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Abstract

Adversarial training is among the most effec-
tive techniques to improve robustness of models
against adversarial perturbations. However, the
full effect of this approach on models is not well
understood. For example, while adversarial train-
ing can reduce the adversarial risk (prediction
error against an adversary), it sometimes increase
standard risk (generalization error when there is
no adversary). In this paper, we focus on distribu-
tion perturbing adversary framework wherein the
adversary can change the test distribution within
a neighborhood of the training data distribution.
The neighborhood is defined via Wasserstein dis-
tance between distributions and the radius of the
neighborhood is a measure of adversary’s manip-
ulative power. We study the tradeoff between
standard risk and adversarial risk and derive the
Pareto-optimal tradeoff, achievable over specific
classes of models, in the infinite data limit with
features dimension kept fixed. We consider three
learning settings: 1) Regression with the class
of linear models; 2) Binary classification under
the Gaussian mixtures data model, with the class
of linear classifiers; 3) Regression with the class
of random features model (which can be equiv-
alently represented as two-layer neural network
with random first-layer weights). We show that a
tradeoff between standard and adversarial risk is
manifested in all three settings. We further char-
acterize the Pareto-optimal tradeoff curves and
discuss how a variety of factors, such as features
correlation, adversary’s power or the width of two-
layer neural network would affect this tradeoff.

1. Introduction

Modern machine learning algorithms, and in particular deep
neural networks, have demonstrated breakthrough empirical
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performance, and have been deployed in a multitude of ap-
plications domains ranging from visual object classification
to speech recognition, robotics, natural language processing
and healthcare. The common practice to train these mod-
els is by empirical loss minimization on the training data.
Nonetheless, it has been observed that the resulting models
are surprisingly vulnerable to minute discrepancies between
the test and the training data distributions. There are sev-
eral well documented examples of such behavior in com-
puter vision and image processing where small impercepti-
ble manipulations of images can significantly compromise
the performance of the state-of-the-art classifiers (Szegedy
et al., 2014; Biggio et al., 2013). Other examples include
well-designed malicious content like malware which can
be labeled legitimate by the classifier and harm the sys-
tem (Chen et al., 2017; Papernot et al., 2017), or adversarial
attacks on speech recognition systems, such as GoogleNow
or Siri, which consists in voice commands that are incom-
prehensible or even completely inaudible to human and can
still control the systems (Carlini et al., 2016; Vaidya et al.,
2015; Zhang et al., 2017). It is evident that in practice such
vulnerability can have catastrophic consequences.

By studying adversarial samples, one can in turn improve the
robustness of machine learning algorithms against adversar-
ial attacks. In the past few years, there has been a significant
research on generating various adversarial samples (Carlini
& Wagner, 2017; Athalye et al., 2018; Goodfellow et al.,
2015b; Papernot et al., 2016a) and defenses (Madry et al.,
2018a; Cisse et al., 2017; Papernot et al., 2016b). Among
the considerable effort to improve the adversarial robustness
of algorithms, adversarial training is one of the most effec-
tive techniques. Adversarial training is often formulated as a
minimax optimization problem, where the inner maximiza-
tion aims to find an adversarial example that maximizes a
predictive loss function, while the outer minimization aims
to train a robust estimator using the generated adversarial
examples (Goodfellow et al., 2015a; Kurakin et al., 2016;
Madry et al., 2018a; Raghunathan et al., 2018; Wong &
Kolter, 2018).

While adversarial training techniques have been success-
ful in improving the adversarial robustness of the models,
their full effect on machine learning systems is not well un-
derstood. In particular, some studies (Madry et al., 2018a)
observed that the robustness virtue of adversarial training
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comes at the cost of worsening the performance on natu-
ral unperturbed inputs, i.e, increasing generalization error.
However, (Tsipras et al., 2018) observes empirically that
when there are very few training data, adversarial training
can help with reducing the generalization error. Compli-
cating matters further, (Raghunathan et al., 2019) argues
that additional unlabeled data can mitigate the tension be-
tween adversarial risk (predictive performance against ad-
versarial perturbations) and the standard risk (predictive
performance when there is no adversary, a.k.a generaliza-
tion error). These observations raise the following important
question regarding adversarial training:

Is there a ‘fundamental’ tradeoff between adversarial risk
and standard risk? Or do there exist models that are opti-
mal with respect to both of these measures? What are the
roles of different factors, such as adversary’s power, prob-
lem dimension and the complexity of the model class (e.g.,
number of neurons) in the interplay between standard risk
and adversarial risk?

