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Abstract: 3D scene representation for robot manipulation should capture three
key object properties: permanency – objects that become occluded over time
continue to exist; amodal completeness – objects have 3D occupancy, even if only
partial observations are available; spatiotemporal continuity – the movement of
each object is continuous over space and time. In this paper, we introduce 3D
Dynamic Scene Representation (DSR), a 3D volumetric scene representation that
simultaneously discovers, tracks, reconstructs objects, and predicts their dynamics
while capturing all three properties. We further propose DSR-Net, which learns
to aggregate visual observations over multiple interactions to gradually build and
refine DSR. Our model achieves state-of-the-art performance in modeling 3D
scene dynamics with DSR on both simulated and real data. Combined with
model predictive control, DSR-Net enables accurate planning in downstream
robotic manipulation tasks such as planar pushing. Code and data are available at
dsr-net.cs.columbia.edu.
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1 Introduction
Our physical world is three-dimensional, where the full extent of objects – their shape and motion –
exists and persists in 3D space. Despite this, the vast majority of visual predictive models currently
used in robotics, which predict the motion of objects under the effect of an applied action, remain
limited to only predicting 2D motion (i.e. optical flow) of partial observations, e.g. predicting the 2D
flow of pixels [1, 2], or predicting the 3D scene flow of visible points from a partial point cloud [3, 4].
Unfortunately, modeling the motion of only visible surfaces often leads to data degeneration, where
objects fade and vanish from the representation as they become occluded. This causes the predictive
models to perform poorly in cluttered environments, in which objects frequently appear, disappear,
then reappear in view as the robot move them around.

In this work, we investigate the benefits of learning a complete and persistent 3D scene representation
for visual predictive modeling. We present 3D Dynamic Scene Representation (DSR): a 3D
volumetric scene representation that simultaneously discovers, tracks and reconstructs novel objects
and predicts their motion under a robot’s interactions. Specifically, the representation captures three
object properties, all of which have long been argued as crucial to human scene understanding [5].

• Permanence: visual information is aggregated into a persistent 3D representation. This
means that as objects disappear from view due to occlusion, they remain in the representation.
This enables more accurate predictions of object motion when it is moved by other objects
in occlusion, or when it gradually reappears in view.

• Amodal completeness: from partial observations of the scene, DSR infers complete 3D
occupancy of each object, including regions that are not directly observed. This attribute
enables it to predict the rigid body motion of the entire object instead of only visible surfaces.

• Spatiotemporal continuity: the representation recognizes individual object instances and
tracks their identity over time.

• Interpretability: DSR explicitly models object instances, geometry, and motion, makes it
easy to be used out-of-the-box for high-level reasoning in robotic applications.
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Figure 1: Dynamic Scene Representation. Given an applied action and a depth observation of a scene encoded
as TSDF (b), the dynamic scene representation (c) is able to predict objects’ motion (red arrows), infer the amodal
3D geometry of each object instance (colored voxels), and maintain the object persistence under occlusion (t=2,
object in orange circle). Color images (a) are used for visualization only.

To learn this scene representation, we present DSR-Net, a 3D recurrent neural network that consists
of two major components: 1) a scene encoder that encodes visual observations (i.e., depth images)
into a volumetric 3D scene representation, and 2) a motion prediction network that takes in the 3D
scene representation and an action to be performed by the robot and predicts volumetric scene flow.
The scene flow is then used to spatially warp the current scene representation before combining it
with the 3D scene representation of the next time step. The warping operation allows the network
to aggregate information over time in a spatially coherent way. DSR-Net is trained end-to-end in
simulation and then tested in the real world with a robotic manipulator on a tabletop setup. Our
experiment result shows that our system achieves state-of-the-art performance in predicting the rigid
body motion of novel objects under robot interaction in unstructured cluttered environments.

The contributions of our paper are three-fold. First, we introduce a new 3D dynamic scene repre-
sentation (DSR) that captures object permanence, amodal completeness, and continuity – desirable
properties as part of a perception stack for downstream robot manipulation tasks. Second, we propose
DSR-Net, an end-to-end framework that learns such 3D representations via 3D convolutions. Third,
we build a new benchmark dataset with over 80,000 simulated interactions and 1,500 real-world
interactions for learning and evaluating dynamic 3D scene representations. Our experiments in
both simulation and in the real-world show that DSR-Net achieves state-of-the-art performance in
predicting 3D scene dynamics. Furthermore, it enables more accurate action planning in manipulation
tasks such as planar pushing. Please find additional result and videos in supplementary material.

