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Abstract 
An assumption of stationarity in climate-related processes is often made in the risk assessment 
of civil infrastructure systems. Such an assumption is difficult to justify in a changing climate. 
In this study, to optimally adapt to a changing climate, given time series data, we propose a 
computationally efficient algorithm called Greedy Copula Segmentation, GCS, that could 
potentially be used in a climate change adaptation (CCA) strategy. The GCS algorithm 
partitions a multivariate time series into disjoint segments such that each of the segments is 
described by a stationary copula process, but independence is assumed across segments. An 
optimal strategy for climate change adaptation, which we will refer to as GCS-CCA, considers 
the last or most recent segment as containing the most informative data for near future climate 
pattern prediction. By only using such informative data to build a probabilistic model for the 
near future, our method effectively accounts for climate change. We provide an algorithmic 
formulation for greedy segmentation and validate the performance of our GCS-based strategy 
by applying it to an illustrative benchmark problem and a realistic drought example. 
 
Keywords: time series segmentation, greedy algorithm, climate change adaptation, non-
stationary stochastic process 
 
 
1. Introduction 
 
Climate data such as precipitation, wind speed, etc. make up a fundamental source of 
information for the risk assessment of any civil infrastructure system. Often, the climate 
parameter is represented as a stationary stochastic process, which then implies that the risk 
assessment makes use of all the available historical data in prediction. Temporal patterns that 
include extreme climate events such as droughts, floods, storms, etc. can be quite variable 
due to inherent non-stationary characteristics and as an outcome of human-induced climate 
change (Lee and Ouarda, 2010; Sheffield et al., 2012; Dai, 2013; Garcia Galiano et al., 2015; 
Li et al., 2015; Cid et al., 2016; Van Loon et al., 2016; Ouarda and Charron, 2018; Liu, S. et 
al., 2019; Slater et al., 2020). In such cases, there are reasons to perhaps consider climate 
as a piecewise stationary process. In the outlined approach, we show that it is possible to 
consider the non-stationary characteristics of the underlying climate process by means of sub-
segments that are each stationary but mutually independent. Then, near-future patterns can 
be realistically assumed to be closest to the most recent sub-segments. Consequently, a 
model derived from such recent data might be expected to lead to better predictions than what 
we get with the traditional approach that uses the entire historical sample. 
 
This work demonstrates how a time series segmentation technique can be used to identify the 
optimal multivariate climate data subset near-future risk assessment. The method involves 
breaking up the input time series into segments where the data in each segment are treated 
as independent samples from a copula. We propose the use of what we call the greedy copula 
segmentation (GCS) algorithm, that systematically searches for optimal-length recent 
segments using a greedy algorithm. Among the identified segments, the most recent sub-
segment is then selected as the optimal data for any future planning such as in CCA. 



 
Our method builds from and extends the greedy Gaussian segmentation (GGS) developed by 
Hallac et al., 2019. The assumptions and formulation of GGS are well-suited to our problem. 
GGS assumes non-repeatability of segments; this means that model parameters in each 
segment are unrelated to parameters in other segments. Considering that we are dealing with 
climate conditions that are widely acknowledged to be changing, the non-repeatability 
assumption is justified. GGS formulates the time series partitioning problem based on the 
maximum log-likelihood of the data. Since we are assuming piecewise stationarity and wish 
to project near-future patterns based on recent observations, a maximum log-likelihood based 
approach is most appropriate for our problem. 
 
We extend the applicability and generality of GGS by replacing the multivariate Gaussian 
distribution assumption with a multivariate copula choice. This extension is especially 
appropriate for our problem since climate variables often follow non-Gaussian distributions 
(Zelenhasic and Salvai, 1987; Mathier et al., 1992; Yue et al., 1999; Shiau and Shen 2001; 
Yue 2001; De Michele and Salvadori 2003; Hao and Singh 2013; Mazdiyasni et al. 2019). The 
use of multivariate copulas can help to represent many complex multivariate dependence 
structures both by employing various options for marginal distributions and by selecting 
different copula families (Saklar, 1959; Salvadori, 2004; Salvadori and De Michele, 2004; 
Nelsen, 2006; Genest and Favre, 2007). Moreover, most common marginal distribution 
parameters can be empirically obtained from data using maximum likelihood estimation 
(MLE). The copula family parameter can also be non-parametrically estimated using the 
empirical Kendall’s rank correlation coefficient, tau (Genest et al. 2011, Manuel et al.  2018). 
For all of these reasons, we propose the use of a more versatile GCS approach, while not 
losing advantages of the mathematical tractability of GGS. 
 
