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Abstract

An assumption of stationarity in climate-related processes is often made in the risk assessment
of civil infrastructure systems. Such an assumption is difficult to justify in a changing climate.
In this study, to optimally adapt to a changing climate, given time series data, we propose a
computationally efficient algorithm called Greedy Copula Segmentation, GCS, that could
potentially be used in a climate change adaptation (CCA) strategy. The GCS algorithm
partitions a multivariate time series into disjoint segments such that each of the segments is
described by a stationary copula process, but independence is assumed across segments. An
optimal strategy for climate change adaptation, which we will refer to as GCS-CCA, considers
the last or most recent segment as containing the most informative data for near future climate
pattern prediction. By only using such informative data to build a probabilistic model for the
near future, our method effectively accounts for climate change. We provide an algorithmic
Jformulation for greedy segmentation and validate the performance of our GCS-based strategy
by applying it to an illustrative benchmark problem and a realistic drought example.

Keywords: time series segmentation, greedy algorithm, climate change adaptation, non-
Stationary stochastic process

1. Introduction

Climate data such as precipitation, wind speed, etc. make up a fundamental source of
information for the risk assessment of any civil infrastructure system. Often, the climate
parameter is represented as a stationary stochastic process, which then implies that the risk
assessment makes use of all the available historical data in prediction. Temporal patterns that
include extreme climate events such as droughts, floods, storms, etc. can be quite variable
due to inherent non-stationary characteristics and as an outcome of human-induced climate
change (Lee and Ouarda, 2010; Sheffield et al., 2012; Dai, 2013; Garcia Galiano et al., 2015;
Li et al., 2015; Cid et al., 2016; Van Loon et al., 2016; Ouarda and Charron, 2018; Liu, S. et
al., 2019; Slater et al., 2020). In such cases, there are reasons to perhaps consider climate
as a piecewise stationary process. In the outlined approach, we show that it is possible to
consider the non-stationary characteristics of the underlying climate process by means of sub-
segments that are each stationary but mutually independent. Then, near-future patterns can
be realistically assumed to be closest to the most recent sub-segments. Consequently, a
model derived from such recent data might be expected to lead to better predictions than what
we get with the traditional approach that uses the entire historical sample.

This work demonstrates how a time series segmentation technique can be used to identify the
optimal multivariate climate data subset near-future risk assessment. The method involves
breaking up the input time series into segments where the data in each segment are treated
as independent samples from a copula. We propose the use of what we call the greedy copula
segmentation (GCS) algorithm, that systematically searches for optimal-length recent
segments using a greedy algorithm. Among the identified segments, the most recent sub-
segment is then selected as the optimal data for any future planning such as in CCA.



Our method builds from and extends the greedy Gaussian segmentation (GGS) developed by
Hallac et al., 2019. The assumptions and formulation of GGS are well-suited to our problem.
GGS assumes non-repeatability of segments; this means that model parameters in each
segment are unrelated to parameters in other segments. Considering that we are dealing with
climate conditions that are widely acknowledged to be changing, the non-repeatability
assumption is justified. GGS formulates the time series partitioning problem based on the
maximum log-likelihood of the data. Since we are assuming piecewise stationarity and wish
to project near-future patterns based on recent observations, a maximum log-likelihood based
approach is most appropriate for our problem.

We extend the applicability and generality of GGS by replacing the multivariate Gaussian
distribution assumption with a multivariate copula choice. This extension is especially
appropriate for our problem since climate variables often follow non-Gaussian distributions
(Zelenhasic and Salvai, 1987; Mathier et al., 1992; Yue et al., 1999; Shiau and Shen 2001;
Yue 2001; De Michele and Salvadori 2003; Hao and Singh 2013; Mazdiyasni et al. 2019). The
use of multivariate copulas can help to represent many complex multivariate dependence
structures both by employing various options for marginal distributions and by selecting
different copula families (Saklar, 1959; Salvadori, 2004; Salvadori and De Michele, 2004;
Nelsen, 2006; Genest and Favre, 2007). Moreover, most common marginal distribution
parameters can be empirically obtained from data using maximum likelihood estimation
(MLE). The copula family parameter can also be non-parametrically estimated using the
empirical Kendall’s rank correlation coefficient, tau (Genest et al. 2011, Manuel et al. 2018).
For all of these reasons, we propose the use of a more versatile GCS approach, while not
losing advantages of the mathematical tractability of GGS.