Here, by ‘fundamental tradeoff” we mean a tradeoff that
holds given unlimited computational power and infinite
training data to train a model. In this work, we answer
these questions for adversarial distribution shifts, where
the adversary can shift the test data distribution, making it
different from the training data distribution. The test data
distribution can be an arbitrary but fixed distribution in a
neighborhood of the training data distribution and the radius
of this neighborhood is a measure of adversary’s power.

Contributions. We next summarize our contributions in
this paper:

e We characterize the fundamental tradeoff between stan-
dard risk and adversarial risk for distributionally adversar-
ial training for the settings of linear regression and binary
classification (under a Gaussian mixtures model). We fo-
cus on infinite data limit (n — oo) with finite feature di-
mension (d) and hence our analysis is at population level.
The fundamental tradeoff is characterized by studying
the Pareto optimal fronts for the achievability region in
the two dimensional standard risk-adversarial risk region.
The Pareto optimal front consists in the set of estimators
for which one cannot decrease both standard and adver-
sarial risk by deviating from these estimators. Similar
tradeoffs have been derived for linear regression setting
with norm bounded adversarial perturbation and isotropic
Gaussian features (Javanmard et al., 2020). Here we fo-
cus on distribution perturbing adversaries and consider
general anisotropic Gaussian features.

e For the binary classification we consider a Gaussian mix-
tures model with general feature covariance and a dis-
tribution perturbing adversary, where the perturbation is
measured in terms of the Wasserstein metric with general

£, norm. (We refer to Sections 2.2 and 3.2 for further de-
tails and formal definitions). Our analysis shows how the
fundamental tradeoff between standard and adversarial
risk is impacted by a variety of factors, such as adver-
sary’s power, feature dimension, features correlation and
the choice of /,. perturbation norm. An interesting obser-
vation is that for » = 2 the tradeoff between standard and
adversarial risk vanishes. In other words, there exists a
model which achieve both the optimal standard risk and
the optimal adversarial risk.

e We also study the Pareto optimal tradeoffs between the
standard and adversarial risks for the problem of learn-
ing an unknown function over the d-dimensional sphere
using random features model. This can be represented
as linear models with N random nonlinear features of
the form o(wlz), 1 < a < N, with o(-) a nonlinear
activation. Equivalently this can be characterized as fit-
ting a two-layer neural network with random first-layer.
Building upon approximation formula for adversarial risk,
we study the effect of network width NV on the tradeoff
between standard and adversarial risks.

1.1. Further related work

Very recent work (Javanmard & Soltanolkotabi, 2020;
Taheri et al., 2020) have focused on binary classification,
under Gaussian mixtures model and proposed a precise char-
acterization of the standard and adversarial risk achieved
by a specific class of adversarial training approach (Tsipras
et al., 2018; Madry et al., 2018b). These work consider an
asymptotic regime where the sample size grows in propor-
tion to the problem dimension d and focus on norm bounded
adversarial perturbation. In comparison, we consider a fixed
d, infinite n setting and consider distribution perturbing ad-
versary. Also we focus on fundamental tradeoffs achieved
by any linear classifier, while (Javanmard & Soltanolkotabi,
2020; Taheri et al., 2020) work with a specific class of sad-
dle point estimator. The other work (Dobriban et al., 2020)
also considers norm bounded adversarial perturbation for
the classification problem and studies the optimal /5 and
£, robust linear classifiers assuming access to the class
averages. Furthermore, it also studies the tradeoff between
standard and robust accuracies from a Bayesian perspective
by contrasting this optimal robust classifier with the Bayes
optimal classifier in a non-adversarial setting.

2. Problem formulation

In a classic supervised learning setting, a learner is given
n pairs of data points {z; := (z;,¥;) }i=1.n With z; € RY
representing features vectors and y; the response variables
(or labels). The common assumption in supervised machine
learning is that the data points z; are drawn independently
and identically from some probability measure P defined
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over the space Z := X x ). Given this training data,
the learner would like to fit a parametric function fy with
6 € R? to predict the response (label) on new points .