For civil infrastructure systems, we demonstrate how we can adopt an adaptation policy based 
on the proposed GCS approach. A 5- to 10-year cycle of climate data that possibly involves 
policy amendment (CCA) usually starts by updating the site-specific hazard data. Then, 
derivative policies are updated accordingly. The projected risk assessment will be best for 
only a near-future period because, after this period, the policy will need to be amended with 
any newly discovered information/data. We demonstrate how to employ such new data along 
with all the available historical data to update temporal hazard patterns and derivative policies. 
Again, in light of the most recent climate change trends, dated data are unlikely to contain 
meaningful information for near-future projections. In fact, the use of old data can cause a 
model to exhibit greater bias and uncertainty due to heterogeneity in the data due to non-
stationary character. By using the proposed GCS-identified optimal data, we only use 
informative recent data to update policies. In other words, GCS-CCA discards outdated data 
to improve prediction performance. It works more discriminately to detect and account for 
short-term climate abnormalities.  
 
In this study, we make the following contributions: 1) we derive an extension of Greedy 
Gaussian Segmentation (Hallac et al., 2019) for use with non-Gaussian climate data and any 
generalized copula model; 2) we demonstrate our GCS method’s possible use in plans for 
optimal climate change adaptation; and 3) we present realistic experiments that illustrate how 
a near-future pattern of extreme climate events can be optimally predicted using the proposed 
approach. 
 
 
2. Related Work 
 
Seeking optimally useful segments from input time series is a key step in climate change 
adaptation. Many variations of such time series segmentation, also known as change point 
detection, have been proposed and studied in different contexts. Comprehensive surveys 
have been presented by researchers from various fields (Reeves et al., 2007; Esling and 



Agon, 2012; Polunchenko and Tartakovsky, 2012; Aminikhanghahi and Cook, 2017; Truong 
et al., 2020). 
 
Truong et al., 2020 organized state-of-the-art offline change point detection algorithms using 
a structuring methodological strategy to give a systematic understanding of the strengths and 
weaknesses. They characterized the algorithms by three elements: a cost function, a search 
method, and a constraint on the number of changes. In their structure, GCS used a likelihood-
based parametric cost function as an optimal search method for the unknown number of 
change points, a variance-based penalty, and a stopping criterion.  Aminikhanghahi and Cook, 
2017 surveyed the topic of change point detection in the fields of data mining, statistics, and 
computer science. They focused on machine learning algorithms that are not included in 
Truong et al., 2020's survey. They categorized the algorithms studied into supervised and 
unsupervised methods.  Polunchenko and Tartakovsky, 2012 provided a survey of online 
algorithms for discrete time series spans over all major formulations of the underlying 
optimization problem—namely, Bayesian, generalized Bayesian, and minimax. In the present 
work, we use GCS because our climate change adaptation problem is better suited for offline 
algorithms. Online algorithms are good options for problems that need faster detection of 
instant state changes.  Esling and Agon, 2012 summarized a broad range of theories that 
included general time series data mining techniques, but considered not only time series 
segmentation but also clustering, classification, etc. A basic theoretical understanding on such 
methods can be easily gained from this illuminating article.  Reeves et al., 2007 specifically 
reviewed change point detection techniques for climate data. They discussed algorithms 
based on hypothesis testing, multiple regression, and hierarchical regression models.  All of 
these studies offered useful insights in the development of the proposed GCS-CCA approach. 
 
To demonstrate steps in the algorithms for GCS and GCS-CCA, an example analysis on a 
benchmark data set is first presented in Section 3. A real-world application for drought risk 
assessment follows in Section 4. 
 
 
3. Methodology 
 
3.1 Greedy Copula Segmentation 
 
Assume we have bivariate climate data, available as time series data, as shown in Figure 1.  
Without loss of generality, assume that the time series are given at discrete data index values 
as shown. 

 
Figure 1. A realization of synthetic bivariate benchmark data time series: 3 separate data 

segments generated using 3 different parameter settings are highlighted. 



In the synthetic data selected for this example, we have two climate-related variables that 
follow gamma and lognormal distributions, respectively. Their dependence structure is 
assumed to be represented by a Clayton copula. A total of 1,000 samples were generated 
with 3 different parameter settings to embed non-stationary character in the data. We have 5 
parameters to define the two variables in each of the 3 subsets—they include a copula 
parameter, 𝛼; parameters describing the shape, 𝑎, and scale, 𝑏, for the gamma variable; and 
the mean, 𝜇, and standard deviation, 𝜎, for the lognormal variable. Note that the mean and 
variance of the gamma variable are 𝑎𝑏 and 𝑎𝑏2, respectively. 
  