For civil infrastructure systems, we demonstrate how we can adopt an adaptation policy based
on the proposed GCS approach. A 5- to 10-year cycle of climate data that possibly involves
policy amendment (CCA) usually starts by updating the site-specific hazard data. Then,
derivative policies are updated accordingly. The projected risk assessment will be best for
only a near-future period because, after this period, the policy will need to be amended with
any newly discovered information/data. We demonstrate how to employ such new data along
with all the available historical data to update temporal hazard patterns and derivative policies.
Again, in light of the most recent climate change trends, dated data are unlikely to contain
meaningful information for near-future projections. In fact, the use of old data can cause a
model to exhibit greater bias and uncertainty due to heterogeneity in the data due to non-
stationary character. By using the proposed GCS-identified optimal data, we only use
informative recent data to update policies. In other words, GCS-CCA discards outdated data
to improve prediction performance. It works more discriminately to detect and account for
short-term climate abnormalities.

In this study, we make the following contributions: 1) we derive an extension of Greedy
Gaussian Segmentation (Hallac et al., 2019) for use with non-Gaussian climate data and any
generalized copula model; 2) we demonstrate our GCS method’s possible use in plans for
optimal climate change adaptation; and 3) we present realistic experiments that illustrate how
a near-future pattern of extreme climate events can be optimally predicted using the proposed
approach.

2. Related Work

Seeking optimally useful segments from input time series is a key step in climate change
adaptation. Many variations of such time series segmentation, also known as change point
detection, have been proposed and studied in different contexts. Comprehensive surveys
have been presented by researchers from various fields (Reeves et al., 2007; Esling and



Agon, 2012; Polunchenko and Tartakovsky, 2012; Aminikhanghahi and Cook, 2017; Truong
et al., 2020).

Truong et al., 2020 organized state-of-the-art offline change point detection algorithms using
a structuring methodological strategy to give a systematic understanding of the strengths and
weaknesses. They characterized the algorithms by three elements: a cost function, a search
method, and a constraint on the number of changes. In their structure, GCS used a likelihood-
based parametric cost function as an optimal search method for the unknown number of
change points, a variance-based penalty, and a stopping criterion. Aminikhanghahi and Cook,
2017 surveyed the topic of change point detection in the fields of data mining, statistics, and
computer science. They focused on machine learning algorithms that are not included in
Truong et al., 2020's survey. They categorized the algorithms studied into supervised and
unsupervised methods. Polunchenko and Tartakovsky, 2012 provided a survey of online
algorithms for discrete time series spans over all major formulations of the underlying
optimization problem—namely, Bayesian, generalized Bayesian, and minimax. In the present
work, we use GCS because our climate change adaptation problem is better suited for offline
algorithms. Online algorithms are good options for problems that need faster detection of
instant state changes. Esling and Agon, 2012 summarized a broad range of theories that
included general time series data mining techniques, but considered not only time series
segmentation but also clustering, classification, etc. A basic theoretical understanding on such
methods can be easily gained from this illuminating article. Reeves et al., 2007 specifically
reviewed change point detection techniques for climate data. They discussed algorithms
based on hypothesis testing, multiple regression, and hierarchical regression models. All of
these studies offered useful insights in the development of the proposed GCS-CCA approach.

To demonstrate steps in the algorithms for GCS and GCS-CCA, an example analysis on a
benchmark data set is first presented in Section 3. A real-world application for drought risk
assessment follows in Section 4.

3. Methodology

3.1 Greedy Copula Segmentation

Assume we have bivariate climate data, available as time series data, as shown in Figure 1.

Without loss of generality, assume that the time series are given at discrete data index values
as shown.
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Figure 1. A realization of synthetic bivariate benchmark data time series: 3 separate data
segments generated using 3 different parameter settings are highlighted.



In the synthetic data selected for this example, we have two climate-related variables that
follow gamma and lognormal distributions, respectively. Their dependence structure is
assumed to be represented by a Clayton copula. A total of 1,000 samples were generated
with 3 different parameter settings to embed non-stationary character in the data. We have 5
parameters to define the two variables in each of the 3 subsets—they include a copula
parameter, a; parameters describing the shape, a, and scale, b, for the gamma variable; and
the mean, u, and standard deviation, o, for the lognormal variable. Note that the mean and
variance of the gamma variable are ab and ab?, respectively.

