

If the exact number of exploration rounds were known,
this could be plugged into the learning rate n to achieve
(€,6)-DP. In the non-private setting, a doubling trick

(see, e.g., Shalev-Shwartz et al. (2012)) can be em-
ployed to find the right learning rate by calling the al-
gorithm multiple times, doubling T" and thus doubling
1 on each iteration. Unfortunately, this doubling trick
does not work in the private setting due to the direct
non-linear connection between ¢ the privacy param-
eter, T' the time horizon and 7 the learning rate, as
specified in Proposition 2. Instead we use concentra-
tion inequalities (Alon and Spencer, 2004) to ensure
that there are no more than 2T exploration rounds,
-8T'* " With this, we can
o and

k+/32(27T) log(k/6)

guarantee O(T?/3) expected (1 — 1/e)-regret, and the
cost of (g,6 +e=8T""*)-DP.

except with probability e
select a fixed learning rate n =

One may wish to avoid the additional loss in the §
term. One possible approach is to try to trade off this
loss with the regret guarantee. For instance, consider
following the strategy from the previous paragraph as
long as the number of explore times is at most M =
2~T; if this number is exceeded, stop and guarantee
nothing. This would ensure (g, d)-differential privacy
by design. However, this method is also less likely to
explore later time steps—e.g., in the extreme case M =
1, exploring later time steps is exponentially less likely
than exploring earlier ones. In our regret analysis,
uniformity over explore time steps is essential.

A fruitful way to avoid this § term is by trading it
off with space. In Appendix B.2 we show that this
additional loss can be avoided by pre-sampling the ex-
ploration round. This requires ©(T%/3 4 k|U|) space,
which may be unacceptable for large T'.

Algorithm 3 presents the space-efficient approach.
Here f; is the vector with a-th coordinate given by:

Tia i—1
t ft(St + a)l{Explorc at time t, pick 4, pick a}-

Theorem 7. Algorithm 3 is (¢, + e’STl/S)—DP.
Theorem 8. Algorithm 3 has (1 — 1/e)-regret

E[Rr] < O (W(kurfbgvn”%%w’) .

Proof of Theorem 7 Observe that the algorithm
only releases new information right an exploration
time-step. If t¢1,...,t) are the exploration time-
steps, with M distributed as the sum of T indepen-
dent Bernoulli random variables with parameter -,
then conditioned on the event M < 24T, we know
that the outputs S1, St,+1,--.,St,,+1 are (¢,6)-DP by
Theorem 5. Now, conditioning again on the event
M < 24T, the entire output (Si,...,S7) is (g,9)-
DP since this corresponds to post-processing over the
previous output by extending the sets to exploitation
time-steps. We know that M > 2+T occurs w.p.
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Algorithm 3: BANDITDP(F, ¢, )

1/3
Initialize: Set v =k (w) and
£

= 32 T) o h/)

Instantiate k parallel copies &1,..., & of Hedge
algorithm with rate 7. Utilize each &; to sample a}

and set S = {a},...,a}l}.
fort=1,...,7 do
Sample b; ~ Bernoulli(7y).
if b, =1 then

Sample ¢ € [k] u.a.r. and a € U u.a.r.
Play S{™' U {a}.
Obtain value f;(St).
Feed back the function ]?tl to expert &;, Vi.
Utilize &; to pick aj ., Vi.
| Update set Syy1 = Ule{aiﬂ}.
else
Play St.
Obtain ft (St)
L Update St+1 = St.

< =877, Thus, for any S we have

Pr((E, ..., &) (F) € S)

< Pr((&,...,E1)(F) € S| M < 2¢T)Pr(M < 2¢T)
_~_e—8'sz

< Pr((Ep,.. E)(F) €S)+ 5487

The result now follows by plugging in the value of ~
used in Algorithm 3. O

Proof of Theorem 8 Theorem 8 requires the fol-
lowing two lemmas, proved respectively in Appendices
A.3 and A.4. The first lemma says that the (1 —1/e)-
regret experienced by the learner is bounded by the re-
gret experienced by the expert and an additional error
introduced during the exploration times. The second
lemma bounds the regret experienced by the experts
under the biased estimator.