For the data, the first 300 samples are synthetically generated using Θ1 = (𝛼, 𝑎, 𝑏, 𝜇, 𝜎) =
(1,10,0.5,2,0.5), the next 300 samples use Θ2 = (10,40,0.25,3,0.5), and the final 400 samples 
are from Θ3 = (50,100,0.15,4,0.5) . For the gamma-distributed variables, the different 
parameter settings are equivalent to setting different mean values of 5, 10, and 15, and 
variances of 2.5, 2.5, and 2.25. Figure 2 shows copulas according to the different parameter 
setting selections. As is clear from Figure 1, the generated time series are non-stationary; the 
values of both variables are seen to get higher with time (increasing data index value). As 
such, this synthetic bivariate climate benchmark data set could represent changing extreme 
climate events – such as storms, floods, droughts, etc. – that get more frequent and severe 
with time. 
 

 
Figure 2. Copulas for the synthetic benchmark data generation  

using 𝛩1, 𝛩2, and 𝛩3 (left to right).   
 
From the above, one might expect that near-future patterns are most likely to be similar to the 
last 400 samples. The earlier 600 samples are likely to be deemed outdated and would 
increase uncertainty in any near-future prediction. Our goal is to find and uncover the last 
stationary sub-segment from the data. To achieve this goal, we iterate the greedy 
segmentation approach until no further segmentation on the last segment offers any 
advantage. 
 
3.1.1 Iteration 1 
 
The GCS algorithm starts with the benchmark data that can be denoted as 𝑋 = [𝐱1, … , 𝐱1,000]

𝑇, 
where 𝐱𝑖 = (𝑥1(𝑖), 𝑥2(𝑖)).  Also, 𝑥1(𝑖) and 𝑥2(𝑖) represent the 𝑖th index values of the first and 
the second variable, respectively. Note that 𝐱𝑖 represents a 2-dimensional vector containing 
these 𝑖th index values of both variables and 𝑋 represents the entire bivariate data set. 
 
We consider the data as a segment and, thus, the number of current segments 𝐾 = 1; by 
splitting the data into more segments, the value of 𝐾 will be changed. In every GCS iteration, 
we will consider a new breakpoint that then divides one of the current segments into two sub-
segments. In the first iteration, we have 999 possible new breakpoints denoted as 
𝑏1\2, 𝑏2\3, … , 𝑏999\1,000, where the location of a breakpoint is indicated by the subscript. For 



instance, 𝑏𝑘\𝑘+1 is a breakpoint that divides the data into two sub-segments 𝑋1 = [𝐱1, … , 𝐱𝑘]𝑇 
and 𝑋2 = [𝐱𝑘+1, … , 𝐱1,000]

𝑇. Figure 3 shows an example with bk\k+1, where 𝑘 = 500. 
 

 
Figure 3. Example sub-segments generated by breakpoint, 𝑏500\501. 

Next, we compare two scenarios: 1) where 𝑋 represents independent bivariate samples from 
a multivariate copula 𝐶Θ based on all the data; and 2) where 𝑋1 and 𝑋2 represent separate 
bivariate samples from two different copulas, 𝐶Θ(1)

 and 𝐶Θ(2)
, respectively. For both scenarios, 

we assume that the same Clayton copula family and Gamma and lognormal marginal 
distributions, although different distribution and copula parameters apply in the two scenarios. 
Scenario 1 leads to fixed model parameters, while Scenario 2 considers that the model 
parameters change when one considers data before and after the breakpoint, 𝑏𝑘\𝑘+1. Using 
maximum likelihood, we will evaluate and maximize the following objective function: 
 

 Ψ𝑘\𝑘+1 = 𝜓(𝑋1) + 𝜓(𝑋2) − 𝜓(𝑋), (1) 

 
where 𝜓(⋅) is a function computed based on the regularized maximum log-likelihood of the 
available data with regard to the predefined copula family and marginal distributions.  
 