A common practice to model fitting is through the empirical
risk minimization:

h= arg min 726

poRd 1 xj ) y] (D
with £(0; (z,y)) := Z(fg(x), y) and ¢ being a loss function
which captures the discrepancy between the estimated value
fo(x) and the true response value y. The performance of
the model is then measured in terms of standard risk (a.k.a.
generalization error), defined as

SR(0) = Eze(ay)~p, [L(0; (2,9))] - 2)

Standard risk is a population risk and quantifies the expected
error on new data points drawn from the same distribution
as the training data.

Although the empirical risk minimization is a widely used
approach for model learning, it is well known that the result-
ing models can be highly vulnerable to adversarial perturba-
tions of their inputs, known as adversarial attacks. We next
discuss the adversarial setting and two common adversary
models that are considered in literature.

2.1. Adversarial setting

The adversarial setting can be perceived as a game between
the learner and the adversary. Given access to the training
data, drawn i.i.d from a common distribution Pz, the learner
chooses a model #. Depending on the adversary’s budget ¢,
the adversary chooses a test data point (Z, /) that can deviate
from a typical test point according to one of the following
models. The performance of model 4 is then measured in
terms of predicting y given the perturbed input Z.

Norm-bounded perturbations. In this setting, § = y (no
perturbation on the response) and & = x + § where 0 can be
an arbitrary vector from ¢,.-ball of radius . The adversarial
risk in this case is defined as

AR(0) = By )p,

sup L(0;(x+0,y))| . 3

I51l,, <e

Distribution shift. In this setting, the adversary can shift
the distribution of test data, making it different than the
training distribution P». Specifically, (Z,3) ~ Q where
Q € U.(Pz) denotes an - neighborhood of the distribu-
tion Pz. A popular choice of this neighborhood is via the
Wasserstein distance, which is formally defined below. In
this case, the adversarial risk is defined as

AR(0) := sup E@gg~oll(0;(2,9)] . @)
QGZ/{E(PZ)

Note that this is a strong notion of adversary as the pertur-
bation is chosen affer observing both the model 6 and data
point (z,y) (in norm-bounded perturbation model) or the
training data distribution Pz (in the distribution shift model).
The distribution perturbing adversary is a common model
in a multitude of application domains and has already been
adopted by several work including (Staib & Jegelka, 2017;
Dong et al., 2020; Pydi & Jog, 2020).

Our primary focus on this work is on the distribution shift
adversary model with Wasserstein metric to measure the
distance between distributions. The next section provides a
brief background on the Wasserstein robust loss which will
be used later in our work.

2.2. Background on Wasserstein robust loss

Let Z be a metric space endowed with metric d : Z x
Z — R>¢. Denote by P(Z) the set of all Borel probability
measures on Z. For a Q-measurable function f, the £P(Q)-
norm of f is defined as

(Jz If1P aQ)'’”
Qeesssup |£(2)]

z2€EZ

forp € [1,00)
for p = o0

1fllep = )

For two distributions P, Q € P(Z) the Wasserstein distance
of order p is given by

W,(P,Q) :=  inf

- 6
e o ]l x.p (6)

where the coupling set Cpl(P, Q) denotes the set of all
probability measures 7 on Z x Z with the first marginal
71 := 7(- X Z) = P and the second marginal 75 := 7 (Z x
) =Q

We use the Wasserstein distance to define the neighborhood
set U, in the distribution shift adversary model. Namely,

U:(Pz) :={Q e P(2): Wp(Pz,Q) <e}. (7)

In this case we refer to AR(6) given by (4) as Wasserstein
adversarial risk. Note that this notion involves a maximiza-
tion over distributions Q € P(Z) which can be daunting.
However, an important result from distributional robust opti-
mization which we also use in our characterization of AR(6)
is that the strong duality holds for this problem under gen-
eral conditions. The dual problem of (4) is given by

min, >0 {7e” + Bz, [, (6:2)]}
E. p, [supgez{ﬁ(ﬂ; Z): d(z,2) < 6}} p=o00.
®)

Here ¢, (8; z) is the robust surrogate for the loss function
£(0; z) and is defined as

b(0; 20) := sup{l(6; z)
z€Z

p € [1,00),

—d"(z,20)}. )
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For p € [1,00) it is shown that strong duality holds if
either Pz has finite support or Z is a Polish space (Gao
& Kleywegt, 2016). For p = oo, Lemma EC.2 in (Gao
et al., 2020) shows that strong duality holds if P has finite
support.