2 Related work
Learning scene (or state) representations from visual data is a long-standing task in vision and
robotics. Many different scene representations have been proposed for different environments,
types of interaction, and applications. Our method learns an 3D scene representation for dynamic,
multi-object environments under robot interactions. Here we summarize most relevant works.

Passive perception. Most traditional computer vision tasks such as object detection or segmentation
can be considered as extracting a high-level scene representation from passive observation, such
as a single RGB image. However, these 2D representations cannot be directly applied in robotic
applications that need to be operated in 3D. Recently many works have studied the problem of
inferring 3D scene representations from partial observations such as a single color image [6, 7] or a
depth map [8, 9]. These representations are explicit, often in the form of 3D volumes or polygonal
meshes. Latest papers in the field have also explored integrating neural nets for learning implicit 3D
representations for objects and scenes [10, 11, 12, 13]. While these scene representations have been
used for robotics applications such as object grasping [14, 15], they handle static environments only
and cannot be directly applied in dynamic scenes.

Active perception. Systems that may update the camera viewpoint for exploration and representa-
tion building are often referred to as active perception systems [16, 17]. Cheng and Katerina [18]
proposed an active vision system that actively selects new camera viewpoints for estimating 3D object
geometry and recognizing their identities. The representation learned by this system has been used for
reinforcement learning [19]. There are also models that actively learn a 3D scene representation from
multi-view images or videos for better 3D geometry [20, 21], shape correspondences [22, 23, 24],
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Figure 2: DSR-Net. DSR-Net takes in the depth observation encoded as TSDF and action as input and predicts
the amodal mask of each object Mt and the voxel-wise scene flow Ft after the interaction. The scene encoder
(a) outputs a representation St after aggregating the current observation and the history (St is colored by t-SNE
embedding of the voxel-wise feature). St is then used to predict (d) amodal object instance mask Mt. In
parallel, the action encoder (b) encodes the input action and the motion predictor (c) predicts object motion
represented as the SE(3) transformations. The scene flow Ft is computed by combining the instance mask Mt

and transformations. The warped scene representation S′t is used as the history in the next step.

motion [25, 26], semantic category [27, 28], or multiple objectives [1]. While active perception
systems may collect additional information about object geometry with a moving camera, they still
focus on static scenes, where there is no signal about object dynamics or physics. In contrast, our
model observes a robot’s active interactions with objects in the scene (e.g., pushing). As a result, the
scene representation can model and predict object dynamics under interaction, which is critical for
task and action planning.

Interactive perception. Interactive perception is about perception facilitated by interaction with
the environment [29]. An important topic in interactive perception is on learning predictive and
dynamic scene representations that are conditioned on current observations and interaction for
manipulation[30, 31]. Recently, a few visual predictive models have been proposed to learn an
object-centric representation [32, 33, 34], as well as to model 3D motion for rigid shapes [3, 4].
However, all these works predict motion in the form of per-pixel flow, which only considers the
partial, observable surface, and does not leverage past interactions and observations. Therefore, the
scene representations produced by these methods are often incomplete and inaccurate. The model
that is most relevant to ours is DensePhysNet [35], which learns to aggregate multiple interactions for
a dense, 2D scene representation. However, it fails to model 3D relations, such as occlusion, and thus
cannot provide a scene representation that maintains object permanence when there are occlusions.

3 Dynamic Scene Representation Network (DSR-Net)
In this section, we first provide an overview of DSR-Net’s network design and its advantages, then
we provide description on each module and how to use it in robot manipulation. Fig. 2 shows an
overview of DSR-Net. At each step, the scene encoder outputs a 3D scene representation St that
aggregates the new observation (i.e., depth) with the past scene representation S′t−1. St is then used
to predict amodal object instance mask Mt. In parallel, the motion predictor infers the object motion
given the robot’s action and current scene representation. The predicted motion and object instance
mask are combined to compute voxel-level scene flow Ft. Finally, the scene flow Ft is used to warp
the scene representation St to obtain S′t that is aligned with observation in the next interaction step
and used for history aggregation.

Our DSR-Net design provides four advantages compared to existing visual predictive models. First,
by using a 3D volumetric representation, DSR-Net naturally models objects’ amodal 3D shape,
regardless of occlusion. Second, by warping the previous scene representation using the predicted
motion before concatenating it with the new observation, the network manages to aggregate history
information in a spatially coherent manner: the same voxel stores information of the same object
from past and new observations, regardless of their motion. Third, by leveraging history information
the representation is able to capture object permanence and continuity. Finally, all these properties
allow the network to predict more accurate object motion and be useful for manipulation tasks.