Note that 𝜓(𝑋), first, employs MLE model parameters, Θ, based on the assigned data, 𝑋. The 
MLE method allows estimation of the marginal distribution parameters and the copula family 
parameters; MATLAB provides functions named fitdist and copulafit that accomplish this 
task. The regularized maximum log-likelihood function is obtained as follows: 
 

 
𝜓(𝑋)  = ∑(log 𝑐𝛼(𝐹1(𝑥1(𝑖)|𝑎, 𝑏), 𝐹2(𝑥2(𝑖)|𝜇, 𝜎)) + log 𝑓1(𝑥1(𝑖)|𝑎, 𝑏) + log 𝑓2(𝑥2(𝑖)|𝜇, 𝜎))

𝑛

𝑖=1

−
𝜆

𝑠1
2 + 𝑠2

2, 

(2) 

 

where 𝑛 is the length of the input bivariate time series, 𝑋; 𝑐𝛼 =
𝜕2𝐶𝛼(𝑢1=𝐹1(𝑥1|𝑎,𝑏),𝑢2=𝐹2(𝑥2|𝜇,𝜎))

𝜕𝑢1𝜕𝑢2
 is 

the copula probability density function; 𝑢1 = 𝐹1(𝑥1|𝑎, 𝑏)  and 𝑢2 = 𝐹2(𝑥2|𝜇, 𝜎)  are marginal 
cumulative distribution functions; 𝑓1(𝑥1|𝑎, 𝑏) and 𝑓2(𝑥2|𝜇, 𝜎) are marginal probability density 
functions; 𝑠1 and 𝑠2 are marginal sample standard deviations. To avoid overfitting, marginal 
variance regularization is applied and 𝜆 ≥ 0 is the regularization parameter. 
 
Note that Ψ𝑘\𝑘+1, as defined, is the regularized maximum log-likelihood difference between 
the likelihood function based on data sub-segments divided at the breakpoint, 𝑏𝑘\𝑘+1, and the 



likelihood function based on the entire unsegmented data set. We calculate Ψ𝑘\𝑘+1 for every 
possible breakpoint and then select an optimal breakpoint 𝑏𝑘∗\𝑘∗+1 as follows: 
 

 𝑘1
∗ = argmax

𝑘
Ψ𝑘\𝑘+1, (3) 

 
and we also ensure that Ψ𝑘1

∗\𝑘1
∗+1 > 0. If every Ψ returns a negative value, it means that further 

segmentation has no advantage. In this case, the greedy algorithm stops the segmentation 
search and we go to the Return stage. 
 
Figure 4 shows 999 Ψ values computed with 𝜆 = 100. The maximum Ψ value occurs for 𝑘 =
600.  Based on this result, we divide the data set into sub-segments at the breakpoint, 𝑏600\601. 
These resulting sub-segments are shown in Figure 5. 
 

 
Figure 4. Calculated objective function 𝛹 for the benchmark data at the first iteration. 

 
Figure 5. Sub-segments generated by the first identified breakpoint, 𝑏𝑘1

∗\𝑘1
∗+1 = 𝑏600\601. 

 
3.1.2 Iteration 2 
 
After the previous (first) iteration, what we have are new segmented data sets, 𝑋1 =

[𝐱1, … , 𝐱600]𝑇 and 𝑋2 = [𝐱723, … , 𝐱1,000]
𝑇. Thus, the number of current segments, 𝐾 = 2, and 

the number of new breakpoints possible is now 998. Again, we compute Ψ for every possible 
breakpoint and ultimately select a new optimal breakpoint, 𝑏𝑘2

∗\𝑘2
∗+1 . We reject the new 

breakpoint and terminate the greedy algorithm if all Ψ values have a negative value. An 
additional termination condition is invoked in Iteration 2 and beyond, if the identified optimal 
breakpoint is not from the current last sub-segment. This is because our goal with the greedy 
search algorithm is to find and use only the last stationary sub-segment to be representative 
of the most likely series for the near future. Therefore, if further segmentation cannot be 
continued on the current last sub-segment, we terminate the search. On the other hand, if 
there is a breakpoint, 𝑏𝑘2

∗\𝑘2
∗+1, within the last sub-segment (in Iteration 2, the last segment =



𝑋2) and Ψ𝑘2
∗\𝑘2

∗+1 > 0, we accept this new breakpoint and continue the iteration with the new 
segmented data sets, 𝑋1 = [𝐱1, … , 𝐱600]𝑇 , 𝑋2 = [𝐱601, … , 𝐱𝑘2

∗ ]
𝑇 , and 𝑋3 = [𝐱𝑘2

∗+1, … , 𝐱1,000]
𝑇 .  

Otherwise, the algorithm moves to what we refer to as the Return stage. 
 
3.1.3 Iteration 3+ 
 
We repeat the procedure above until any one of the termination conditions: 1) all Ψ < 0; 2) 𝑘∗ 
does not match an index number in the last sub-segment. After we terminate this iterative 
greedy search, the algorithm moves to the final Return stage. 
 