Remark 2.1. It is worth noting that the Wasserstein ad-
versary model is stronger than and generalizes the norm-
bounded perturbation model. In particular, for any p €
[1,00],

E(zy)~p, | sup £(0;(x+9,y))
loll,, <
< osup B g [0 (2,9))]
QeU.(Pz)

where U.(Pz) is given by (T) with the Wasserstein distance
defined with respect to the €. distance which is also used in
the definition of norm-bounded perturbation model. Equal-
ity holds for p = oco. We refer to (Staib & Jegelka, 2017,
Proposition 3.1) and (Pydi & Jog, 2020, Corollary 2.1, The-
orem 1) for the proof and further explanation.

2.2.1. REGULARIZATION EFFECT OF WASSERSTEIN
ADVERSARIAL LOSS

It is clear from the definition that AR(9) > SR(6) for
any model 8. Understanding the tradeoff between stan-
dard and adversarial risks is intimately related to the gap
AR(#) — SR(#). The gap between the Wasserstein adver-
sarial loss and the standard loss has been studied in several
settings in the context of distributionally robust optimiza-
tion (DRO) (Bartl et al., 2020; Gao et al., 2020). In par-
ticular, (Bartl et al., 2020; Gao et al., 2020) introduced the
notion of variation of the loss, denoted as V(¢), as a measure
of the magnitude change in the expected loss when the data
distribution is perturbed, and showed that the Wasserstein
adversarial loss is closely related to regularizing the nominal
loss by the variation V(¢) regularizer. The formal definition
of the variation of loss, recalled from (Gao et al., 2020), is
given below.

Definition 2.2. (Variation of the loss). Suppose that Z is a
normed space with norm || -||. Let £ be a continuous function
on Z. Also assume that V ,{ exists P-almost everywhere.
The variation of loss £ with respect to P is defined as

IVtllles g€l
P,g\t) -= | Pz —esssup sup %7 q=o00.
z2€Z Z#z
(10
Here || - ||« denotes the dual norm of || - || and we recall that

| - llp,q is the L1(IP)-norm given by (5).

The following proposition from (Bartl et al., 2020; Gao
et al., 2020) states that the variation of loss captures the first

order term of the gap between Wasserstein adversarial risk
and standard risk for small €.

Proposition 2.3. Suppose that the loss ((0; z) is differen-
tiable in the interior of Z for every 0, and V ,{ is continuous
on Z. When p € (1,00), assume that there exists M, L > 0
such that for every 6 and z, z € Z,

|V 4(0;2) =V 4(0; 2)||« <M+ L||Z— 2P~

When p = oo, assume instead that there exists M > 0 and
0o > 0such that for every 0 and z, Z € Z with ||Z—z|| < dq,
we have

IV.6(6;2) — V.06 )| < M.
Then, there exists € such that for all 0 < € < & and all 6
AR(6) — SR(0) = eVp,, ,(£) + O(£?), (11)

where 1% + % = 1 and p is the order of Wasserstein distance
in defining set U-(Pz) in the adversarial risk (4).

By virtue of Proposition 2.3, the Wasserstein adversarial
risk can be perceived as a regularized form of the standard
risk with regularization given by the variation of the loss.
Nonetheless, note that this is only an approximation which
captures the first order terms for small adversary’s power
€. (See also Remark 8 in (Bartl et al., 2020) for an upper
bound on the gap, up to second order terms in €.)

In this paper, we consider the settings of linear regression
and binary classification. For these settings, only for the
special case of p = 1 (1-Wasserstein) and when the loss
is Lipschitz and its derivative converges at oo, it is shown
that the gap (11) is linear in € and therefore is precisely
characterized as eVp, 4(¢). However, as we will consider
more common losses for these settings, namely quadratic
loss for linear regression and 0-1 loss for classification, such
characterization does not apply to our settings and requires
a direct derivation of adversarial risk. Later, in Section 3.3
we use the result of Proposition 2.3 to study the tradeoff
between SR and AR in the problem of learning an unknown
function over the d-dimensional sphere S?~ 1.