Scene encoder (Fig. 2a): Each depth observation is encoded with a truncated signed distance
function (TSDF) with voxel size 0.004m. The scene encoder concatenates the current observation
(128×128×48 TSDF volume) and the warped representation from last step S′t−1 (the history aggre-
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gation part will includes more details). Twenty-two 3D convolution layers are applied to generate an
output scene representation St with a size of 8×128×128×48.

Action encoder (Fig. 2b): In our setup, robots interact with the scene via pushing. The action can
be discretized and represented by a tuple of integers (px, py, d), where px, py are the start coordinates
of the push in Cartesian space, and d represents one of 8 pre-defined directions of a push. Inspired
by prior work [36], we use the action map for input form in order to provide spatial alignment with
scene representation. An action is represented as a one-hot matrix with a size of 8×128×128, where
[d, px, py] is 1 and other places are filled with 0. The action encoder encodes the action as two
embeddings with size of 16×32×32 and 8×64×64.

Motion prediction (Fig. 2c): The motion prediction network estimates transformations for every
object based on the aggregated scene representation and action applied to the scene. The motion
decoder predicts k SE(3) transforms, one for each of the predicted masks. We fix the last transfor-
mation (k − 1) as an identical transformation since the background is static. A SE(3) transform
describes a rigid body transform [R, t], specified by a rotation R ∈ SO(3) and a translation t ∈ R3.
Under this transformation, 3D point x moves to x′ = Rx+ t. We represent rotations using a Euler
transform vector. Given the predicted SE(3) transforms and masks, the transform layer produces a
blended point cloud from the input points: yj =

∑k−1
i=0 Mij(Rixj + ti), where yj is the 3D output

point corresponding to voxel xj . Then the predicted scene flow of voxel xj is yj − xj . The motion
loss Lmotion is Mean Square Error (MSE) between the predicted scene flow and ground truth.

Amodal instance mask prediction (Fig. 2d): The mask predictor outputs a voxel-wise probability
distribution Mt over the k classes. Following the standard practice as in prior works [3, 37], we
use k = 5 as the maximum number of objects to be handled in our experiment. As shown in
supplementary material, the trained model is able to generalize to test cases with fewer objects than
the maximum number of objects. During training, we need a specific order to calculate the loss
for mask prediction and encourage temporal consistency over time. At each step, we enumerate
all the permutations and select the optimal matching and it serves as ground truth for the next
step. Specifically, in the first step, its optimal matching is also used as ground truth for training
right now. Concretely, given the mask prediction and ground truth for each category, we calculate
the negative log-likelihood loss: Wt(i, j) = Mgt

t (i) · logMpred
t (j). The loss of a matching is

the summation of each category. The optimal matching means it has the smallest matching loss:
matcht = argminp

∑k−1
i=0 Wt(i, p(i)) Once we find the correct order for the ground truth, the loss

between predicted mask and ground truth Lmask is computed with Cross Entropy loss.

Forward warping for spatially aligned history aggregation: To aggregate history, we warp the
scene representation St with the predicted scene flow Ft and mask prediction Mt to produce features
that are spatially aligned across multiple steps. Here we use trilinear interpolation for 3D warping
because truncation or direct nearest neighbor wrapping results in more empty holes when several
voxels are moving to the same position. Let (xsi , y

s
i , z

s
i ) be the coordinates of voxel vsi in the

input representation, (xti, yti , zti ) be the coordinates of a voxel vti in the warped representation, and
(xfi , y

f
i , z

f
i ) is the predicted scene flow of vsi . The weight contribution of vsi to vtj is computed by:

Wvs
i→vt

j
= mi ·max(0, 1− |xsi + xfi − x

t
j |) ·max(0, 1− |ysi + yfi − y

t
j |) ·max(0, 1− |zsi + zfi − z

t
j |),

where mi =
∑k−2

d=0 Mt[d, x
s
i , y

s
i , z

s
i ] is the predicted probability that vsi belongs to any object. The last

channel (d=k-1) always represents empty space. Let St(i) represent the input feature value at vi, then
output the feature S′t(j) at vtj after warping is computed as: S′t(j) = (

∑
i St(i) ·Wvs

i→vt
j
)/

∑
iWvs

i→vt
j
.

Loss function. The final loss function is L = Lmotion + αLmask, where Lmotion is the Error of
motion prediction and Lmask is the loss of mask prediction and α = 5 is a weighting factor.