 
3.1.4 Return 
 
As final output, the algorithm returns the current last segment as the identified optimal data 
sub-segment. We denote this data set as 𝑋𝑜𝑝𝑡. Note that 𝑋𝑜𝑝𝑡 ⊆ 𝑋.  
 
Figure 6 shows calculated 998 Ψ  values for the benchmark data set at Iteration 2. The 
maximum value occurs at 𝑘 = 310 on the first segment. This means that we have reached the 
second termination condition. We stop the iterations and send the current last sub-segment 
𝑋2 = [𝐱601, … , 𝐱1,000]

𝑇 to the Return stage. As a result, the identified optimal data set,  𝑋𝑜𝑝𝑡 =

𝑋2 = [𝐱601, … , 𝐱1,000]
𝑇. 

 

 
Figure 6. Calculated objective function 𝛹 for the benchmark data at the second iteration. 

 
The GCS algorithm can be generalized to any 𝑑 -dimensional multivariate data set, 𝑋 =
[𝐱1, … , 𝐱𝑁]𝑇 ∈ ℝ𝑁×𝑑 , 𝐱𝑖 = (𝑥1(𝑖), … , 𝑥𝑑(𝑖)). Let 𝑓𝑖(𝑥𝑖|𝜃𝑖) be the probability density function and 
𝑢𝑖 = 𝐹𝑖(𝑥𝑖|𝜃𝑖) be the cumulative distribution function for variable, 𝑥𝑖. Multivariate copulas can 
be denoted as 𝐶Θ = 𝐶𝛼(𝑢1, … , 𝑢𝑑), where Θ = (𝛼, 𝜃1, … , 𝜃𝑑). The regularized maximum log-
likelihood function for multivariate data, 𝑋, is given as: 
 
 

𝜓(𝑋)  = ∑ (log 𝑐𝛼(𝑢1, … , 𝑢2) + ∑ log 𝑓𝑗(𝑥𝑗|𝜃𝑗)

𝑑

𝑗=1

)

𝑁

𝑖=1

−
𝜆

∑ 𝑠𝑗
2𝑑

𝑗=1

. (4) 

 
Figure 7 shows the general GCS algorithm flowchart based on the preceding discussion. 
 



 

Figure 7. Greedy Copula Segmentation (GCS) algorithm flowchart. 

 
3.2 Climate Change Adaptation with the Benchmark Data 
 
We are interested in attempting a climate change adaptation strategy using GCS assuming 
that the bivariate data in Figure 1 describe climate parameters of interest. Suppose the 
benchmark data set, 𝑋, represents a 100 year-long set of observations with 10 records per 
year. Let us first consider a situation where only the first 40 year-long set (400 samples) 
represent the base data. The traditional approach would develop the base joint copula, 𝐶Θ(0)

 
using all the base data, but our optimal approach will use the GCS-identified optimal data only 
for near-future projections. Then, such a derived joint distribution will be used for any risk 
assessment until the new data are obtained, or the existing data set from 40 years is updated. 
Suppose this distribution is updated in increments corresponding to 10-year cycles. Again, the 
traditional approach would use all of the now 50 year-long set (500 samples) to obtain a new 
updated version of the joint copula, 𝐶Θ(1)

, but our optimal approach will again use the GCS-
identified optimal data only. The procedure can be repeated every 10 years and two different 
joint copulas can be developed based on the two different approaches (traditional vs. GCS). 
 
To highlight the comparative prediction performance of the two approaches, we compute log-
likelihoods for 𝑚 update cycles, each of 10-year length as follows: 
 
 

𝐿𝐿𝑡𝑟𝑎𝑑(𝑚) = log ∏ 𝐶Θ𝑡𝑟𝑎𝑑_𝑚
(𝐱𝑖)

𝑛𝑚

𝑖=1

, 𝐿𝐿𝑜𝑝𝑡(𝑚) = log ∏ 𝐶Θ𝑜𝑝𝑡_𝑚
(𝐱𝑖)

𝑛𝑚

𝑖=1

. (5) 

 
Two different joint copulas, 𝐶Θ𝑡𝑟𝑎𝑑_𝑚

 and 𝐶Θ𝑜𝑝𝑡_𝑚
, are derived using the base data and the same 

number of new 10-year data updates, 𝐱𝑖 , 𝑖 = 1, … , 𝑛𝑚, is applied to calculate the log-likelihood 
in Equation 5. As such, the calculated log-likelihoods are fair performance measures to allow 
comparisons between traditional and GCS approaches. The copula and corresponding 
approach that yields a higher likelihood when the new data are included is more accurate than 
the alternative.  In other words, the traditional and GCS approaches offer models based on 
the base data that are then used to assess how well they perform against different lengths of 
update cycle data increments; relative comparison is possible using Equation 5. 
 