For the data, the first 300 samples are synthetically generated using 0, = (a,a,b,u,0) =
(1,10,0.5,2,0.5), the next 300 samples use 0, = (10,40,0.25,3,0.5), and the final 400 samples
are from 05 =(50,100,0.15,4,0.5) . For the gamma-distributed variables, the different
parameter settings are equivalent to setting different mean values of 5, 10, and 15, and
variances of 2.5, 2.5, and 2.25. Figure 2 shows copulas according to the different parameter
setting selections. As is clear from Figure 1, the generated time series are non-stationary; the
values of both variables are seen to get higher with time (increasing data index value). As
such, this synthetic bivariate climate benchmark data set could represent changing extreme
climate events — such as storms, floods, droughts, etc. — that get more frequent and severe
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Figure 2. Copulas for the synthetic benchmark data generation
using 04, 0,, and 05 (left to right).

From the above, one might expect that near-future patterns are most likely to be similar to the
last 400 samples. The earlier 600 samples are likely to be deemed outdated and would
increase uncertainty in any near-future prediction. Our goal is to find and uncover the last
stationary sub-segment from the data. To achieve this goal, we iterate the greedy
segmentation approach until no further segmentation on the last segment offers any
advantage.

3.1.1 Iteration 1

The GCS algorithm starts with the benchmark data that can be denoted as X = [xl, ) X1,000]Tv
where x; = (x1 (1), x5 (i)). Also, x, (i) and x, (i) represent the ith index values of the first and
the second variable, respectively. Note that x; represents a 2-dimensional vector containing
these ith index values of both variables and X represents the entire bivariate data set.

We consider the data as a segment and, thus, the number of current segments K = 1; by
splitting the data into more segments, the value of K will be changed. In every GCS iteration,
we will consider a new breakpoint that then divides one of the current segments into two sub-
segments. In the first iteration, we have 999 possible new breakpoints denoted as
b1\2, b2\3, -, boga\1,000, Where the location of a breakpoint is indicated by the subscript. For



instance, by\r+1 is @ breakpoint that divides the data into two sub-segments X; = [x;, e X T
and X, = [Xp41, ...,xl,OOO]T. Figure 3 shows an example with by .1, Where k = 500.
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Figure 3. Example sub-segments generated by breakpoint, bsoo\s01-

Next, we compare two scenarios: 1) where X represents independent bivariate samples from
a multivariate copula Cg based on all the data; and 2) where X; and X, represent separate
bivariate samples from two different copulas, C®(1) and C@(z), respectively. For both scenarios,
we assume that the same Clayton copula family and Gamma and lognormal marginal
distributions, although different distribution and copula parameters apply in the two scenarios.
Scenario 1 leads to fixed model parameters, while Scenario 2 considers that the model
parameters change when one considers data before and after the breakpoint, by 1. Using
maximum likelihood, we will evaluate and maximize the following objective function:

Wik = Y (Xp) + P (X3) — P(X), (1)

where Y (+) is a function computed based on the regularized maximum log-likelihood of the
available data with regard to the predefined copula family and marginal distributions.

Note that ¥ (X), first, employs MLE model parameters, 0, based on the assigned data, X. The
MLE method allows estimation of the marginal distribution parameters and the copula family
parameters; MATLAB provides functions named fitdist and copulafit that accomplish this
task. The regularized maximum log-likelihood function is obtained as follows:

YpX) = Z(log ca(F1(x1(D]a, b), F, (x, (D) |1, 0)) + log f1 (x1 (D |a, b) + 1og f,(x, (1) |w, 0))
i=1 3

T2 2’
sy + S5

(2)

2 _ —
where n is the length of the input bivariate time series, X; ¢, = 2 C“(ul_Fl(x;La’SZuz_FZ(xz|“ ) ig
10U2
the copula probability density function; u; = F;(x,|a,b) and u, = F5(x;|u,0) are marginal
cumulative distribution functions; f;(x;]a, b) and f,(x,|u, o) are marginal probability density
functions; s; and s, are marginal sample standard deviations. To avoid overfitting, marginal

variance regularization is applied and 4 = 0 is the regularization parameter.

