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Theoretical Neuroscience Extends Swarming in
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ABSTRACT

In the NeuroSwarms framework, a team including researchers from the Johns Hopkins Univer-
sity Applied Physics Laboratory (APL) and the Johns Hopkins University School of Medicine (JHM)
applied key theoretical concepts from neuroscience to models of distributed multi-agent autono-
mous systems and found that complex swarming behaviors arise from simple learning rules used

by the mammalian brain.

INTRODUCTION

The development of multi-agent platforms with
small-scale robotic vehicles is an exciting target of state-
of-the-art autonomous systems engineering: many new
applications may emerge from controlling large, distrib-
uted groups of inexpensive but agile vehicles. However,
current communication and control frameworks need to
be improved to provide the adaptiveness, resilience, and
computational efficiency required for operating in com;
plex and dynamically changing real-world conditions.
This project explored concepts in theoretical neurosci-
ence to bridge the collective interactions and timescales
of brain activity and animal behavior to emergent spa-
tial and temporal patterns of groups of mobile autono-
mous agents. Fast Company, who recognized APL as
one of the top three best workplaces for innovators,
highlighted this project in an article and accompanying
video about its 2020 list.

In our operating metaphor, autonomous agents are
neurons, agent-based communication is the phase syn-
chronization of neuronal spiking, and the swarm as a
whole is a neuronal network in which emergent net-
work behaviors map to emergent swarming behaviors.
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Although neural representations of the hippocampal
formation have motivated prior approaches to spatial
mappjng, planning, and navigation of robotic plat-
forms, these neuromimetic approaches have relied
on the representations from spatial neurons—includ-
ing place cglls, head direction cells, border cells, and/
or grid cells —to drive spatial compyfations in support
of single-platform robotic control. However, these
approaches do not apply temporal coding mechanisms
from the recently discovered phaser cells or spatial
self-organization concepts from attractor map theory 1”19
It has remained unclear how the spatiotemporal dynamics
of these neural representations might inform advances
in autonomous control.

Prior work has also applied biomimetic approaches
to swarming problems, which require collective behav-
iors to accomplish spatially distributed tasks. One such
approach, inspired by animal groups with oscillatory
communication pattegns, was generalized as the “swar-
malators” formalism, in which an agent’s internal phase
is governed by local Kuramoto synchronization and
swarming attraction and repulsion are phase-coupled.
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However, swarmalator systems
naturally relax to static states
or simple cycling behaviors.
Thus, our team, made up of
researchers from APL and
the Johns Hopkins School
of Medicine (JHM), investi-
gated how the spatiotemporal
dynamics of a subset of spatial
neurons (i.e., place cells and
phaser cells) might drive useful
navigational behaviors in dis-
tributed groups of mgbile oscil-
lators via swarming.

The team demonstrated,
for the first time, that spatial
attractor dynamics and tempo-
ral phase-based organization
can be driven, in parallel, by
a form of Hebbian learning
modified to operate on, and
indirectly,gontrol, inter-agent
distances.  Further, the link
from learning to swarming is
a fast online process, unlike
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Figure 1. Brain-to-swarm analogy. A recurrent hippocampal neuronal network and its place fields
are shown to collectively form spatial attractors. Other types of spatial neurons and network con-
nectivity could be applied to produce rings, or limit cycles, of activity. In NeuroSwarms, distances
between each artificial agent within the multi-agent group is updated at each time step of the
simulation while agents locate rewards. Other task landscapes could be applied such that collec-
tively these artificial fields could participate in attractor dynamics in the local communication sub-
networks of swarms. This operating analogy suggests that high levels of distributed control and
autonomy could be supported by ~1-bit “spike-phase” channels with minimal energy footprints
to achieve a range of swarm functions (e.g., load balancing, consensus, dynamic replanning).
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trollers. In this article, we discuss the NeuroSwarms
controller framework with analogies to neuroscience
and provide example demonstrations. We also discuss
how neuroscience concepts of oscillatory phase coding
and generalization of phase states to computationally
relevant manifolds further inspired our development of
a metastable swarming framework—i.e., Stiefelators.

On the basis of decades of neuroscience research, hip-
pocampal place cells are known to fire within a contigu-
ous rggion of the animal’s learned environment, or place
field.  Our key insight was that an individual agent
could be represented as a spatial neuron (e.g., a place
cell) whose preferred location, or place field, indicates
the agent’s desired position in the environment. It thus
follows that a multi-agent group would be analogous to a
neuronal network (e.g., the recurrently connected place
cells of hippocampal subregion CA3; Figure 1). Con-
nections between neurons may be characterized by the
“synaptic weight” that acts as a multiplicative gain on
neuronal inputs. We thus further suppose that mutu-
ally visible agent pairs are reciprocally connected and
that the distance between these agent pairs maps to the
symmetric synaptic weight of those connections. Conse-
quently, relative agent motion corresponds to changes in
connectivity and weights. Thus, a spatial configuration
of the group constitutes an attractor map network! 719
and relative motion (i.e., swarmglg} constitutes learning
based on synaptic mod1ﬂcat10n Put simply, swarm-

ing motion can be treated as learning based on synaptic
plasticity within a memory network.