A general formulation can be defined using 𝑡𝑏𝑎𝑠𝑒  (the base period) and 𝑡𝑐𝑦𝑐  (the period 
covered in each update cycle). At cycle 𝑚, the traditional approach uses all the data collected 
from the beginning until 𝑡𝑏𝑎𝑠𝑒 + 𝑚 ⋅ 𝑡𝑐𝑦𝑐 to update the distribution, whereas GCS-CCA uses 
𝑋𝑜𝑝𝑡𝑚

 for the corresponding distribution. Note that each 𝑡𝑐𝑦𝑐-long data update can be used to 
evaluate predictive performance. Figure 8 shows a diagram summarizing the two different 
approaches with the formulation as presented. 
 

 
Figure 8. Traditional and optimal GCS approaches for climate change adaptation. 

Figure 9 shows results from GCS-CCA with 𝜆 = 100 and 𝜆 = 10, as applied to the benchmark 
data. The predictive performance is evaluated 6 times since we choose the first 400 samples 
as the base data and add 100 new samples in each update cycle. We repeat this entire 
procedure 10 times by synthetically generating (by random sampling) a new benchmark data 
set each time. Figure 9 shows the (normalized) mean of the predictive log-likelihood difference 
ratios, 𝛿𝐿𝐿(%) =

𝐿𝐿𝑜𝑝𝑡−𝐿𝐿𝑡𝑟𝑎𝑑

|𝐿𝐿𝑡𝑟𝑎𝑑|
× 100, calculated with all 10 samplings. The min-max error bars 

are also shown. We can easily  verify that, in the mean, GCS-CCA outperformed traditional 
CCA in every update for 𝜆 = 100 .  We also evaluate the influence of the regularization 
parameter, 𝜆. For the lower value, 𝜆 = 10, GCS-CCA generally performs better than traditional 
CCA. However, GCS-CCA with 𝜆 = 10  sometimes leads to overfitting, and then its 
performance is not better than the traditional CCA. Therefore, it is important to use a proper 
regularization parameter, 𝜆, for GCS-CCA. 
 



 
Figure 9. Calculated predictive log-likelihood difference ratios 𝛿𝐿𝐿(%) =

𝐿𝐿𝑜𝑝𝑡−𝐿𝐿𝑡𝑟𝑎𝑑

|𝐿𝐿𝑡𝑟𝑎𝑑|
× 100 

with (Left) 𝜆 = 100 and (right) 𝜆 = 10. 
3.3 Regularization Parameter Selection 
 
GCS-CCA leads to more accurate prediction than traditional CCA if we can select the proper 
regularization parameter, 𝜆. Its value can be chosen by trial and error, using prior knowledge, 
or using a principled method, such as Bayesian or Akaike information criterion or cross 
validation (Hallac et al., 2019). In general, one needs a sufficiently high value for 𝜆 because 
this parameter directly influences the extent of segmentation that results. Too high a value for  
𝜆 results in no segmentation, which is then equivalent to traditional CCA; on the other hand, a 
low value for 𝜆 leads to overfitting, which means that GCS will select a very short recent sub-
segment as the optimal data. Then, the joint distribution of the underlying variables is overly 
fitted to this small amount of data. As we can see from Equation 4, the order of magnitude of 
the marginal variances affects the regularization along with 𝜆. In practice, one can use several 
linearly or logarithmically spaced values of 𝜆 over a wide range in a search for a sufficiently 
large regularization parameter. 
 
 
4. Drought Patterns in CCA 
 
Several hydroclimate variables – e.g., precipitation, air temperature, soil moisture, etc. – 
simultaneously affect drought scenarios. Indices or scores derived from univariate and 
multivariate drought indicators that are in turn based on individual or multiple hydroclimate 
variables have been developed to characterize and quantify drought conditions. Such scores 
are included in a drought index, and drought index time series can then be used to describe 
the input data for drought severity-duration-frequency (SDF) analysis. 
 
For a real data analysis and application of GCS-CCA, we collected climate data – representing 
monthly total precipitation and a monthly average of daily average temperature data – from 
the Global Historical Climatology Network-Monthly (GHCN-M) Version 3 dataset (Lawrimore 
et al., 2011). Various types of drought indices were calculated using open-source software 
originally developed by National Integrated Drought Information System (NIDIS), National 
Centers for Environmental Information (NCEI), and National Oceanic and Atmospheric 
Administration (NOAA) (Adams, 2017). The collected climate variables and calculated drought 
indices cover the geospatial extent: latitude 24.5625 ~ 49.354168 (degrees north), longitude 
-124.6875 ~ -67.020836 (degrees east), and raster dimensions, (latitude, longitude, time) = 
(38, 87, 1466). One grid cell near the Austin, Texas area was selected for a regional case 
study. Figure 10 shows the area covered by the selected grid cell. 
 