Note that Wy, ,1, as defined, is the regularized maximum log-likelihood difference between
the likelihood function based on data sub-segments divided at the breakpoint, b\, 44, and the



likelihood function based on the entire unsegmented data set. We calculate Wy, for every
possible breakpoint and then select an optimal breakpoint by-\x+,, as follows:

ki = argmax Wi\ 11, 3)
k

and we also ensure that W-\x:4, > 0. If every W returns a negative value, it means that further

segmentation has no advantage. In this case, the greedy algorithm stops the segmentation
search and we go to the Return stage.

Figure 4 shows 999 ¥ values computed with A = 100. The maximum ¥ value occurs for k =
600. Based on this result, we divide the data set into sub-segments at the breakpoint, bgoo\601-
These resulting sub-segments are shown in Figure 5.

1000 T T T T T
O max (k=600)

I | I L 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
k

Figure 4. Calculated objective function ¥ for the benchmark data at the first iteration.
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Figure 5. Sub-segments generated by the first identified breakpoint, bys\k:4+1 = bgoo\601-

3.1.2 Iteration 2

After the previous (first) iteration, what we have are new segmented data sets, X; =

[X1, .., Xgool” @nd X, = [X723, ---:X1,000]T- Thus, the number of current segments, K = 2, and
the number of new breakpoints possible is now 998. Again, we compute ¥ for every possible
breakpoint and ultimately select a new optimal breakpoint, by;\x;+1- We reject the new

breakpoint and terminate the greedy algorithm if all ¥ values have a negative value. An
additional termination condition is invoked in Iteration 2 and beyond, if the identified optimal
breakpoint is not from the current last sub-segment. This is because our goal with the greedy
search algorithm is to find and use only the last stationary sub-segment to be representative
of the most likely series for the near future. Therefore, if further segmentation cannot be
continued on the current last sub-segment, we terminate the search. On the other hand, if
there is a breakpoint, by;\x;+1, Within the last sub-segment (in Iteration 2, the last segment =



X3) and Wy:\: 41 > 0, we accept this new breakpoint and continue the iteration with the new
Segmented data SetS, X1 = [Xli ...,X600]T, X2 = [X601' ...,Xk;]T, and X3 = [Xk;+1' ...,Xl’ooo]T.
Otherwise, the algorithm moves to what we refer to as the Return stage.

3.1.3 Iteration 3+

We repeat the procedure above until any one of the termination conditions: 1) all ¥ < 0; 2) k*
does not match an index number in the last sub-segment. After we terminate this iterative
greedy search, the algorithm moves to the final Return stage.

3.1.4 Return

As final output, the algorithm returns the current last segment as the identified optimal data
sub-segment. We denote this data set as X,,;. Note that X,,,,; < X.

Figure 6 shows calculated 998 W values for the benchmark data set at Iteration 2. The
maximum value occurs at k = 310 on the first segment. This means that we have reached the
second termination condition. We stop the iterations and send the current last sub-segment

X, = [x601, ...,xl,OOO]T to the Return stage. As a result, the identified optimal data set, X,,; =

Xy = [X601' ---:Xl,ooo]T-
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Figure 6. Calculated objective function ¥ for the benchmark data at the second iteration.

The GCS algorithm can be generalized to any d-dimensional multivariate data set, X =
[X1, .., Xy]T € RV, x; = (1(0), ..., x4(i)). Let f;(x;]6;) be the probability density function and
u; = F;(x;]6;) be the cumulative distribution function for variable, x;. Multivariate copulas can
be denoted as Cy = C,(uy, ...,uy), where 0 = (a, 64, ...,0,). The regularized maximum log-
likelihood function for multivariate data, X, is given as:

N d
2
P = ) [ logequy, - u) + ) logfi(516) | - =5 @
. £

+ . St
=1 Jj j=1

Figure 7 shows the general GCS algorithm flowchart based on the preceding discussion.
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Figure 7. Greedy Copula Segmentation (GCS) algorithm flowchart.