3. Main results

In this paper we focus on the distribution perturbing ad-
versary and aim at understanding the fundamental tradeoff
between standard risk and adversarial risk, which holds re-
gardless of computational power or the size of training data.
We consider 2-Wasserstein distance (p = 2) with the metric
d(z, Z) defined as

d(z,2) = [lv = &||,, + oo -y # g},  (12)

for z = (x,y) and Z = (Z,y). Therefore, the adversary
with a finite power € can only perturb the distribution of the
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input feature x, but not y. Otherwise, the distance d(z, Z)
becomes infinite and so the Wasserstein distance between
the the data distribution P and the adversary distribution @,
given by (6), also becomes infinite. It is worth noting that
this choice of d is only for simplicity of presentations and
our results in this section can be derived in a straightforward
manner for distances that also allow perturbations on the y
component.

The following remark relates the two types of adversary
discussed in Section 2.1 and follows readily from the defini-
tion (6) and Equation (5).

Remark 3.1. For distance d(-,-) given by (12), the adver-
sary model with norm bounded perturbations correspond
to the distribution shifting adversary model with p = oo
Wasserstein distance.

3.1. Linear regression

We consider the class of linear models to fit to data with
quadratic loss £(2;0) = (y — 760)2. Our first result is a
closed form representation of the Wasserstein adversarial
risk (4) in this case.

Proposition 3.2. Consider the quadratic loss {(z;0) =
(y — x70)? and the distribution perturbing adversary with
U-(Pz) given by (7) with p = 2 and the metric d given
by (12). In this case the adversarial risk AR(0) admits the
following form:

2
AR<9>=( Epzuy—wwmﬂnm) E

To prove Proposition 3.2 we exploit the dual problem (8).
We refer to Section A.1 for the proof of Proposition 3.2.

Pareto optimal curve. For the linear regression setting,
note that the standard risk SR(#) and the adversarial risk
AR(0) are convex functions of @. (The latter is convex
since Eg[(y — 76)?] is convex for any distribution Q and
maximization preserves convexity.) Therefore, we can find
(almost) all Pareto optimal points by minimizing a weighted
combination of the two risk measures by varying the weight
Al

0y := arg mgin ASR(0) + AR(6) (14)

The Pareto optimal curve is then

{(SR(6,),AR(6)) : A > 0}.

Theorem 3.3. Consider the setting of Proposition 3.2 with
v := Elyz], o7 := E[y?], and ¥ := E[zx"]. Then the
solution 0 of optimization (14) is given either by (i) 0y = 0
or (ii) Oy = (X + v.I) 1o, with v, the fixed point of the

given by

following two equations:

g2 +¢eA
Y= 1)\75 ) (15)
A+
= (A s
[(Z+~D)~toll, \ Y e

1/2
— 2T (Z+ 71)—11]) . (16)

In case (i) we have SR(6\) = AR(0x) = o. In case (ii)
we have

SR(0x) = A2 |(S + D) Molf,, |

, e (17)
AR(6x) = (A +&)* (S +7I)~ v;|e2 ,

where A, is given by (16) when v = ~,.

The proof of Theorem 3.3 is given in Section A.2.

Corollary 3.4. Suppose that data is generated according
to linear model y = "0y + w with w ~ N(0,0?) and
isotropic features satisfying Elxx "] = I4. Then the solution
0y of optimization (14) is given either by (i) 0y = 0 or
(i) Ox = (1 + %)~ 0o, where ~, is the fixed point of the
following two equations:

€2 +eA
7:71 2 & (18)
+A+ 7
1/2
0.2
A= <v2+(1+v)22> . (19)
100ll7,

In case (i) we have SR(0)) = AR(0)) = 02 + H90H§2~ In
case (it) we have

SR(0x) = A2(1+7.) 72 |6o]7, .
AR(0)) = (Ax +)2(1+7) 2 [16oll7, .

(20)
2n

where A, is given by (19) when v = ~,.

The proof of Corollary 3.4 is provided in Section A.3.

Figure 1 shows the effect of various parameters on the Pareto
optimal tradeoffs between adversarial (AR) and standard
risks (SR) in linear regression setting. We consider data
generated according to the linear model y = "6y + w with
w ~ N(0,1) and features z; sampled i.i.d from N(0, X)
where ¥; ; = pl"=Jl. Figure la demonstrates the role of
features dimension d on the Pareto optimal curve for the
setting with p = 0 (identity covariance matrix), adversary’s
power € = 1, and the entries of 6 generated independently
from N(0, 1/40). Note that by Corollary 3.4, in the case of
isotropic features, standard risk and adversarial risks depend
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Adversarial risk
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Standard risk

(a) Pareto optimal curve for several feature
dimensions d with p =0 and e = 1.