 

Figure 10. Selected site in the Austin, Texas area. 
 

Among various drought indices, the Standardized Precipitation Evapotranspiration Index 
utilizing a Gamma distribution with a 3-month scale (SPEI_G3), developed by Vincente-
Serrano et al., 2010 was selected to serve as an indicator of drought events. This selection is 
justified because studies have shown that SPEI performs better in drought assessments under 
a global warming trend by combining the multi-scalar character with the capacity of 
involvement of temperature effects on droughts (Hao and Singh, 2015; Tan et al., 2015; 
Homdee at al., 2016). Detailed information about SPEI and its calculation can be found in the 
studies by Vincente-Serrano et al., 2010; Begueria et al., 2014; Hameed et al., 2018.  
 
Figure 11 shows the calculated SPEI_G3 time series, denoted by 𝑍, that is obtained for the 
period, December 1896 to February 2017. The Thornthwaite equation is used to derive 
potential evapotranspiration (PET) from air temperature data. 
 

 
Figure 11. Calculated standardized precipitation evapotranspiration index utilizing Gamma 

distribution and 3-month scale (SPEI_G3) time series. 
This study describes the entire procedure that starts with preparing a bivariate drought pattern 
time series and proceeds to a final predictive performance evaluation. We provide a step-by-
step guide that can be used for not only several types of drought events but also for other 
extreme climate events and applications that have a similar problem setting and data 
structure. 
 
  



4.1 Bivariate Drought Pattern Time Series 
 
To apply GCS, first, we extract drought events from the selected drought index time series 
using a predefined truncation level. The overall concept of how we define a drought event and 
its associated duration, 𝑑𝑖, and severity, 𝑠𝑖 is illustrated in Figure 12. In this study, drought 
duration and severity are selected for the analysis since they have been widely used for 
drought severity-duration-frequency (SDF) analysis. A similar concept can be applied to other 
climate data time series. 
 

 
Figure 12. A concept diagram showing definitions of drought event duration, severity, and 

equivalent intensity, along with indications of a pre-crossing and a post-crossing. 
 
Our definition is a modified version of the Yevjevich (1967) theory of run model. We define the 
start and end of a drought event by interpolating pre-crossing and post-crossing data points 
given the data. In this manner, for any drought event, 𝑖, the drought duration, 𝑑𝑖 – defined as 
the time difference between the start and end – is real-valued. Then, the absolute value of the 
integral area between drought index time series and the selected horizontal truncation level 
from the start to the end of the event is defined as the drought severity, 𝑠𝑖. An equivalent 
drought index value, 𝑧𝑖, associated with drought event, 𝑖, is easily calculated. Mathematically, 
𝑧𝑖 = 𝑠𝑖 𝑑𝑖⁄ , which is sometimes referred to as drought intensity (Cavus and Aksoy, 2020). This 
drought index when considered at a constant level over the duration of the event leads to an 
area-based severity that is equivalent to the observed value, 𝑠𝑖, for the same event.  This is 
clear too from Figure 12. To be clear, we refer to 𝑧𝑖 as an equivalent intensity. 
 
Suppose we extract 𝑁 drought events from the given drought index time series. Then, the 
input data, 𝑋 = [𝐱1, … , 𝐱𝑁] ∈ ℝ𝑁×2, where 𝐱𝑖 = (𝑑𝑖 , 𝑠𝑖). Each data point can now be considered 
as data obtained at the start of corresponding drought event. We can now apply GCS-CCA to 
the input drought data. 
 
Vincente-Serrano et al., 2010 defined various ranges of SPEI values as associated with 
different intensities of droughts: light drought (-0.5 to -0.99), moderate drought (-1.0 to -1.49), 
severe drought (-1.5 to -1.99), and extreme drought (-2.0 ≤). In the present study, a truncation 
SPEI level of -0.5 is selected so as to include even the mildest drought conditions in our 
assessment. Accordingly, a total of 143 drought events with associated duration and severity 
(or equivalent intensity) are extracted from the SPEI_G3 time series.  
 