3.1 Applying DSR in Robot Manipulation

We now demonstrate how DSR can be used in manipulation. Specifically, the goal of the task is to
control a robot arm to push objects in the scene to match a target state. With our learned model, we
perform temporally extended planning by choosing a sequence of actions that can be executed in the
environment. Among different planning approaches, we choose model-predictive control (MPC) to
take advantage of our predictive model.
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We apply a simple shooting-based MPC method [38] to generate and plan for a sequence of actions
that minimize the cost. First, we sample actions around predicted masks from our DSR model,
since only these actions are close to the objects. This allows us to have a much smaller sample
size of actions and make our decision making faster. Then, we compute the cost based on the next
state predictions, which include the pivot points and masks in the next state. Specifically, we have
cost(a1, a2, ..., an) =

∑
i(λi × Lpos

i − IoUi), where a1, a2, ..., an are candidate actions, Lpos is the
Mean Square Error between target and predicted positions (computed by predicted mask) of each
object, IoUi is the IoU between the predicted mask and target state, λi is a weighting factor for each
channel. Finally, we choose the sequence of actions that has the lowest cost.
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Figure 3: Application of DSR in Planner Pushing. (a) The goal
is to generate a sequence of actions to push objects to match a target
state. (b) In each step, a set of action candidates are sampled and
the action with the lowest cost (yellow) is chosen to execute. At
t = 3, SE3Pose-Net loses track of the occluded object hence choose
the wrong action, while DSR-Net correctly models the occluded
object and chooses appropriate actions. (c) The final state (red) of
DSR-Net is much closer to the target state (green).

Since DSR maintains object perma-
nence in the representation, it enables
the planning algorithm to use the full
state information including the oc-
cluded objects. For example, in Fig. 3,
the robot has to push an occluded cube
to a target location. This is impossi-
ble with SE3-Pose-Net – since it mod-
els only visible surfaces, the object is
completely missing due to occlusion
(t=3) and therefore a wrong action is
selected. With DSR, the control pol-
icy is able to sample actions around
the occluded object to predict the next
state and cost accurately. Quantitative
result are shown in Sec. 5.3.

4 Dynamic Scene Representation (DSR) Benchmark

To quantitatively evaluate predictive models, we need a dataset that contains robot interactions and
ground object motion. Since there is no existing dataset containing this information (especially with
real-world robot interactions), we construct a new dynamic scene representation (DSR) benchmark
that contains both simulation and real-world data for training and evaluation.

Simulation data. We use two types of objects in simulation training data: (1) cubes with different
sizes s ∈ [0.02, 0.04]m, and (2) 44 shapenet objects of 5 categories: mug (5), bottle (14), can (6),
phone (10), and sofa (9). For each sequence, we choose 4 objects and randomly drop them on the
workspace (0.512m × 0.512m). Then the robot executes 10 random pushing actions with a simple
heuristic-base policy that encourages the change of spatial order and prevents moving objects out of
the workspace. Details of the policy are described in the supplementary material. In total, there are
8,000 sequences with 80,000 interactions for training. We also generate a testing dataset using YCB
objects [33] with the same interaction policy. This includes 400 sequences with 4,000 interactions.

Front view
(algorithm input)

Back view 
(annotation only)

Annotation

Setup: UR5 Robot + RGBD Camera object mesh
Figure 4: Realworld Setup and Annotation UI. [left] UR5 is used
for robot manipulation. [middle] We capture RGB-D images using
two calibrated Intel RealSense D415. The front view image is taken
as input by the algorithm and the back view image is only used
for annotation. [right] The object mesh is moved with keyboard to
match the fusion of point clouds from two cameras.

Real-world data. Our real-world
setup consists of a UR5 robot with
a cylinder pusher tool and two cali-
brated RGB-D cameras. Fig. 4 shows
the setup and YCB objects [33] used
in the real-world experiments. To ac-
curately annotate the ground truth ob-
ject pose under occlusion, we use an
additional calibrated RGB-D camera
in the setup to provide a backview of
the workspace (Fig. 4 left and middle).
We use the same discrete action space
to collect real data. During annotation,
we combine the 3D point clouds from
both views to obtain a complete observation for the entire workspace. Fig. 4 right shows our annota-
tion user interface. Users can control the object meshes’ 6DoF poses with keyboard to match the
pose in the scene. In total, we collect 90 sequences with 900 interaction steps.
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Figure 5: Amodal Mask and Motion Prediction. The mask and motion prediction of SE3-Net and DSR-Net in
both real-world (left) and simulation (right). SE3-Net predicts only masks for moving objects and the estimated
motion is limited to the visible surface. Although the mask prediction in SE3Pose-Net is not limited to moving
objects, it fails to separate closed objects and miss small objects. DSR-Net produces the full 3D volume as well
as masks for all objects in the scene.