Lemma 2. Ifr; denotes the regret experience by expert
E; in Algorithm 3, then

( - 7) %‘f?ﬁzf [ZT: ft(St)] < Zkﬁa

Lemma 3. If each & is a Hedge algorithm with

learning rate n —= ___ then E[ry] <
k/32(2vT) log(k/d)
16k2\U|log|U|\/W k‘UlT o—87°T

: v (aelUllog U\ /3
Using these two results with y = k (ﬁg) :

E[Rr]

K*|U |1 V/Tlog(k/s)
<k<16 U log |U] /T log(k/ ) k|§1|T_e_SWzTMT

val
_(1 k3|U|1og|U|\/W/ ) Lo —t

logk/d
< 52 V8D (1 tog 7)) 2y

‘U|1/3T4/3

—8k2(16|U| log \U\)4/3T1/3.
(161og [U])2/3

O

5 EXTENSION TO CONTINUOUS
FUNCTIONS

We sketch an extension of our methodology for (con-
tinuous) DR-submodular functions (Hassani et al.,
2017; Niazadeh et al., 2018). Further details can be
found in Appendix C.

Let X = H?:l X;, where each X} is a closed convex
set in R. A function f : X — Ry is called DR-
submodular if f is differentiable and Vf(x) > V f(y)
for all x < y. DR-submodular functions are neither
convex nor concave; however, they are concave in pos-
itive directions, which allows efficient approximation
maximization. For instance, the multilinear exten-
sion of a submodular function (Calinescu et al., 2011)
is DR-submodular. The function f is said to be (-
smooth if |V f(x) - Vf(y)2 < Blx — yllz, for any
X,y € X. In the online learning DR-submodular max-
imization problem, at each time-step ¢t = 1,...,T, a
B-smooth DR-submodular function f;, : X — [0, 1] ar-
rives and, without observing the function, the learner
selects a point x; € X learned using f1,..., f—1. She
gets the value f;(x;) and also oracle access to V f;.
The learner’s goal is to minimize the (1 — 1/e)-regret

R = <1 - > I)Icleangt th(xf

Online DR-submodular problems have been exten-
sively studied in the full information setting—see
for instance (Chen et al., 2018b,a; Niazadeh et al.,
2018). Similarly to the discrete submodular case,
most of these methods implement K ordered algo-
rithms &,...,Ex—1 for optimizing linear functions
over X. Algorithm & computes a direction of maxi-
mum increment from a point given by the algorithms
Ek—1,-.-,&. The learner averages these directions to
obtain a new point to play in the region &X'. This is
the continuous version of the Hedge approach.
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We show in Algorithm 4 and Theorem 9 that a sim-
ple modification transforms the continuous method of
Chen et al. (2018b) into a differentially private one.
For this, we utilize the Private Follow the Approx-
imate Leader (PFTAL) framework of Thakurta and
Smith (2013) as a black-box. PFTAL is an online con-
vex optimization algorithm for minimizing L-Lipschitz
convex functions over a compact convex region X. In
few words, their algorithm guarantees (g,0)-DP and

2 2.5
achieves an expected regret O (W)

€

Algorithm 4: (F = {f,}L,¢)

4
Let K = ( L . Initialize &, ...,Ex_1 parallel

Tog2 5 T
copies of PFTALs with privacy parameter ¢’ = ¢/K.
fort=1,...,7 do
for k=0,..., K —1do
| Let vF be vector found using &.

K—1
Let x; = % beo VI

Play x;, receive f;(x;) and access to V f;.
Feed back each &, with the linear obsective
(6(v) = Vfu(xf) v where x} = £ 3217 vi.

