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Abstract—As the predominant mobile operating system world-
wide, Android suffers from various types of malware, which could
cause severe security and privacy issues. To cope with them, many
research efforts have been made to develop effective malware
detectors. However, malware authors tend to evade detection
by launching adversarial example attacks, in which Android
applications could be mutated and thus causing confusion to
malware detectors. In this paper, we propose a deep learning
based approach to identify malware for the Android system in the
presence of adversarial example attacks. To validate the proposed
approach, we have conducted experimental study on real-world
datasets.

Index Terms—Android, malware, deep learning, adversarial
example attack, evasion attack

I. INTRODUCTION

In recent years, we have witnessed an explosive growth
to the number of mobile users, and there are about 5.27
billion unique mobile users all around the world [1]. Of all
of the mobile operating system, the Android system is the
most popular one, which accounts for about 72 percent of
the total market [2]. As the Android phones dominate the
market alongside with its large collection of applications, the
Android system has become very susceptible to malicious
attacks, which are generally caused by malicious applications
(malware).

As recently reported, there have been 482,579 new malware
samples each month as of March 2020 [3]. The common
goal for these malware samples is to acquire various sensitive
user information and exploit it, which may include passwords,
location information, banking information, and so on.

To battle the malware, three main categories of malware
detection approaches have been studied, which are based on
static analysis, dynamic analysis, and machine learning. Static
analysis will detect or identify any issue with an application
without executing it. Dynamic analysis could only detect
malware when the applications are being executed. Either
one of these analysis can be an essential component of the
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machine learning based approach. The machine learning based
approach allows for smart detection of malware with the use
of popular machine learning algorithms.

However, with the rise of these machine learning classifiers
comes with the rise of adversarial attacks, which, in this case,
are malicious attacks that appear to be benign and manage
to get pass the classifier. There have been strides to conquer
these adversarial attacks under machine learning, however,
there have been proposals that a deep learning based approach
could seem more effective and work much better.

There are many deep learning approaches such as Maldozer
[9], DroidDetector [10], DroidDeepLearner [11], etc. Many
of these methods generally utilize one of the deep learning
algorithms, such as deep belief network (DBN), convoluted
neural network (CNN), etc.

In this paper, we first explore the reason why the deep
belief network would suffer from adversarial example attacks,
and we then propose a way, by utilizing the deep belief
network, to train our classifier to be more robust against these
adversarial attacks. Finally, we use actual Android app datasets
(which contain both malware and benign apps) to validate the
proposed approach.

The rest of this paper will be organized as follows. Section
IT will present the related work that could help us get a better
understanding of what leads up to our research. Section III
will focus on the methodology which will display all the work
needed for this procedure to take place, which is followed by
the results and discussion in Section IV where we will discuss
the science behind the network along side how we managed to
get the classifier to detect these adversarial examples. Finally,
in Section V, we will conclude our research and point out some
possible future research directions that can be further explored
on top of what have been accomplished in this paper.

II. RELATED WORK

In this section, we will summarize some research efforts
that were made in relation to tackling adversarial attacks in
the machine learning format and how it leads us into the deep
learning approach.



A. Machine Learning based Approaches for Malware Detec-
tion

In recent years, various machine learning algorithms have
been applied to detect malware for the Android system, such
as support vector machine (SVM) [12], [13], clustering [14],
[15], and random forest [16], [17].

Li et al. [4] conducts some research on how to make
malware detectors more robust against adversarial attacks. In
this work, they incorporate a mutated dataset to be processed
so that the dataset then gets its features extracted and reduced.
While this feature extraction process looks for API calls
and requested permissions, it also extracts binary n-grams.
Binary n-grams are essential to how this model can craft their
adversarial examples. Data gets send to and from the classifier
to train and be ready for adversarial attacks, depending on
how well trained it is. The paper gave good insight of how
these adversarial example attacks can be performed and the
authors further speculated that deep learning algorithms could
potentially be used to battle adversarial example attacks in the
future.

B. Deep Learning based Approaches

As to what deep learning can offer from its machine
learning counterpart, deep learning offers an extensible and
exact solution for android malware characterization because it
determines malware relying on patterns instead of signatures,
a feature machine learning algorithms are known for. Not only
that, deep learning makes great usage of neural networks for it
to extrapolate on the essence of weighted biases from neurons.
There are a variety of different deep learning algorithms as
listed from [5], and the one that seems to be of common
use is the deep belief network. The deep belief network is
a generative graphical model, composed of multiple layers
known as Restricted Boltzmann Machines, with the goal to
classify data into any given category as indicated by the
labeled data.

