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ABSTRACT 

In the NeuroSwarms framework, a team including researchers from the Johns Hopkins Univer-

sity Applied Physics Laboratory (APL) and the Johns Hopkins University School of Medicine (JHM) 

applied key theoretical concepts from neuroscience to models of distributed multi-agent autono-

mous systems and found that complex swarming behaviors arise from simple learning rules used 

by the mammalian brain. 

INTRODUCTION 
The development of multi-agent platforms with 

small-scale robotic vehicles is an exciting target of state-
of-the-art autonomous systems engineering: many new 
applications may emerge from controlling large, distrib-
uted groups of inexpensive but agile vehicles. However, 
current communication and control frameworks need to 
be improved to provide the adaptiveness, resilience, and 
computational efficiency required for operating in com-
plex and dynamically changing real-world conditions.

1–4
 

This project explored concepts in theoretical neurosci-
ence to bridge the collective interactions and timescales 
of brain activity and animal behavior to emergent spa-
tial and temporal patterns of groups of mobile autono-
mous agents. Fast Company, who recognized APL as 
one of the top three best workplaces for innovators, 
highlighted this project in an article and accompanying 
video about its 2020 list.

5
 

In our operating metaphor, autonomous agents are 
neurons, agent-based communication is the phase syn-
chronization of neuronal spiking, and the swarm as a 
whole is a neuronal network in which emergent net-
work behaviors map to emergent swarming behaviors.  

Although neural representations of the hippocampal 
formation have motivated prior approaches to spatial 
mapping, planning, and navigation of robotic plat-
forms,

6–9
 these neuromimetic approaches have relied 

on the representations from spatial neurons—includ-
ing place cells, head direction cells, border cells, and/ 
or grid cells

10
—to drive spatial computations in support 

of single-platform robotic control.
11–14

 However, these 
approaches do not apply temporal coding mechanisms 
from the recently discovered phaser cells

15,16
 or spatial 

self-organization concepts from attractor map theory.17–19 

It has remained unclear how the spatiotemporal dynamics 
of these neural representations might inform advances 
in autonomous control. 

Prior work has also applied biomimetic approaches 
to swarming problems, which require collective behav-
iors to accomplish spatially distributed tasks. One such 
approach, inspired by animal groups with oscillatory 
communication patterns, was generalized as the “swar-
malators” formalism,

20
 in which an agent’s internal phase 

is governed by local Kuramoto synchronization and 
swarming attraction and repulsion are phase-coupled. 

Johns Hopkins APL Technical Digest, Volume 35, Number 4 (2021), www.jhuapl.edu/techdigest 443 



Higher-order 
cortical input 
Recurrent input 
Spatial neurons 

Spatial fields 

Network output 

Spatial attractors 

Task landscape 

Multi-agent group 

Recurrent input 
Sensor fusion 
inputs 

Fixed points Rings Limit cycles 

Swarm output 

Figure 1. Brain-to-swarm analogy. A recurrent hippocampal neuronal network and its place fields 

are shown to collectively form spatial attractors. Other types of spatial neurons and network con-

nectivity could be applied to produce rings, or limit cycles, of activity. In NeuroSwarms, distances 

between each artificial agent within the multi-agent group is updated at each time step of the 

simulation while agents locate rewards. Other task landscapes could be applied such that collec-

tively these artificial fields could participate in attractor dynamics in the local communication sub-

networks of swarms. This operating analogy suggests that high levels of distributed control and 

autonomy could be supported by ~1-bit “spike-phase” channels with minimal energy footprints 

to achieve a range of swarm functions (e.g., load balancing, consensus, dynamic replanning). 
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However, swarmalator systems 
naturally relax to static states 
or simple cycling behaviors. 
Thus, our team, made up of 
researchers from APL and 
the Johns Hopkins School 
of Medicine (JHM), investi-
gated how the spatiotemporal 
dynamics of a subset of spatial 
neurons (i.e., place cells and 
phaser cells) might drive useful 
navigational behaviors in dis-
tributed groups of mobile oscil-
lators via swarming.

21
 

The team demonstrated, 
for the first time, that spatial 
attractor dynamics and tempo-
ral phase-based organization 
can be driven, in parallel, by 
a form of Hebbian learning 
modified to operate on, and 
indirectly control, inter-agent 
distances.

22
 Further, the link 

from learning to swarming is 
a fast online process, unlike 
existing pretrained or slowly 
adapting neural network con-
trollers. In this article, we discuss the NeuroSwarms 
controller framework with analogies to neuroscience 
and provide example demonstrations. We also discuss 
how neuroscience concepts of oscillatory phase coding 
and generalization of phase states to computationally 
relevant manifolds further inspired our development of 
a metastable swarming framework—i.e., Stiefelators. 

On the basis of decades of neuroscience research, hip-
pocampal place cells are known to fire within a contigu-
ous region of the animal’s learned environment, or place 
field.

23
 Our key insight was that an individual agent 

could be represented as a spatial neuron (e.g., a place 
cell) whose preferred location, or place field, indicates 
the agent’s desired position in the environment. It thus 
follows that a multi-agent group would be analogous to a 
neuronal network (e.g., the recurrently connected place 
cells of hippocampal subregion CA3; Figure 1). Con-
nections between neurons may be characterized by the 
“synaptic weight” that acts as a multiplicative gain on 
neuronal inputs. We thus further suppose that mutu-
ally visible agent pairs are reciprocally connected and 
that the distance between these agent pairs maps to the 
symmetric synaptic weight of those connections. Conse-
quently, relative agent motion corresponds to changes in 
connectivity and weights. Thus, a spatial configuration 
of the group constitutes an attractor map network17–19 

and relative motion (i.e., swarming) constitutes learning 
based on synaptic modification.