Train/Test split. In simulation, all models are trained with 8,000 sequences with ShapeNet objects
and tested on 400 sequences with novel YCB objects. The real-world dataset is split into 50 finetuning
sequences and 100 testing sequences. In the following experiments, models labeled with “ft” are
finetuned with the 50 sequences, all the other models are directly tested with realworld data without
finetune. All qualitative result (except SE3 and SE3PoseNet) are using model without finetune.

5 Evaluation
We designed a series of experiments in both simulation and the real world using the benchmark data
described in Sec. 4 to validate design decisions, and to compare with other models that predict future
scene representations. Specifically, we want to see whether DSR-Net is able to

(1) Accurately predict object motion under different robot interactions;
(2) Aggregate the history and encodes object permanence and continuity; and
(3) Improve the performance of down-stream manipulation tasks.

5.1 Motion Prediction Simulation Real
visible full visible full

2D
2DFlow ft [3] 8.24 - 7.63 -
SE3-Net ft [3] 7.84 - 6.91 -
SE3Pose-Net ft [4] 13.01 - 10.49 -

3D

3DFlow 7.34 0.093 6.80 0.094
SingleStep 5.94 0.086 6.64 0.093
DSR-Net 5.54 0.082 6.51 0.090
DSR-Net ft - - 3.33 0.048

Table 1: Average flow Error (MSE in cm)

First we want to evaluate the learned scene rep-
resentation on predicting object motion under
robots’ interaction. We use the Mean Squared
Error (MSE) to evaluate the predicted 3D scene
flow. For image based approaches, the MSE is
computed and averaged for pixels of the visible
surface, same as in SE3-Net [3]. For voxel-based
approaches, the MSE is computed and averaged
over the voxels on visible surfaces of the object
(visible) and all voxels (full) separately.

Baselines: In this experiment, we compare our algorithm with the following predictive models:
• 2DFlow [3]: it predicts per-pixel scene flow for the visible surface.
• SE3-Net [3]: it predicts per-object masks and SE3 motions
• SE3Pose-Net [4]: it predicts per-object poses, masks, and SE3 motions
• 3DFlow: it predicts per-voxel scene flow for the entire 3D volume.
• SingleStep: DSR-Net without history aggregation.

Compared with state-of-the-art predictive models. Tab. 1 shows quantitative comparisons of
predicted motion. Since most voxels are static, the error of full volume is much smaller than the
visible surface error. Fig. 5 shows qualitative comparisons among our model, SE3-Net, and SE3Pose-
Net. The visualization suggests that the motion estimation in SE3-Net is limited to visible surface and
cannot model occluded regions. In addition, the mask prediction in SE3-Net only handles the moving
object, treating all other objects as background. This is because SE3-Net predicts masks based on
both observation and action, where the network learns to first identify the moving objects and then
predict mask and motion for these objects only. The mask prediction of SE3Pose-Net is independent
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Figure 6: Scene Representation with Object Permanence. The TSDF and result are rendered in side view to
better show occlusion cases. Object permanence is labeled in green circle and failure cases are labeled in red.
At t=2, in the real-world example (left), the green cup is occluded by the can. Only DSR-Net is able to predict
the permanence of the green cup. In the simulation example (right), occlusion appears in the t=2 and t=4. The
difference is that at t=1-2, the Rubik’s Cube is static when being occluded, and at t=3-4, the Rubik’s Cube is
moved and then occluded (dynamic occlusion). SingleStep fails in both cases. NoWarp can handle the first case
since the history contains the information of the static Rubik’s Cube, but cannot handle dynamic occlusion due
to the lack of motion in the history. DSR-Net is able to handle both cases.

from action; therefore, it has to predict masks for all objects in the scene. However, the motion
prediction of SE3Pose-Net is based on object poses without considering their detailed geometry. This
fact makes SE3Pose-Net perform worse in motion prediction. In contrast, our model produces 3D
amodal masks for all objects in the scene and predicts the object motion more accurately.