As stated from [5] along with the associated papers that
it references, the deep belief network valued contribution is
great when working with detecting malware, however, it can
lead to performance suffering in the presence of adversarial
example attacks.

C. Adversarial Attacks

Adversarial attacks are merely attacks into any deep learning
model that an adversary has created for the sole purpose to
cause the model to calculate errors. From [4], it states that
adversarial attacks can branch off to two different sections,
causative and exploratory. From the exploratory branch, the
evasion attack is said to be one of the most popular kind of
adversarial attack ever adopted. Likewise, implementation of
the evasion attacks can take in many forms, and an official
form will be describe in the later sections. However, to get
more into the details of what an evasion attack does is merely
in the name itself; evasion attacks aim to evade being detected
from the classifier. An intruder exploits malicious occurrences
during testing to have it be incorrectly classified as benign

by a trained classifier, without having a collision over the
training data. The intruder’s scheme in this form builds up
to rupture system solidarity, either with an objective or with a
non selective attack according to it purpose.

III. METHODOLOGY

In order to fully layout the complexity of this research, this
will be split into subsections tailoring the chronological order
of how this can be implemented.

A. Dataset

When working with an investigation like this, it would be
helpful to gather a dataset that can be resourceful to our needs.
Android applications are packaged as .apk files, in which we
need to eventually decompile in order to access its contents.
There is an open source tool known as APKTools, which will
be capable of doing just that. A particular file that we are
looking for is the android manifest file, which is an .xml
file that contains all the essential information that build our
application. The file contain API calls and uses-permissions.
For the sake of this research, we will be primarily focusing
on acquiring the uses-permissions only of the .apk and there
is research to back up why this is so in [6].

All the while understanding what data we want to look
for, we now introduce the mendeley dataset [7]. This dataset
contains more than 500,000 apk’s, and its labeled features,
known as the uses-permissions it uses during installation and
even run-time. This dataset was also collected from three dif-
ferent sources, the google play store, a third party application
downloader, and a given section dedicated solely to malicious
apk’s. This dataset is already extracted for us and is listed
out in an .xlsx format which each row is a given .apk file
and each column is a given feature, which can be denoted in
a binary format; 0 meaning that this application is not using
this feature, and 1 meaning that this application is using that
given feature. For this research, there will be heavy attention
on the google play store and the malicious data sets.

B. Feature Extractor

As such, when working with the ability to detect if an apk
is malicious or not, it is to be expected that any apk that will
pass though our system will be a novel apk, meaning that
it’s never been seen before by the system. However, before
processing the apk though the system, it has to go under the
extraction process in order for it to be read. As mentioned in
the previous subsection, we begin to extract the apk’s contents
by a powerful tool known as apktools.

GET_ACCOUNTS" />

WAKE_LOCK"/>

VIBRATE"/>
ame="com.google. android. c2dm. permission.RECEIVE"/>
name="com. freesamplesus.myapp.permission.C20_MESSAGE"
nLevel="signature"/>

="con. freesamplesus.myapp. permission.C2D_MESSAGE" />
WRITE_EXTERNAL_STORAGE"/>

="android.permissi
="android.permission.RECORD_AUDIO" />

e="android.parmi RECORD_VIDEQ"/>

="android.permission.ACCESS_COARSE_LOCATION"/>
android:name="android.permission.ACCESS :
on android:name="android.permission.READ_C
on android:name="android.permission.WRITE_

Fig. 1: An example of the Android manifest.xml file.



From there, we can examine the context of the android
manifest file as shown in Figure 1, to which can be found
towards the end of the file which contains all of the uses-
permissions. In the next subsection, it will be revealed that
python will be used in order to construct the deep belief
network, so in algorithm 1 below, there is pseudo code that
carefully formats our extracted uses-permissions into an excel
sheet format. This will allow us to send forth our extracted
data to our model for evaluation and possibly testing.