Theorem 9 (Informal). Algorithm 4 is (¢,0)-DP with
expected (1 — 1/e)-regret

0 (T3/ 4(log>® 1)1/ 4) .
g

The big O term hides dimension, bounds in gradient
and diameter of X and only shows terms in 7" and pri-
vacy parameter €. The proof appears in Appendix C.
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A OMITTED PROOFS

A.1 Proof of Lemma 1

Proof. We prove the lemma by induction on i. The base case of i = 1 follows from Proposition 2. For the
inductive step, assume the result is true for some ¢ > 1, and we now prove that it also holds for ¢« + 1. That is,
we aim to show that (£i11,...,&1) : FL — UL x -+ x Ul is ((i + 1)/, (i + 1)d')-private, where ¢/ = £/k and
8" = 6/k. Let a A b be the minimum of a and b and recall that M*" is the behavior of the i-th expert across all
T rounds.

Consider the neighboring databases F' and F'. Pick any set S C UT and a fixed S* = (a',...,a') € (UT)?, then

Pr(E 1 (F) €S| (&,...,E)(F) =58
= Pr(MS'(F) € §)
< (e Pr(MS'(F) € S)) A1+ ((¢',6")-DP of M5")
= (&7 Pr(Eisa(F) €S| (&,....&)(F)=S))A1+6.
This is true as long as (&;,...,&1)(F) = S and (&;,...,&)(F’) = S* are non-zero probability events, which is
ensured to be true since the Hedge algorithm places positive probability on all events.

We can write _ » _ _
Pr((é’i, ‘.. 751)(}7) = SZ) =e' PI‘((SH “ae ,81)(F/) = SZ) + /J/(SZ)7

where u(S%) = Pr((&, ..., &) (F) = S%) — e Pr((&;,...,E)(F') = 8%). We have u(S) < id’ for any S C (UT)’
since (&;,...,&1) is (i€’,id’)-DP by the inductive hypothesis.

Now, consider any set S C (UT)i*1. Then,
Pr((€i+1,€i7 NN ,81)(F) € S)
= > Pr((Ea(F),S) €S| (&, E)(F) = SYPr((Ei, ..., £1)(F) = §7)

Sies’
<) ((ee’ Pr((&i1(F'), S € S| &(F) =a')) A1 +5’) Pr((&,...,&)(F) = SY)
Sies’
< Z ((egl Pr((Ei41(F'),8") € S| (&, E1)(F') = 5")) A 1) (eifl Pr((&;,....&)(F) = S) + M(Si))
Sies’
+ Z o Pr((€i7 R ,51)(}7‘) — Sz)
Stes’

< 0T N Pr((Ei4a(F'), S) € S| (i, E0)(F) = S Pr((&s, ..., E)(F') = §) + u(S}) + 0
SieSs’

< eV Pr((Ei1, &y E1)(F') € 8) + (i + 1)
where 8’ = {S* € (UT)": (a'**, ") € S for some a' € U} and S/, are the elements S* € S’ such that p(S") > 0.
This concludes the proof.
O
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A.2 Proof of Proposition 3

Proposition 3. The (1 — 1/e)-regret of Algorithm 2 is bounded by the expected regret of &1, ..., Ek.

Proof. Fix the choices Sy, ..., St of the experts arbitrarily, and let r; the overall regret experience by &;. That

is,

S

T
rf:ﬂgggﬂwfﬁ+a)tﬁ511 §j F(STTH Hap) = fi( S

Define the new function F : 271XV 5 R as

1 T
= f th(At)
t=1

where A, = {x € U : (t,x) € A}. Clearly, F is submodular, nondecreasing and F(()) = 0. Then,

7 =max F(S! 4a) - F(S"Y) — (F(5) - F(S")),

aclU
where 5% = |J]_, {t} x S°.

Let OPT C U be the optimal solution of maxgj<y Zle f:(S) and consider its extension to [T] x U, i.e.,
OPT = J/_,{t} x OPT.

Claim A.1. For anyi=1,...,k, max,cy F(gi’1 +a) — F(gi’l) > w.
Proof of Claim A.1.