METHODS AND RESULTS

NeuroSwarms

Applying methods described in our previous work
that implemepfed a rate-based implementation of
NeuroSwarms,  we observed several novel, yet unex-
pected, emergent dynamical behaviors in simulations of
both multi-agent swarming (Figure 2a) and the single-
entity reward approach (Figure 2b). The most notable
and persistent behaviors included the emergence of
phase-sorted spatial formations (as shown by the color-
sorting of adjacent agents) such as line segments, rings,
or concentric loops. When we added a reward memory
to the single-entity NeuroSwarms implementation, the
single-entity was able to secure each of the three rewards
(shown as yellow stars in Figure 2) in 30 out of 40 trials.

Stiefelators

We developed a swarming framework for a dis-
tributed “cocktail party” problem, wherein swarming
agents are searching for emitters and simultaneously
attempting to both localize the emitters in physical
space and isolate them in spectral space. We exploited
the fact that the subspace spanned by a signal is an
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element on a Grassmannian manifold, and thus is the  (Figure 3a, single mode) in a dynamic environment.
natural auxiliary space to generalize our swarmala-  Metastability and load balancing are also demon-
tor model to generate a metastable system (Figure 3a,  strated while the multimode Stiefelator agents emer-
multimode) that had substantially improved perfor-  gently alternate on three targets located at X = 0.95,
mance over the baseline generalized swarmalators ~ —0.1, and —0.5 (Figure 3b).

(a) Multi-agent reward approach behaviors

t=0s t=126s t=9.71s t=2249s t=24.32s
(b) Single-entity-agent path formation with virtual swarm particles (c) Particle formations from geometric occlusion
t=83s t=16.31s t=20.27s t=10.24s t=16.74s

Figure 2. Temporal evolution of swarming and single-entity approaches to rewards. (a) Three agent-clusters were initially populated
in the multi-reward arena. The internal place-field location of each agent is indicated by a small black dot (e.g., t= 1.26 s, black arrow).
Phase sorting is indicated by sequentially ordered colors of the circle markers representing agent positions. A reward-centered phase
ring was created (t= 9.71 s) with a decreasing diameter over time (t= 22.49 s and t= 24.32 s; magenta arrows). A phase-sorted line seg-
ment formed and moved around a corner (t = 22.49 s and t = 24.32 s; blue arrows). (b) A single-entity agent (larger green circle with
green arrow) was guided by 300 virtual particles (phase-colored dots). Swarm particles formed phase sequences leading the agent from
the southwest corner to the reward location in the southeast corner of the arena by t= 20.3 s. (c) Step-like patterns of particles (orange
arrows) appeared near rewards that were occluded from the perspective of the single agent (green arrows) by corners in the environ-
mental geometry. While the agent became “indecisive” around t = 10.24 s because it was pulled simultaneously in both directions, the
agent ultimately found its way to the southeast reward by t= 16.74 s.

(a) Target coverage (4v4) (b) Metastability and load balancing
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Figure 3. Cocktail party simulation results. (a) The addition of an auxiliary variable for search that is modulated by the commonality
with neighbors” Grassmannian variables results in improved ability to escape local minima. (b) Demonstration of metastable behavior
exhibited by four swarming agents.
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OUTLOOK

Encouraged by our promising preliminary results on
NeuroSwarms and Stiefelators, future work includes the
addition of alternative learning rules, conversion from
rate-based dynamics to spiking cogymunications, the
incorporation of sharp-wave/ripple dynamics to
accommodate multi—ag&nt deliberation, and the use of
graph signal processing  for stability analysis. Current
funding (through an APL Propulsion Grant, a program
that aims to advance bold, high-risk, and transforma-
tional ideas) should allow us to evaluate structure and
dynamics on time-varying graphs. Collectively, if these
next steps are successful, NeuroSwarms may become
a generalized controller for dynamic replanning in
unstructured environments in GPS-denied areas.

CONCLUSIONS

By analogizing agents and swarms to neurons and
networks, we showed that a high-level neural approach
to distributed autonomous control produces complex
dynamics with navigational value. This analogy permit-
ted the tools of theoretical neuroscience to be leveraged
in developing a model controller of an artificial swarm-
ing system. Our key insight was that swarm motion can
be interpreted as a mobile variation of Hebbian learning,
given a natural translation between spatial relationships
in a swarm and connectivity relationships in a neuro-
nal network. This insight that “swarming is learning”
further allowed us to demonstrate advances in general-
ized swarmalator systems to solve the distributed cock-
tail party problem by achieving metastability, which is
a preliminary form of dynamic replanning that we will
further pursue.
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