Figure 13 shows the duration, severity, and equivalent intensity values considering all the 
drought events extracted over the period of measurements (1896-2017) in the selected Austin, 
Texas region. Average and standard deviation values are shown for the data and are also 
shown using a 5-year moving window. The moving average and standard deviation variation 
clearly indicate non-stationary characteristics in the drought pattern. Figure 14 shows scatter 
plots of the collected data, showing two of the drought-related variables at a time. Based on 
similar assumptions in past studies, exponential and gamma distributions are selected as 
marginal probability distributions for duration and severity, respectively.  The Gumbel copula 
family is selected to model the pairwise dependence structure for these two variables 
(Zelenhasic and Salvai,1987; Hao and Singh, 2013). 



 

 
Figure 13. Duration, severity, and equivalent intensity values from 143 extracted  

drought events, using a -0.5 truncation level with the SPEI_G3 data. 

 
Figure 14. Pairwise scatter plots showing duration, severity, and equivalent intensity  

for all the drought events in the data set. 

We begin by considering only the initial 20-year data as base data and then include 10-year 
increments as update cycles in projections to be used in possible climate change adaptation, 
where the GCS-CCA approach seeks to optimize justified use of only the most recent data. 
The overall input data covers about 120 years (December 1896 to February 2017) and, thus, 
there are 10 predictive performance evaluations of GCS-CCA versus a traditional that ignores 
non-stationary trends. 
 
Figure 15 shows results summarized in terms of the predictive log-likelihood difference ratio, 
𝛿𝐿𝐿(%) =

𝐿𝐿𝑜𝑝𝑡−𝐿𝐿𝑡𝑟𝑎𝑑

|𝐿𝐿𝑡𝑟𝑎𝑑|
× 100 . We can easily see that GCS-CCA generally has better 

performance than traditional CCA with 𝜆 = 150. This result implies that the GCS-identified 
optimal data sub-segments explain near-future drought patterns better than when all of the 
historical observed data are used. Figure 15 also shows GCS-CCA performance with 𝜆 = 100; 
the lower 𝜆 leads to overfitting. Pre-processing of the data and an appropriate regularization 
parameter is recommended for such analyses. 
 



 
Figure 15. Computed predictive log-likelihood difference ratios, 𝛿𝐿𝐿(%) =

𝐿𝐿𝑜𝑝𝑡−𝐿𝐿𝑡𝑟𝑎𝑑

|𝐿𝐿𝑡𝑟𝑎𝑑|
×

100, for the drought patterns data using 𝜆 = 150 (left) and  𝜆 = 100 (right). 
 
5. Conclusions 
 
In this work, we extended Greedy Gaussian segmentation (GGS) developed by Hallac (2019) 
by allowing multivariate Gaussian distributions in the copula definition; we refer to this 
extended approach as greedy copula segmentation (GCS). Our extension is well-suited for 
use with climate data since many climate-related variables are non-Gaussian and non-
stationary. Based on the wide coverage of different dependence structures possible with the 
copula family choice, it is expected that GCS could be used in various applications that involve 
long sequences of multivariate time series data. We have explained GCS, iteration by 
iteration, so as to offer an accessible description of the greedy algorithm. 
 
Using a synthetic data set as well as an observed drought data set, we have shown that GCS 
can optimize future projections for possible use in climate change adaptation. Climate change 
adaptation needs to rationally consider periodic updates of the joint distribution of climate 
variables by focusing on patterns seen in extreme climate events. We introduce the notion of 
considering trends in any climate parameter as best understood by defining a piecewise 
process consisting of several stationary sub-segments to represent the data. In such a 
piecewise stationary representation, the latest (most recent) stationary sub-segment (whose 
length must be iteratively established, using maximum likelihood with regularization) can 
predict most rationally and precisely any near-future patterns in the extreme climate that are 
to be expected. The proposed GCS approach identifies the most informative data sampled 
from the latest stationary sub-segment; it iteratively evaluates the benefit of further 
segmentation on the last segment. By doing so, the algorithm greedily searches for the optimal 
last segment of input data.  
 
We show that the GCS-identified optimal data produce better predictive performance for 
possible climate change adaptation by illustrative examples using a benchmark synthetic data 
set as well as a real 120-year drought-related data set from Austin, Texas.  GCS-CCA shows 
superior predictive performance for the non-stationary benchmark problem. For the real-world 
application, we collect drought index time series data and extract the bivariate drought event 
(duration and severity) data. The GCS-CCA results suggest that the proposed approach can 
rationally uncover changing climate patterns in the time series and can produce accurate near-
future projection for adaptation plans compared to more traditional approaches that seek to 
use long or complete historical data sets. We conclude that GCS-CCA optimizes potential 
climate change adaptation strategies and have provided a detailed algorithm for its 
implementation.  
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