F(OPT) — F(§"1)
< F(S"'4+ OPT) - F(S" 1)
< ) FET'+a)-F(ST

GeOPT\Si—!
< k. F i— 1 i—1
< (max PG4 0) - PG
O
Using this claim, we can see,
- = F(OPT) — F(§! ,
F(Sl) _ F(sz—l) Z (O ) (S ) _ Q
k T
Unrolling the recursion, we obtain
T
th (Sy) > (1—)2 f:(OPT) —
t=1 i=1
O

A.3 Proof of Lemma 2

Lemma 2. If r; denotes the regret experience by expert &; in Algorithm 3, then

k

(-8 e[S aeso] < Serieor



Sebastian Perez-Salazar, Rachel Cummings

Proof. Observe that at exploration time-steps 7, i.e, when b, = 1, Algorithm 3 plays a set of the form S, =
Si=! + a. Right after this, the algorithm samples a new set S,.; given by the Hedge algorithms and will keep
playing this set until the next exploration time step.

For the sake of analysis, we introduce the following set. Let tg = 0,t1,...,t5 be the times when a new sample
set is obtained. Note that besides time tg, all times t1,...,t) are exploration times. Now, let S; = S;, for
t=t;+1,...,t;+1. Note that for times b; = 0, then S} = S;; however, for times b; = 1, then S; is not necessarily

the same as S; = Sti_l + a. In other words, S; corresponds to the real full exploitation scheme. Now, as in the
full information setting, we have

T k
(I PP STIEE ST o
t=1 i=1
T i,a l aj
where 7; = maxqaev ) 1 f1 Zt 1 feo - Thus

(-2 w5 [T s
i — fi(St)

<ZEm |+ E

=1
k
=1

since at the end, only the exploration times could contribute to the difference f;(S;) — f:(S:) and those are 4T
in expectation. U

A.4 Proof of Lemma 3

Lemma 3. If each &; is a Hedge algorithm with learning rate n = ————=— then E[r;] <
k+/32(2vT) log(k/d)
16"2‘U“°g'glf‘7/m°g(k/5) I k\ng Ce—8VT.

Proof. From the perspective of expert &;, at every time-step ¢, she sees the vector ft’ such that

Ti,a i—1
ff, - ft (Sf + a)]-{Explore at time ¢, pick ¢, pick a}

in its a-th coordinate. Notice that this vector is 0 if no exploration occurs at time ¢. The expert & samples a
new element in U only after exploitation times. Observe that the feedback of &; is independent of choices made
by &;. Indeed, this feedback depends only on the set SF1 constructed by &1,...,&_ 1 and the decision of the
learner to explore, which is independent of the learning task. Therefore, the sequence f = f17 R fT) could be
considered oblivious for £ and we can apply the guarantee of Hedge over fi. That is, for any a € U,

d Ti.a T 7i IOg|U‘
th’ th ft<nZXt ftz
t=1

n

where x; € A(U) is the non-zero distribution used by expert & in the Hedge algorithm and A(U) = {x € RY :
Ix|l1 = 1,x > 0} is the probability simplex over elements in U. Notice that exploitation times appear in the
summation with 0 contribution. This expression is not the same as the regret of & but we can relate these

quantities as follows. Conditioned on Si717 ceey Séfl we obtain,
E[fe* | ST Sp ] = k|U|f:“ + e,
where f{"* = f(Si™' 4+a) — f(Si1) and & = f(Sl !). Notice that S;~!,..., S ! are independent of actions

taken by &;, so

i | qi— i— v i i—
E[x/; fi | Si7%,..., Sk 1]:WE[xjft | S} SET + 6
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and

Elx, (f)2S7 4 Se =B | m(a)(f)? [ 817, S5t
aclU
z 1 1—1 ’L 1
acU
Y

<
kU]

Let M be the number of times Algorithm 3 decides to explore. That is, M is distributed as the sum of T
Bernoulli random variables with parameter . By concentration bounds,