Standard risk

(b) Pareto optimal curve for several feature
dependency values p withd = 10, = 1.

Standard risk

(c) Pareto optimal curve for several adver-
sary’s power € with p = 0 and d = 10.

Figure 1. The effect of feature dimension (d), dependency across features (p), and adversary’s power (¢) on Pareto optimal tradeoff
between adversarial (AR) and standard risks (SR) in linear regression setting.

on 6y only through its /5 norm. The variations in the Pareto-
curve here is due to variations in ||6g ||, as d changes.

Figure 1b investigates the role of dependency across features
(p) in the optimal tradeoff between standard and adversarial
risks. In this setting d = 10, ¢ = 1, and 0y ~ ﬁN(O, I).
As we see all the curves start from the same point. This
can be easily verified by the result of Theorem 3.3: For the
linear data model y = x "6y + w, we have v = 36, and at
A = 00, the Pareto-optimal estimator is the minimizer of the
standard risk, i.e. Oy—o, = 6. Also by (15) we have v, = 0,
and by (16) we obtain A = o/ [|||,,. Plugging these
values in (17) we get SR(6) = 02 and AR(6,) = (o +
€0 [|6ol,,)?. Therefore both metrics become independent
of p at A = co. Also looking at the right-most point of the
Pareto-curves, corresponding to A = 0, we see that as p
increases from small to moderate values, this point moves
upward-right, indicating that both standard and adversarial
risks increase, but after some value of p, we start to see a
reverse behavior, where standard and adversarial risks start
to decrease.

Finally in Figure 1c we observe the effect of adversary’s
budget € on the Pareto optimal curve. Here, d = 10, p = 0,
and 6y ~ %N(O, I). Clearly, as ¢ grows there is a wider
range of Pareto-optimal estimators and the two measures
of risks would deviate further from each other. When ¢ be-
comes smaller, the two measures of standard and adversarial
risks get closer to each other and so the Pareto-optimal curve
becomes shorter.

3.2. Binary classification

We next consider the problem of binary classification under
a Gaussian mixture data model. Under this model, each
data point belongs to one of two two classes {£1} with
corresponding probabilities 74, and m— = 1 — 7m4. The
feature vectors in each class are generated independently

according to an isometric Gaussian distribution with mean
{+£u} depending on the class. In other words, given label
y; € {=£1}, the feature vector z; € R? is drawn from

N(yip, ).

We focus on class of linear classifiers {z760 : § € R?}.
Given a model 6 the predicted labels are simply given as
sign(z76). We consider 0-1 loss £(0;2) = I(§ # y) =
I(yxT0 < 0). We also consider Wasserstein adversarial
training with distance

d(z,2) = [lz = &ll,, +oo-Hy # 5}, (22)

for 2 = (z,y) and Z = (&, 7). Our next results is on char-
acterizing the standard risk and the Wasserstein adversarial
risk for this model.

Proposition 3.5. Consider binary classification with Gaus-

.
sian mixture data model and 0-1 loss. Let ag := W.
L2

Then, for a linear classifier x + sgn(z'0), the standard
risk is given by
SR() = ®(—ay),

where ®(z2) = %ﬂ I . e~ dt denotes the c.d.f of a stan-

dard Gaussian distribution. In addition, define the function
F(0,7) : R¥ 5 R as follows:

F(0.7) =p-¢" + ¢<ﬂ - o)
+;{ (ao + ﬁ)s@(ae - \/3) — agp(a)
+ (ai +1) {@ (ae - \/3) - @(ag)} } )

(23)

[[=*720]]7,
To17,

1

1 1 _ e _ﬁ .
st =1 and p(t) = e ? standing for the p.d.f

with bg := , £q denoting the dual norm of ¢, (i.e.,
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of a standard Gaussian distribution. Then, the Wasserstein
adversarial risk with p = 2 and metric d(-,-) given by (22)
is characterized as

AR(0) = inf F(0,7). (24)

Note that as an implication of Proposition 3.5, the standard
risk SR(¢) and the adversarial risk AR(#) depend on the
estimator 6 only through the components ag and by.