Algorithm 1: The algorithm that extracts the requested
permissions from manifest file and writes them to the
excel file.
wb = WorkBook();
sheetl = wb.add_sheet(’Sheet 1°);
root = ET.parse(” AndroidManifest.xml).getroot();
name = root.attrib[’package”];
permission = root.findall(”’uses-permission”);
i=0;
for perm in permission do
for att in perm.attrib do
| sheetl.write(i, 0, perm.attrib[att]);
end
end

C. The Deep Belief Network

Most of the functionality of the deep belief network has
been stated from Section II. For this deep belief network, it is
adopted from a repository [8] so it can be possible for testing
and training purposes. The project follows the same protocols
and semantics by Geoffrey E. Hinton, the founder of the deep
belief network. Implementation is easy as showcase in Figure
2 and in algorithm 2, where we can write up a reference to our
excel file which contains all of the apk’s from the mendeley
dataset. We first introduce our dataset in a 2D array format. We
will be working on dataset size consisting of 1000 benign and
1000 malicious apk’s. There are approximately 400 features
that are denoted, with the last column consisting of labeled
data that specifies whether or not a given row, or in this case,
an apk is benign or malicious. We will then partition our
data and along that, instantiate our network, which is now
our classifier, to indicate how many hidden layers, learning
rate, number of epochs are needed. The data is then fitted by
this classifier and then call in for predictions and then measure
the performance.

one_train, one_test, two_train, two_test - tra

test_split(finalarray, a, test size

classifier - Supe

classifier.fit(on o_train)

edict(one_test)

Fig. 2: Schematics of the Deep Belief Network format

Algorithm 2: The algorithm that collects and then sorts
data into Dataframe.
Function DataProcess (a, b, ¢, d);
Input : Two string a and b, and range c and d
Output: Dataframe
wb = load_workbook(a);
ws = wb[b];
data_rows = [];
for row in wslc: d] do
data_cols = [];
for cell in row do
| data_cols.append(cell.value);
end
data_rows.append(data_cols);
end

There are four performance metrics that are useful to look at
and those are precision, recall, f1-score, and accuracy. These
performance metrics helps us establish an understanding to
how well effective our classifier can be by the data that we
give it for training and under testing. From this step, it is safe
to say that our classifier can successfully detect benign and
malicious applications.

D. Evasion Attacks

As cited from Section II, evasion attacks are a form of
adversarial attacks that aims to bypass the classifier by any
means necessary. There are a plethora of crafting such an
attack yet one form of this attack that can be of useful
investigation is the label flipping method. Label flipping is
what the name is suggesting; simply flip the binary labels
from our dataset to make the application appear to be benign
when in reality it is malicious. There are two approaches to
label flipping and they are:

e From a carefully selected row that represents a given
malicious apk from our mendeley dataset, modify certain
elements that can have the possibility to render as benign
under testing or

e From the labeled data towards the end of the row that
denotes whether or not a given apk is benign or not,
selectively flip certain malicious denoted apk’s to appear
benign.

As such, the second approach will be more feasible to
incorporate as it is comparatively easier than the former.
From our dataset, what specifically differs from our malicious
dataset and from our benign dataset is merely what features it
uses, yet these features can appear in almost in a pattern-like
format.

In Figure 3, the labeled data is shown at the last column
which is in bold. To the right is Figure 4, which list out the
same dataset but in this case, the label’s are flipped while to
the right of it is the original labeled data. Each and every row
will be determined from our classifier and if guess incorrectly,
that apk is part of the middle ground. This middle ground is



([0,1,0,1,1,0,1,00,1,1], [[0,1,0,1,1,0,1,0,0,1,0], [1]

[0,1,0,1,1,0,1,0,0,1,0], [0,1,0,1,1,0,1,0,0,1,0], [O]

[1,1,00,1,1,1,100,1], [1,1,00,1,1,1,1,0,0,0], [1]

[0,0,00,1,1,0,00,10], [000,0,1,1,00,0,1,1], [0]

[1,1,1,0,1,1,1,00,0,0], [1,1,10,1,1,1,0,0,0,1], [0]

[0,0,1,0,1,1,1,00,1,1]] [0,0,10,1,1,1,0,0,1,1]] [1]

Fig. 3: Original Dataset Fig. 4: Mutated Dataset

what helps us note what labels have to be flipped in order for
the classifier to perceive certain apk’s to be benign. So in this
case, we examine which malicious apk is located within this
middle ground and flip its labeled data. Apk’s that are eligible
to be apart of the middle ground are the ones were noted as
a false negative or a false positive and hold significance’s as
their patterns aren’t known by the classifier.