5.2 Temporal Information Aggregation
Simulation Real

unordered ordered unordered ordered

GTWarp 0.807 0.807 0.646 0.645

SingleStep 0.753 0.526 0.613 0.485
NoWarp 0.762 0.756 0.625 0.624
DSR-Net 0.772 0.767 0.628 0.628
Table 2: Amodal Object Mask Prediction IoU

In this section, we evaluate whether DSR-Net is
able to effectively aggregate the history informa-
tion to capture object permanence and continuity.
We use two types of intersection over union (IoU)
scores on 3D amodal instance masks as the evalu-
ation metric: unordered and ordered IoU. To com-
pute unordered IoU, we obtain the object order for
each step by permuting the objects’ order and use
the one that maximizes the average IoU over all objects as the ground truth order. The order of step t is
calculated by ordert = argmaxp

1
k

∑k−1
i=0 IoUt[M

gt
t (i),Mpred

t (p(i))], where k is the number of objects.
For ordered IoU, we permute the object instance index once and use the order that best matches the en-
tire sequence as the ground truth order: ordert = argmaxp

∑N−1
s=0

1
k

∑k−1
i=0 IoUs[M

gt
t (i),Mpred

s (p(i))],
where N is the number of interactions. To achieve a high ordered IoU, the system needs to maintain
a consistent order of object instance throughout the interaction steps. Therefore, this metric reflects
the continuity of the scene representation over time. Besides, since the 3D IoU is evaluated on all the
voxels in the scene regardless of occlusion, this metric also naturally measures the permanence of the
scene representation under occlusion.

Baselines. In this experiment,we compare our aggregation model with following alternatives:
• SingleStep: it does not use any history aggregation.
• NoWarp: it does not warp the representation before aggregation.
• GTWarp: it warps the representation with ground truth motion (i.e., performance oracle).

Does history aggregation help in on amodal shape completion? The unordered IoU in Tab. 2
measures the quality of 3D amodal shape completion without consider the objects’ identity. The
result demonstrates that by effectively aggregate the past observations, our method is able to infer a
more accurate scene representation in terms of modeling an object’s complete 3D geometry from
partial observations (+1.6% improvement in unordered IoU compare to the single step model). In the
following experiments, we will evaluate the object permanence and continuity using “ordered IoU”.
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Figure 7: Scene Representation with Object Continuity. The mask prediction of SingleStep model (b) and
DSR-Net (c) after several interactions. Continuous instance prediction between two consecutive steps are
highlighted in green, while discontinuity is highlighted in red. In the simulation example, four identical cubes
are indistinguishable in depth and the two cubes swap their positions during interaction. DSR-Net can track
objects even when the spatial order is significant changed during interactions, while the SingleStep model fails.

Does DSR encode object permanence? To evaluate the object permanence, we examine the
network’s ability to infer an object’s existence during occlusion. Fig. 6 shows amodal mask
estimation under occlusion in both real world and simulation cases. There are two static-occlusion
cases (t=1-2 in the real and simulation example), where the occluded object is not moving, and one
dynamic-occlusion case (t=3-4 in the simulation), where the moving object becomes occluded. The
SingleStep model fails in both. The NoWarp model can handle one of static occlusion cases, since
the history contains the information of the static object. However, it cannot handle dynamic occlusion
due to the lack of historical motion. DSR-Net is able to handle both static and dynamic occlusions.

Does DSR encode object continuity? A model that captures spatiotemporal continuity should
maintain a consistent object identity overtime. We evaluate this and show the results in the ordered
IoU in Tab. 2. Fig. 7 presents qualitative results of mask prediction after several interactions. Unlike
the SingleStep model, which is sensitive to the spatial order, our model maintains spatiotemporal
continuity via consistent labeling of object instances. In the simulation demonstration, DSR-Net can
even track visually indistinguishable objects, whose positions are swapped after several interactions.
It proves that the continuity owes to history aggregation, instead of visual appearance. Note that this
happens to align with classical findings in developmental psychology [5]. The small gap between
unordered and ordered IoUs in Tab. 2 demonstrates that our DSR-Net achieves a consistent order of
object instances during an interaction sequence; SingleStep has a much bigger gap, indicating that it
fails to track object identity without history aggregation.

Does motion prediction help in history aggregation? To test the effect of motion prediction on
history aggregation, we compare our model with NoWarp. The plot in Tab. 2 shows that, with spatial-
aligned features, the algorithm produces a more accurate scene representation. In both simulation and
real-world test sets, DSR-Net consistently achieves higher order and unordered IoUs. Further, if we
warp the scene representation with ground truth motion as in GTWarp, the algorithm achieves even
higher performance. Thus, warping features with correct object motion is helpful for aggregating
history information. We conjecture that this is because the warping operation provides a spatially
aligned feature representation of current and next states, making the information aggregation easier.