We next characterize the Pareto optimal front for the region
{(SR(6),AR(#)) : 6 € R9}. Since the 0-1 loss I(yzT0 <
0) is convex in 6, both the standard risk and the adversarial
risks are convex functions of # (by a similar argument given
prior to Theorem 3.3.)

Theorem 3.6. Assume the setting of Proposition 3.5 and
consider the following minimization problem

(02,72)) := arg min A\®(—ag) + F(6,7). (25)
~v=>0,0

The Pareto optimal curve is given by

{(2(~apy), F(62,72)) : A = 0}.

Theorem 3.6 follows from the fact that the Pareto front of a
convex set is characterized by intersection points of the set
with the supporting hyperplanes.

Remark 3.7. Forr = q = 2and ¥ = I, we have by = 1.
In this case the objective of (25) is decreasing in ay and
since |ag| < ||plly,, it is minimized at ag = ||ull,,. In
addition, SR(0) is decreasing in ag and is minimized at
the same value of ag = ||ul|,,. Therefore, by introducing
c := ||ull,,, the Pareto-optimal curve shrinks to a single
point given by

SR=B(—0), (26)
AR::3£{7¥—+¢<Vﬂi—c>
F2{(e+2)ele- 2) - et
+48+1ﬂ¢@—v€)—®@ﬂﬂ.

In other words, the tradeoff between standard and adver-
sarial risks, achieved by linear classifiers, vanishes in this
case and the estimators in direction of the class average
W are optimal with respect to both standard risk and the
Wasserstein adversarial risks.

We refer to Section A.5 for the proof of Remark 3.7.

Figure 2 showcases the effect of different factors in a binary
classification setting on the Pareto-optimal tradeoff between

standard and adversarial risks. Here the features x are drawn
from N(yu, ), with ;; = pl=71. The class average y has
i.i.d entries from N(0, 1/d) with d = 10. In Figure 2a, we
investigate the role of the norm r used in the Wasserstein
adversary model, cf. Equation (22). As discussed in Re-
mark 3.7, when r = 2, the tradeoff between standard and
adversarial risks vanishes and the estimators in direction of
the class average  are optimal with respect to both standard
risk and the Wasserstein adversarial risks.

Figure 2b illustrates the effect of dependency among fea-
tures p on optimal tradeoff between standard and adversarial
risks. In this setting » = oo and € = 0.3. From the result
of Theorem 3.6, we see that these risks very much depend
on the interaction between the class average p and the fea-
tures covariance X and so the curves are shifted in highly
nontrivial way depends on the value of p when we fix p.

The role of adversary’s budget ¢ is depicted in figure 2c
in which r = oo, p = 0. Similar to the linear regression
setting, when ¢ is small the two measures of risk are close
to each other and we have a small range of Pareto-optimal
models. As e grows, the standard risk and the adversarial
risks differ significantly and we get a wide range of Pareto-
optimal models.

3.3. Learning nonlinear functions

We next investigate the tradeoff between standard and adver-
sarial risk for the problem of learning an unknown function
over the d-dimensional sphere S%~!. More precisely, we
consider the following data generative model:

y = fa(r) +w, (27)

with 2 ~ Unif(S¥~1(1/d)), the d-dimensional sphere of ra-
dius v/d, and w ~ N(0, 0?) independent of . We consider
fitting a random features model to data generated according
to (27). The class of random features model is given by

N
Frr(0,U) = {f(x, 0,U) := Z@J(ujoj),
i=1
Mm&EKiLHWN} (28)

where U € RN >4 is a matrix whose i-th row is the vector u;,
uniformly drawn from S9~1(1), independently from data.
The random features model can be equivalently represented
by two-layer neural network with the first-layer weights
U chosen randomly and 6 = (6;)1<;<n corresponding to
the second-layer weights. The random features model was
introduced by (Rahimi & Recht, 2007) for scaling kernel
methods to large datasets. There is indeed a substantial liter-
ature drawing connections between random features models,
kernel methods and fully trained neural networks (Daniely
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Standard risk
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Standard risk

(c) Pareto optimal curve for several adver-
sary’s budget € with d = 10, » = oo, and
p=0.