3.2 Climate Change Adaptation with the Benchmark Data

We are interested in attempting a climate change adaptation strategy using GCS assuming
that the bivariate data in Figure 1 describe climate parameters of interest. Suppose the
benchmark data set, X, represents a 100 year-long set of observations with 10 records per
year. Let us first consider a situation where only the first 40 year-long set (400 samples)
represent the base data. The traditional approach would develop the base joint copula, C@(O)

using all the base data, but our optimal approach will use the GCS-identified optimal data only
for near-future projections. Then, such a derived joint distribution will be used for any risk
assessment until the new data are obtained, or the existing data set from 40 years is updated.
Suppose this distribution is updated in increments corresponding to 10-year cycles. Again, the
traditional approach would use all of the now 50 year-long set (500 samples) to obtain a new
updated version of the joint copula, Coyy» but our optimal approach will again use the GCS-

identified optimal data only. The procedure can be repeated every 10 years and two different
joint copulas can be developed based on the two different approaches (traditional vs. GCS).

To highlight the comparative prediction performance of the two approaches, we compute log-
likelihoods for m update cycles, each of 10-year length as follows:

Nm Nm
5
LLeraa @) =108 [ Copraun@®,  Llope(m) =10g] [ Coppe 0 ©)
i=1 i=1

Two different joint copulas, Ce,,, ,, and C@optim, are derived using the base data and the same

number of new 10-year data updates, x;,i = 1, ..., n,,, is applied to calculate the log-likelihood
in Equation 5. As such, the calculated log-likelihoods are fair performance measures to allow
comparisons between traditional and GCS approaches. The copula and corresponding
approach that yields a higher likelihood when the new data are included is more accurate than
the alternative. In other words, the traditional and GCS approaches offer models based on
the base data that are then used to assess how well they perform against different lengths of
update cycle data increments; relative comparison is possible using Equation 5.



A general formulation can be defined using t,4s. (the base period) and t.,. (the period

covered in each update cycle). At cycle m, the traditional approach uses all the data collected
from the beginning until tp,s + m -t to update the distribution, whereas GCS-CCA uses

Xopt,, for the corresponding distribution. Note that each t,.-long data update can be used to

evaluate predictive performance. Figure 8 shows a diagram summarizing the two different
approaches with the formulation as presented.
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Figure 8. Traditional and optimal GCS approaches for climate change adaptation.

Figure 9 shows results from GCS-CCA with A = 100 and A = 10, as applied to the benchmark
data. The predictive performance is evaluated 6 times since we choose the first 400 samples
as the base data and add 100 new samples in each update cycle. We repeat this entire
procedure 10 times by synthetically generating (by random sampling) a new benchmark data
set each time. Figure 9 shows the (normalized) mean of the predictive log-likelihood difference

ratios, 6, (%) = W %X 100, calculated with all 10 samplings. The min-max error bars
tra

are also shown. We can easily verify that, in the mean, GCS-CCA outperformed traditional
CCA in every update for 1 = 100. We also evaluate the influence of the regularization
parameter, A. For the lower value, 1 = 10, GCS-CCA generally performs better than traditional
CCA. However, GCS-CCA with 1 =10 sometimes leads to overfitting, and then its
performance is not better than the traditional CCA. Therefore, it is important to use a proper
regularization parameter, A, for GCS-CCA.
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Figure 9. Calculated predictive log-likelihood difference ratios &, (%) = W x 100
tra
with (Left) A = 100 and (right) 1 = 10.

3.3 Regularization Parameter Selection

GCS-CCA leads to more accurate prediction than traditional CCA if we can select the proper
regularization parameter, A. Its value can be chosen by trial and error, using prior knowledge,
or using a principled method, such as Bayesian or Akaike information criterion or cross
validation (Hallac et al., 2019). In general, one needs a sufficiently high value for A because
this parameter directly influences the extent of segmentation that results. Too high a value for
A results in no segmentation, which is then equivalent to traditional CCA; on the other hand, a
low value for A leads to overfitting, which means that GCS will select a very short recent sub-
segment as the optimal data. Then, the joint distribution of the underlying variables is overly
fitted to this small amount of data. As we can see from Equation 4, the order of magnitude of
the marginal variances affects the regularization along with A. In practice, one can use several
linearly or logarithmically spaced values of A over a wide range in a search for a sufficiently
large regularization parameter.

4. Drought Patterns in CCA

Several hydroclimate variables — e.g., precipitation, air temperature, soil moisture, etc. —
simultaneously affect drought scenarios. Indices or scores derived from univariate and
multivariate drought indicators that are in turn based on individual or multiple hydroclimate
variables have been developed to characterize and quantify drought conditions. Such scores
are included in a drought index, and drought index time series can then be used to describe
the input data for drought severity-duration-frequency (SDF) analysis.