5.3 Apply DSR in Robot Manipulation
Finally, we evaluate the performance of using DSR in planer pushing, where the goal is to generate an
action plan of a robot arm to push objects in the scene to match a target configuration. We compare
the performance of our DSR model with SE3-Net [3] and SE3Pose-Net [4] using 100 target states
collected from the simulation environment. We used the planning method described in Sec. 4 to
generate action sequences with a length of 3 to match a pre-collected target state. Then, we compute
the voxel IoU between the final full states and the groundtruth target states for evaluation. In this task,
our model achieves a 0.72 IoU, outperforming SE3-Net and SE3Pose-Net, whose IoU are 0.31 and
0.32 respectively. Thus, using DSR-Net with MPC results in better state matching with target.

6 Conclusions
We have introduced a new 3D dynamic scene representation that, by design, captures object per-
manence, solidity, and spatio-temporal continuity. We have also proposed DSR-Net, an end-to-end
framework that learns to aggregate information over multiple interactions to build such a representa-
tion from visual observations. Our experiments in both simulation and real world show that DSR-Net
achieves state-of-the-art performance in modeling 3D scene dynamics and enables more accurate
action planning in an object pushing task.
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A.1 Interaction Policy

We use a heuristic-base policy to encourages the change of spatial order and prevent moving objects
out of the workspace. The interaction policy includes two steps: choose an object and choose the
direction.

Each object has a score that is initialized as 0. The softmax of the score is considered as the probability
to be chosen in each step. In each step, the value of the chosen object increased by one, and if the
value is larger than 2, it becomes -2. Locally, this strategy leads to an object being pushed twice
consecutively, which encourages to the change of spatial order. Globally, it maintains a balance
among all the objects.

After choosing the object, each direction is also assigned a score: Q(~v) = 1.5(−→v · −−−→p0, pt) + 2(−→v ·−−−−→pt−1, pt), where p0, pt−1, pt are the initial, last and current position respectively. This can encourage
the object to move away from its initial position and prevent from being pushed back and forth.
Also, if the object is object is far away from the workspace center (distance ≥ 0.2 ), those directions
making it further away will get a punishment of −10 to prevent the object out of workspace. Again,
the probabilities of each direction are the softmax of their score values.

A.2 Network Structure

The scene encoder concatenates the current observation (128 × 128 × 48 TSDF volume) and the
warped representation from last step S′t−1 with a size a 8 × 128 × 128 × 48. It first applies ten
3× 3× 3 convolution layers with 16, 32, 32, 32, 32, 64, 64, 64, 64, and 128 channels. The strides
sizes of the first, second, sixth and tenth layer are 2 × 2. Between convolution layers, there are
batch normalizations, Leaky ReLUs with slope 0.2. The outputs of the first, fifth and ninth layer are
also reserved for skip connection. After two residual blocks, eight 3× 3× 3 convolution layers are
applied with 64, 64, 32, 32, 16, 16, 8, and 8 channels. The input of the third, fifth, and seventh are
concatenated with reserved tensors for skip connections. The output of the first, third, fifth, and ninth
layer are upsampled by 2× with trilinear upsampling. Finally, the scene representation St will be
8× 128× 128× 48.

The action encoder takes an action map as input, with a size of 8×128×128. Nine 3×3 convolution
layers are applied with 64, 64, 64, 64, 128, 128, 128, 128, and 16 channels. The first and fifth
layer’s stride sizes are 2× 2. Another 3× 3 convolution layer with 8 channels are applied after the
fourth layer to generate an embedding with different size. Thus, the action map is encoded as two
embeddings with size of 16× 32× 32 and 8× 84× 64.

The mask predictor consists of a 1×1×1 convolution layer and a softmax layer to outputs a per-voxel
mask probability distribution.

The motion predictor takes the scene representation St and action embedding as input. It first applies
eight 3× 3× 3 convolution layers with 8, 16, 32, 32, 32, 64, 128, and 128 channels, five of which
have strides sizes 2× 2. The input of the first three layers are also concatenated with original action
and two action embeddings respectively. The 2D tensor is repeated in the last channel to concatenate
with 3D tensor. Then a 3D convolution layer with kernel size 4×4×2 is applied to the 128×4×4×2
feature to generate a vector with a length of 128. After five fully connected layers with 512 hidden
units, kSE(3) transforms are output, one for each predicted mask.

A.3 Training Details.

We implement our model in PyTorch. Optimization is carried out using ADAM with β1 = 0.9 and β2
= 0.95. The model is trained with a minibatch of 48 for 30 epochs in the first stage and 20 epochs for
the other two stages. The whole training takes about 20h on 4 NVIDIA 2080Ti GPUs. The inference
speed is around 15 fps on a single GPU.