Pr(M > 29T) < e 87T,
Now, let t1,...,tas be the times the algorithm decides to explore and let tg = 0. For ¢ = 1,..., M, we can

assume that expert &; releases the same vector x; € Ay during the time interval [t;_1,t;) since she does not get

any feedback during those times. If we consider ) = ————=—=———, then for any a € U we have
k+/32(2vT) log(k/6)

T T
_E fo’”—zx,?ff]
t=1 t=1
T
~ 1
< (nZE[xt (ff) } OgnW) LT 8T

Y 10g|U| —8y2T
< —T T- v
< <nk|U + 0 + e

T T
T B DY
t=1 t=1

Therefore,

T T
. ) k2|U|1 /Tlog(k/d)
E[r;] = max E Y —E l E Xjffl <16 [Ullog |Ulf og(k/9) k|U|T e 8T,
ac Yy
t=1 t=1

B ADDITIONAL RESULTS IN BANDIT SETTING

B.1 O(T%/*) Regret Bound of Direct Approach in Bandit Setting

In the bandit setting, the direct approach for differential privacy corresponds to sampling a new set from the
Hedge algorithms at each time step. As in the full-information setting, to ensure (e,d)-DP, a learning rate of

— g 3
= T o2 o70) is enough.

Similar to Lemma 3, in this setting we have

T k
(1‘ ) ﬁéﬁi’iZﬁ ~E fost)] <D E[r]+9T.

Since,

kU] ( logU|)
Elr;] < T+
il < == e ™

k3|U|+/32T log (ko) N ekvT
ey

3210g(k/9)’
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then we have,

CHEWE

This last bound is minimized when v = ©(T~/4) which gives a (1 — 1/e)-regret bound of O(T3/%).

T

E > fi(S)

t=1

- kY U|\/32T log(kd) N ek*>VT
< =

3210g(k/9)

B.2 Trading Off Privacy J-Term and Space

In this subsection, we show how to trade-off the §-term e=3 T by allowing additional space. For each t € T,
select ¢ as an explore round independently with probability 7 Let M be the number of time-steps selected. Note
that E[M] = 4T. Now, run Algorithm 3 with n = and force the algorithm to explore at the

kv/32( MJrl)log(k/tS)
M sampled time-steps and utilize the rest of the time-steps to exploit.

In this case, and following the proof of Lemma 3 we obtain:

Efr] < "V g {UM + bgwq
Y n

k|U|IE 6k10g|U|\/10g(k/5)\/M7+1
€

v

E|U| <6klog|U|\€/log(k/6)\/W>

IA

(Jensen’s inequality)
v

_ 8k2|U| log |U|log(k/d) |T
€ v

Using Lemma 2 we obtain the (1 — 1/e)-regret bound of

3
S 101g U105t/ /7 oo

This is minimized at v = ©(1/T"/?) with a regret bound of O(T?/?) and expected space used O(T2/3).

C EXTENSION TO CONTINUOUS FUNCTIONS

In this section we prove Theorem 9. Before this, we present some preliminaries in online convex optimization.

In online convex optimization (OCO), there is compact convex set X C R™ where the learner makes decisions.
At time-step t, a convex function f; : X — R arrives. Without observing this function, the learner has to select
a point x; € X based on previous functions fi,..., f;_1. After the decision has been made, the learner receives
the cost fi(x;) and gains oracle access to V f;. The learner’s objective is to minimize the regret:

T T
Rr = Z fe(xe) — L%IEZ fe(x)
t=1 t=1

Thakurta and Smith (2013) introduced PFTAL (Private Follow the Approximate Leader) to privately solve the
OCO problem.