For areal data analysis and application of GCS-CCA, we collected climate data — representing
monthly total precipitation and a monthly average of daily average temperature data — from
the Global Historical Climatology Network-Monthly (GHCN-M) Version 3 dataset (Lawrimore
et al., 2011). Various types of drought indices were calculated using open-source software
originally developed by National Integrated Drought Information System (NIDIS), National
Centers for Environmental Information (NCEI), and National Oceanic and Atmospheric
Administration (NOAA) (Adams, 2017). The collected climate variables and calculated drought
indices cover the geospatial extent: latitude 24.5625 ~ 49.354168 (degrees north), longitude
-124.6875 ~ -67.020836 (degrees east), and raster dimensions, (latitude, longitude, time) =
(38, 87, 1466). One grid cell near the Austin, Texas area was selected for a regional case
study. Figure 10 shows the area covered by the selected grid cell.
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Figure 10. Selected site in the Austin, Texas area.

Among various drought indices, the Standardized Precipitation Evapotranspiration Index
utilizing a Gamma distribution with a 3-month scale (SPEI_G3), developed by Vincente-
Serrano et al., 2010 was selected to serve as an indicator of drought events. This selection is
justified because studies have shown that SPEI performs better in drought assessments under
a global warming trend by combining the multi-scalar character with the capacity of
involvement of temperature effects on droughts (Hao and Singh, 2015; Tan et al., 2015;
Homdee at al., 2016). Detailed information about SPEI and its calculation can be found in the
studies by Vincente-Serrano et al., 2010; Begueria et al., 2014; Hameed et al., 2018.

Figure 11 shows the calculated SPEI_G3 time series, denoted by Z, that is obtained for the
period, December 1896 to February 2017. The Thornthwaite equation is used to derive
potential evapotranspiration (PET) from air temperature data.
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Figure 11. Calculated standardized precipitation evapotranspiration index utilizing Gamma
distribution and 3-month scale (SPEI_G3) time series.

This study describes the entire procedure that starts with preparing a bivariate drought pattern
time series and proceeds to a final predictive performance evaluation. We provide a step-by-
step guide that can be used for not only several types of drought events but also for other

extreme climate events and applications that have a similar problem setting and data
structure.



4.1 Bivariate Drought Pattern Time Series

To apply GCS, first, we extract drought events from the selected drought index time series
using a predefined truncation level. The overall concept of how we define a drought event and
its associated duration, d;, and severity, s; is illustrated in Figure 12. In this study, drought
duration and severity are selected for the analysis since they have been widely used for
drought severity-duration-frequency (SDF) analysis. A similar concept can be applied to other
climate data time series.
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Figure 12. A concept diagram showing definitions of drought event duration, severity, and
equivalent intensity, along with indications of a pre-crossing and a post-crossing.

Our definition is a modified version of the Yevjevich (1967) theory of run model. We define the
start and end of a drought event by interpolating pre-crossing and post-crossing data points
given the data. In this manner, for any drought event, i, the drought duration, d; — defined as
the time difference between the start and end — is real-valued. Then, the absolute value of the
integral area between drought index time series and the selected horizontal truncation level
from the start to the end of the event is defined as the drought severity, s;. An equivalent
drought index value, z;, associated with drought event, i, is easily calculated. Mathematically,
z; = s;/d;, which is sometimes referred to as drought intensity (Cavus and Aksoy, 2020). This
drought index when considered at a constant level over the duration of the event leads to an
area-based severity that is equivalent to the observed value, s;, for the same event. This is
clear too from Figure 12. To be clear, we refer to z; as an equivalent intensity.

Suppose we extract N drought events from the given drought index time series. Then, the
inputdata, X = [x4, ...,xy] € R¥*2, where x; = (d;, s;). Each data point can now be considered
as data obtained at the start of corresponding drought event. We can now apply GCS-CCA to
the input drought data.

Vincente-Serrano et al., 2010 defined various ranges of SPEI values as associated with
different intensities of droughts: light drought (-0.5 to -0.99), moderate drought (-1.0 to -1.49),
severe drought (-1.5 to -1.99), and extreme drought (-2.0 <). In the present study, a truncation
SPEI level of -0.5 is selected so as to include even the mildest drought conditions in our
assessment. Accordingly, a total of 143 drought events with associated duration and severity
(or equivalent intensity) are extracted from the SPEI_G3 time series.