Since the aggregation ability depends on the accuracy of motion prediction, we split the training
process into three stages from easy to hard: (1) single-step on cube dataset; (2) multi-step on cube
dataset; (3) multi-step on ShapeNet dataset. In the first stage, we use an initial learning rate of 10−3
and a learning rate decay of 0.5 after each 5 steps. In the other two stages, we finetune the previous
model with an initial learning rate of 10−4 and a learning rate decay of 0.5 after each 3 steps.
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We also include a table of symbols that is used in our algorithm section:

St volumetric scene representation at step t.
S′t volumetric scene representation warped with scene flow

prediction at step t.
Mt/M

gt
t volumetric amodal instance mask prediction / ground truth

at step t.
Ft/F

gt
t volumetric scene flow prediction / ground truth at step t

matcht optimal matching between mask prediction as ground truth
at step t

k maximum number of objects (including background)
(px, py, d) input action, where px and py are the start coordinate of

the push, and d is the direction index.
[R, t] SE(3) transformation, where R is a rotation matrix, and t

is a translation vector.
Wi→j weight contribution of voxel i to voxel j in forwarding

warping.
Lmotion, Lmask motion loss and mask loss used for training.
Lpos position error between target and prediction used for plan-

ner pushing.
Table A1: A table of symbol used in the paper

A.4 Action Sampling for MPC

We integrate our model with a shooting-based MPC approach for planner pushing. We firstly sample
a batch of actions for each for cost calculation. Since DSR-Net and SE3Pose-Net can produce a mask
of each object in the scene, we only sample around the masks to reduce sampling size. For SE3-Net,
we perform uniformly random sampling under the whole action space. Specifically, we sample 100
actions for DSR-Net and SE3Pose-Net and 200 actions for SE3-Net. We then use this action batch
and current observation as input to retrieve outputs from the models mentioned above. Lastly, we
calculate the cost of each of the output using the cost function specified in Sec. 3.1 and choose a
sequence of actions that has the smallest cost. While we calculate costs with all objects for DSR-Net
and SE3Pose-Net, we only calculate the cost between the mask from SE3-Net, and the moving object
for SE3-Net only produces masks for moving objects.

A.5 Dataset Collection

We collected our benchmark data set on a similar real setup as our simulation environment. An action
is picked by an in-house human expert to create sequences of object scenes. Specifically, we used
the following list of object in YCB dataset: sugar box, tomato soup can, mug, chocolate pudding
box, gelatin box, potted meat can, chips can, coffee can, cracker box, bleach cleanser, enamel-coated
metal bowl, spring clamps, plastic banana, plastic orange, foam brick, different sizes of cups, Lego
Duplo, Rubik’s cube.

A.6 Generalization to Different Number of Object

Figure A2 shows additional result for tests cases with different number of objects (two or three object)
compare to training cases (four object). While the algorithm is trained only on 4 object cases, it is
able handle test case with fewer objects by predicting empty mask for additional object channels.

A.7 Additional Results and Failure cases

Figure A3 and figure A4 show additional qualitative results on the real-world benchmark. Figure A5
shows some failure cases.
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(a) Training Objects (Shapenet) (b) Testing Objects (YCB)
Figure A1: Objects. (a) training objects from Shapenet dataset. (b) testing objects from YCB dataset.

We use simple concatenation for history aggregation, potentially limiting the robustness in the face
of incorrect history and long-term history. An interesting future direction might consider using
sequences such as LSTM and GRU to handle noises in the history representation. Our algorithm is
designed based on the assumption of rigid objects and use SE3 transformations for motion prediction.
Future works might consider relaxing this assumption to model deformable or articulated objects.
Finally, convolution operations are limited in modeling long-range relationships between objects
(e.g., collision), which limits the capacity to model complex interaction and motion, where ideas
from graph neural networks may be borrowed to improve this aspect of dynamics modeling.
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Figure A2: More test results on different number of objects. We use four objects for training. During testing,
we use test two objects (a, b) and three objects (c, d), without finetuning. While the algorithm is trained only
on 4 object cases, it is able handle test case with fewer objects by predicting empty mask for additional object
channels. Failure cases (b, d): If there are much noise in observation (uneven surface of sugarbox) or the object
shape is different from training objects (clamp), the object may be mistakenly divided into two parts.
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Figure A3: More test results on realworld dataset. Object amodal instances mask are visualized in different
colors. Image observation is shown in the bottom-right corner. Pushing action and predicted motion are
represented by green and red arrows respectively.
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Figure A4: More test results on realworld dataset (continue).
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Figure A5: More test results on realworld dataset (failure case). Typical failure steps are circled in red for
each sequence. (a, b): The object is mistakenly divided into two parts. (c, d): The mask of occluded object is
wrong due to inaccurate motion prediction and long-time occlusion.
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