From the image below, Figure 5, we can examine more
closely into what this middle ground is. From our dataset, it is
recorded the top five most frequently used features along side
the app type; benign or malicious. It’s these high frequencies
like these that our classifier has difficulty distinguishing whats
benign or malicious; an outlier some can say.

Highest Frequency Features
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Fig. 5: Highest Feature Frequency amongst benign vs. malware
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Fig. 6: The performance comparison of malware detector
before and after launching evasion attacks.

From that understanding, we now take a look at Figure 6,

which visualizes the performance metrics before and after the
evasion attack occurs. It is clear that the attack effectively
degraded the classifier and now we move forward to learning
these types of attacks.

IV. RESULTS AND DISCUSSION

This section will discuss and showcase the results of follow-
ing works that were conducted during this research and give
insight or details to which set up for a better understanding.

A. Detecting Adversaries

Moving forward from the previous section, there is an
approach on how to circumvent evasion attacks like these. One
method that is eminent is to retrain the classifier to detect these
particular types of attacks. In retrospect, Figure 6 displays the
performance of the malware detector with the added accuracy
score of what it predicts is benign or malicious, yet the score
isn’t a perfect 100%. Reasons for this inaccuracies is due
to the concept, as mentioned in the previous section, about
the middle ground threshold that makes it difficult for the
classifier to judge what is benign or malicious. How this task
can be perform is to create adversarial example attacks to
make the detector more robust, and that’s by carefully selecting
additional data from our mendeley dataset that falls under the
same middle ground threshold and sent forth that additional
dataset towards the classifier for the additional training. From
there, it can be expected that any further evaluation that is
coming from any adversarial attack will be prevented. Figure
7 showcases just that with an noticeable improvement in
performance metrics after further training of these adversarial
example attacks.
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Fig. 7: The performance comparison of malware detector
before and after additional training against evasion attacks.

Figure 8 lines up to how the performance is handled during
different evasion attack sizes. It starts off at a reasonable pace,
but towards understanding of the graph, it is shown that once
it reaches 5000, it will remain difficult for it to learn more.

B. Deep Belief Network Performance Analysis

It is no doubt that the deep belief network can suffer from
adversarial attacks. Though not mentioned from the previous
section, a large amount of data, specifically an additional
5000 carefully selected apk’s have gone into the additional
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Fig. 8: The effect of dataset size on detection performance.

training for the deep belief network to detect such an attack.
One possible idea for this lack of better performance could
stem around the basic architecture the deep belief network is
built on. The deep belief network dates back from 2006, and
has been outperformed by other deep learning algorithms out
there. One main component of interest could be the greedy
pre-training step it takes when performed. This greedy step
performs the reconstruction step of the inputted data that
was sent in and follows up with a reconstruction error value
to which gives a numerical value of how off it was when
reconstructing the data. This reconstruction process is part of
the greedy pre-training step and with that assumption, it can
possible lead to the worst possible solution.

Now given that from the previous section there was dis-
cussion about the middle ground threshold, the deep belief
network’s greedy approach could possibly looked over the
middle ground, as more data would needed to be required
in order to examine the correct value fully. However, in the
while, the deep belief network is the most used network when
it comes to malware detection. What most of these other papers
construct when incorporating the deep belief network is a
merely hybrid network. What that can consist of is usually
a mixture of other network’s aspects or an edit to the network
as it is, but never the less, the deep belief network on its own
can’t be reasonable feasible for the future of malware detection
with the ever growing branch of adversarial attacks.

V. CONCLUSION AND FUTURE WORKS

In this paper, we examine the possibility of using the
deep belief network to detect adversarial example attacks for
Android system. From this paper, we established a coherent
workflow for implementation and extraction of data towards
the deep belief network classifier and list out its performance
metrics of adversarial attacks or non-adversarial attacks. This
paper has also gone over the logistics of the built up and/or
architecture of the deep belief network that sets it to be flawed.

As for the future directions, we hope that this paper sets
foot more onto the investigation of adversarial attacks and
beyond. We also hope that there is development into the
research of possible in-depth test that can help correlate to
the understanding of these attacks and how they need to be
approached when learning about them. Adversarial attacks are

only going to get smarter and stronger as time continues and
this paper aims to help bring out that purpose.
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