Theorem 10 (Thakurta and Smith (2013)). PFTAL is (¢,0)-DP and for any input stream of convexr and
L-Lipschitz functions f1,..., fr has expected regret

= 2
\/nlog?s T(L+\/ nlog? BT ginm X)
VT

g

E[Ry] <O




Differentially Private Online Submodular Maximization

Similar to the Hedge algorithm, we utilize PFTAL as a black-box in Algorithm 4.
Now, we present the proof of Theorem 9 in two parts, and prove each separately.
Lemma 4 (Privacy guarantee). Algorithm 4 is (¢,0)-DP.

Lemma 5 (Regret guarantee). Let R = supycy ||2||2, G be a bound on the gradients ||V fi(x:)||2, and B be the
smoothness parameter of fi,..., fr. Then Algorithm 4 has (1 — 1/e)-regret

E [(1 — D) maxeer 3oy fulx) — 2, ft(xt)} =0 <T3/4\/10§§27'5T <ﬁ<G+ i iongsTdiam Y) + 5R2>> .

Proof of Lemma 4 As with the analysis of Algorithm 2, we show that (Ex_1,...,&) is (g,0)-DP. If each
&, were (¢/K,0)-DP, then the result would immediately follow by simple composition. However, we cannot
guarantee that each & is (¢/K,0)-DP since & obtains as input the privatized output from &y, ..., &1 in the

linear function ¢4 (v) = Vf;(xF) v, where x¥ is computed by &, ...,E,_1, while at the same time is accessing

again the function f; (and so the database) via this linear function in the gradient V f;. This clearly breaks the
privacy that could have been gained via a simple post-processing argument and therefore and alternative method
is needed.

We do not show that each & is (¢/K,0)-DP but the group (Ex_1,...,&) is (¢,0)-DP. The proof of the following
lemma follows the same steps as the proof of Lemma 1. The proof is slightly simpler since there is no d-privacy
term included but it requires some care since the distributions are continuous in this case.

Lemma 6. For any i > 1, the group (&i_1,...,&) : FLT — (XT) is ie/K-DP.

Proof. We proceed by induction in i. The base case i = 1 follows immediately from privacy of PFTAL in
Thakurta and Smith (2013) because & is the only algorithm that has not its distribution perturbed by any other
algorithm. For the inductive step, assume the result is true for some i > 1 and let us prove it for ¢ + 1.

Let xt',...,x; € XT and X;_; = (xI",...,x¥). Then, for any x! € X7 we have
Pr(é‘l(F) = XzT | (5,‘,1, cee 75())(F) = Xifl) < €E/K PI‘((C:Z(FI) = XZT | (gifl, v ,50)(Fl) = Xifl)

by the guarantee of PFTAL. Note that we are referring to the PMF and not the CDF of the distribution. This
is because PFTAL utilizes Gaussian noise. With this, for X; = (x7,...,x{") we have,

= Pr(EZ(F) = XZT | (51_1, ‘e ,50)(F) = Xi—l) Pr((&-_l, [N ,S())(F) = Xi—l)
S es/K Pr(&(F/) = XlT | (52‘_1, N ,go)(F/) = Xi—l) . eiE/K Pr((Ei_l, e 750)(}’—‘/) = X—i—l)7

where we utilized induction and the previous inequality. This completes the proof. O

Proof of Lemma 5 Let G = supi=1,..7 ||V fi(x)|l2. Let r; be the regret experienced by algorithm &; in
xeX

Algorithm 4.

The following result appears in the proof of Theorem 1 in Chen et al. (2018b).

Lemma 7 (Chen et al. (2018b)). Assume f; is monotone DR-submodular and B-smooth for every t. Then
Algorithm 4 ensures

1 T T | K1 BRT
(17 w0 = ot < e 3o P

where R = supycy ||x||2 and r; is the regret of algorithm &;.
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Using this result, we obtain

T T 1 K-1 ﬂR2
_Z _ < = [adulil
E l(l e) glea%cz;ft(x) ;ft(xt)] Sk L E[r;] + oK
2
Vnlog?® T (G + "L‘}%;;T diam 2\,’) BR2T

T
= e/K VT + 2K

log?-®

1/4
We can find the regret by setting K = (%) .