Figure 13 shows the duration, severity, and equivalent intensity values considering all the
drought events extracted over the period of measurements (1896-2017) in the selected Austin,
Texas region. Average and standard deviation values are shown for the data and are also
shown using a 5-year moving window. The moving average and standard deviation variation
clearly indicate non-stationary characteristics in the drought pattern. Figure 14 shows scatter
plots of the collected data, showing two of the drought-related variables at a time. Based on
similar assumptions in past studies, exponential and gamma distributions are selected as
marginal probability distributions for duration and severity, respectively. The Gumbel copula
family is selected to model the pairwise dependence structure for these two variables
(Zelenhasic and Salvai,1987; Hao and Singh, 2013).
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Figure 13. Duration, severity, and equivalent intensity values from 143 extracted
drought events, using a -0.5 truncation level with the SPEI|_G3 data.
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Figure 14. Pairwise scatter plots showing duration, severity, and equivalent intensity
for all the drought events in the data set.

We begin by considering only the initial 20-year data as base data and then include 10-year
increments as update cycles in projections to be used in possible climate change adaptation,
where the GCS-CCA approach seeks to optimize justified use of only the most recent data.
The overall input data covers about 120 years (December 1896 to February 2017) and, thus,
there are 10 predictive performance evaluations of GCS-CCA versus a traditional that ignores
non-stationary trends.

Figure 15 shows results summarized in terms of the predictive log-likelihood difference ratio,
61, (%) = Lope=tlirad w100 . We can easily see that GCS-CCA generally has better

|LLtrad|

performance than traditional CCA with 4 = 150. This result implies that the GCS-identified
optimal data sub-segments explain near-future drought patterns better than when all of the
historical observed data are used. Figure 15 also shows GCS-CCA performance with 4 = 100;
the lower A leads to overfitting. Pre-processing of the data and an appropriate regularization
parameter is recommended for such analyses.
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Figure 15. Computed predictive log-likelihood difference ratios, &,, (%) = W
tra

100, for the drought patterns data using 1 = 150 (left) and 4 = 100 (right).

5. Conclusions

In this work, we extended Greedy Gaussian segmentation (GGS) developed by Hallac (2019)
by allowing multivariate Gaussian distributions in the copula definition; we refer to this
extended approach as greedy copula segmentation (GCS). Our extension is well-suited for
use with climate data since many climate-related variables are non-Gaussian and non-
stationary. Based on the wide coverage of different dependence structures possible with the
copula family choice, it is expected that GCS could be used in various applications that involve
long sequences of multivariate time series data. We have explained GCS, iteration by
iteration, so as to offer an accessible description of the greedy algorithm.

Using a synthetic data set as well as an observed drought data set, we have shown that GCS
can optimize future projections for possible use in climate change adaptation. Climate change
adaptation needs to rationally consider periodic updates of the joint distribution of climate
variables by focusing on patterns seen in extreme climate events. We introduce the notion of
considering trends in any climate parameter as best understood by defining a piecewise
process consisting of several stationary sub-segments to represent the data. In such a
piecewise stationary representation, the latest (most recent) stationary sub-segment (whose
length must be iteratively established, using maximum likelihood with regularization) can
predict most rationally and precisely any near-future patterns in the extreme climate that are
to be expected. The proposed GCS approach identifies the most informative data sampled
from the latest stationary sub-segment; it iteratively evaluates the benefit of further
segmentation on the last segment. By doing so, the algorithm greedily searches for the optimal
last segment of input data.

We show that the GCS-identified optimal data produce better predictive performance for
possible climate change adaptation by illustrative examples using a benchmark synthetic data
set as well as a real 120-year drought-related data set from Austin, Texas. GCS-CCA shows
superior predictive performance for the non-stationary benchmark problem. For the real-world
application, we collect drought index time series data and extract the bivariate drought event
(duration and severity) data. The GCS-CCA results suggest that the proposed approach can
rationally uncover changing climate patterns in the time series and can produce accurate near-
future projection for adaptation plans compared to more traditional approaches that seek to
use long or complete historical data sets. We conclude that GCS-CCA optimizes potential
climate change adaptation strategies and have provided a detailed algorithm for its
implementation.
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