24,25
 Put simply, swarm-  

ing motion can be treated as learning based on synaptic 
plasticity within a memory network. 

METHODS AND RESULTS 

NeuroSwarms 
Applying methods described in our previous work 

that implemented a rate-based implementation of 
NeuroSwarms,

22
 we observed several novel, yet unex-

pected, emergent dynamical behaviors in simulations of 
both multi-agent swarming (Figure 2a) and the single-
entity reward approach (Figure 2b). The most notable 
and persistent behaviors included the emergence of 
phase-sorted spatial formations (as shown by the color-
sorting of adjacent agents) such as line segments, rings, 
or concentric loops. When we added a reward memory 
to the single-entity NeuroSwarms implementation, the 
single-entity was able to secure each of the three rewards 
(shown as yellow stars in Figure 2) in 30 out of 40 trials. 

Stiefelators 
We developed a swarming framework for a dis-

tributed “cocktail party” problem, wherein swarming 
agents are searching for emitters and simultaneously 
attempting to both localize the emitters in physical 
space and isolate them in spectral space. We exploited 
the fact that the subspace spanned by a signal is an 
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element on a Grassmannian manifold, and thus is the 
natural auxiliary space to generalize our swarmala-
tor model to generate a metastable system (Figure 3a, 
multimode) that had substantially improved perfor-
mance over the baseline generalized swarmalators 

(a) Multi-agent reward approach behaviors 

Neuro-Inspired Dynamic Replanning in Swarms 

(Figure 3a, single mode) in a dynamic environment. 
Metastability and load balancing are also demon-
strated while the multimode Stiefelator agents emer-
gently alternate on three targets located at X = 0.95, 
–0.1, and –0.5 (Figure 3b). 

(b) Single-entity-agent path formation with virtual swarm particles (c) Particle formations from geometric occlusion 

t = 8.3 s t = 16.31 s t = 20.27 s t = 10.24 s t = 16.74 s 

Figure 2. Temporal evolution of swarming and single-entity approaches to rewards. (a) Three agent-clusters were initially populated 

in the multi-reward arena. The internal place-field location of each agent is indicated by a small black dot (e.g., t = 1.26 s, black arrow). 

Phase sorting is indicated by sequentially ordered colors of the circle markers representing agent positions. A reward-centered phase 

ring was created (t = 9.71 s) with a decreasing diameter over time (t = 22.49 s and t = 24.32 s; magenta arrows). A phase-sorted line seg-

ment formed and moved around a corner (t = 22.49 s and t = 24.32 s; blue arrows). (b) A single-entity agent (larger green circle with 

green arrow) was guided by 300 virtual particles (phase-colored dots). Swarm particles formed phase sequences leading the agent from 
the southwest corner to the reward location in the southeast corner of the arena by t = 20.3 s. (c) Step-like patterns of particles (orange 

arrows) appeared near rewards that were occluded from the perspective of the single agent (green arrows) by corners in the environ-

mental geometry. While the agent became “indecisive” around t = 10.24 s because it was pulled simultaneously in both directions, the 

agent ultimately found its way to the southeast reward by t = 16.74 s. 

(a) Target coverage (4v4) Metastability and load balancing (b) 

Simulation time 

Figure 3. Cocktail party simulation results. (a) The addition of an auxiliary variable for search that is modulated by the commonality 

with neighbors’ Grassmannian variables results in improved ability to escape local minima. (b) Demonstration of metastable behavior 

exhibited by four swarming agents. 
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OUTLOOK 
Encouraged by our promising preliminary results on 

NeuroSwarms and Stiefelators, future work includes the 
addition of alternative learning rules, conversion from 
rate-based dynamics to spiking communications, the 
incorporation of sharp-wave/ripple

26–28
 dynamics to 

accommodate multi-agent deliberation, and the use of 
graph signal processing

29
 for stability analysis. Current 

funding (through an APL Propulsion Grant, a program 
that aims to advance bold, high-risk, and transforma-
tional ideas) should allow us to evaluate structure and 
dynamics on time-varying graphs. Collectively, if these 
next steps are successful, NeuroSwarms may become 
a generalized controller for dynamic replanning in 
unstructured environments in GPS-denied areas. 

CONCLUSIONS 
By analogizing agents and swarms to neurons and 

networks, we showed that a high-level neural approach 
to distributed autonomous control produces complex 
dynamics with navigational value. This analogy permit-
ted the tools of theoretical neuroscience to be leveraged 
in developing a model controller of an artificial swarm-
ing system. Our key insight was that swarm motion can 
be interpreted as a mobile variation of Hebbian learning, 
given a natural translation between spatial relationships 
in a swarm and connectivity relationships in a neuro-
nal network. This insight that “swarming is learning” 
further allowed us to demonstrate advances in general-
ized swarmalator systems to solve the distributed cock-
tail party problem by achieving metastability, which is 
a preliminary form of dynamic replanning that we will 
further pursue. 
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