Figure 2. The effect of defined ¢, norm on feature space, dependency across features (p) and adversary’s power € on Pareto optimal
tradeoff between adversarial and standard risks in binary classification under Gaussian mixture model.

et al., 2016; Daniely, 2017; Jacot et al., 2018; Li & Liang,
2018). In (Mei & Montanari, 2019), the generalization error
(standard risk) of random features model was precisely char-
acterized for the problem of learning a function fy(-) over
S?=1(v/d) in the regime where the network width N, sam-
ple size n and feature dimension d grow in proportion. The
nonlinear model considered in (Mei & Montanari, 2019) is
of the form

fa(@) = Bao + " B + f1"(z), (29)
with the nonlinear component 3" (z) is a centered isotropic

Gaussian process indexed by z. We follow the same model
and consider the following random quadratic function

fa(x) = Bao + Z'Tﬁd,l + %[mTGx —tr(@)],

(30)
for some fixed F, € R and G € R**? 3 random matrix
with i.i.d entries from N(0, 1).

Our goal is to study the Pareto-optimal tradeoff between
standard and adversarial risks for this learning setting,
achieved by the class of random features model (28). The
standard risk in this setting is given by

SR(0) =E,, [(y — 0To(Ux))?]

=E, [(fa(z) — 070 (Ux))?] + o2. (31)
For the Wasserstein adversarial risk we use the following
corollary which is obtained by specializing Proposition 2.3
to random features model.

Corollary 3.8. Consider the class of feature model given
by (28). In this case, the 2-Wasserstein adversarial risk
with distance d(-,-) (12) admits the following first-order

approximation:
AR(#) = SR(0)
+2E, [[( fa(z) — 0T o(Uz))? + 02

X HUTdiag((f’(Uac))GHj2 ] i +0(£?),
(32)

with o' (-) denoting the derivative of the activation o (-) and
SR(0) given by (31).

The proof of Corollary 3.8 is given in Appendix A.6. The
standard risk is quadratic and hence convex in 6. The adver-
sarial risk is also convex in @ (it follows from the fact that
pointwise maximization preserves convexity.) Therefore,
for small values of ¢ (weak adversary) the first order approx-
imation of AR() is also convex in 6. As such, (almost) all
Pareto optimal points are given by minimizing a weighted
combination of the two risk measures as the weight \ varies
in [0, 00). Namely,

0 := arg mein ASR(#) + AR(9) , (33)

with SR(6) given by (31), and AR(#) given by (32).

We use the above characterization to derive the Pareto-
optimal tradeoff curves between standard and adversarial
risks for learning function f;(x), given by (30) with F, = 1,
Bao = 0,and B4 € R? withi.i.d entries ~ N(0, 1/d). The
data are generated according to (27) witho = 2, d = 10 and
N € {250, 500, 750,1000}. To compute 6 we use empiri-
cal loss with n = 500K samples of z ~ Unif(S¢~*(v/d)).
For each value of A\ and N we generate 15 realization of
weights U and compute 8 for each realizations using gra-
dient descent on the loss function (33). The Pareto optimal
points {SR(6,), AR(6y) : A > 0} are plotted in Figure 3
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Figure 3. Pareto-optimal tradeoff curves for learning random
quadratic functions using random features model. Data is gen-
erated according to (27) with ¢ = 2 and f4(x) given by (30).
Here, d = 10 and N is the number of random features (width of
the neural network).

for ¢ = 0.2. As we see for each value of N the tradeoff
curves concentrate as N grows implying that the estima-
tor 8 becomes independent of the specific realization of
weights U. Also we observe that the tradeoff between stan-
dard and adversarial risks exist even for large values of
N. Interestingly, as the network width N grows both the
standard risk and adversarial risk decrease but the tradeoff
between them clearly remains (the length of Pareto front
does not shrink).

4. Conclusion

Linear regression and binary classification are two simple,
yet foundational settings in machine learning and still the
full effect of adversarial training is not known for these
settings. In this work we focus on distribution perturbing ad-
versary and provide a framework on how to think about the
tradeoff between the Standard risk (SR) and the Adversarial
risk (AR), its existence and its quantitative behavior with
respect to data distribution and the hypotheses class. Note
that these are non-trivial questions and previously there has
been specific “examples” to hint such tradeoff. A tantaliz-
ing question is whether one can remove this tradeoff (or
improve SR and AR simultaneously) by considering a more
complex class of hypotheses. Our discussion in Section 3.3
is a first attempt to answer this question for random features
model.
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