

 208

STUDENTS' COMPUTATIONAL THINKING IN TWO MATHEMATICS BLOCK-BASED
PROGRAMMING ENVIRONMENTS: RESEARCH DURING COVID-19

J. Enrique Hernández-Zavaleta1, Sandra Becker1, Douglas Clark1, Corey Brady2, and Natalie Major3

1. Werklund School of Education - University of Calgary
2. Peabody College - Vanderbilt University

3. Canadian Rockies Public Schools

ABSTRACT

This paper analyzes the computational practices that four 7th and 8th grade
students engaged in when learning geometric transformations in two different
online block-based programming environments. The data sources include video
footage of students’ interviews in Zoom where they shared their screens and
cameras. The findings determined that students utilized in particular,
decomposition and pattern recognition as important computational thinking
practices required for learning in STEM disciplines. The paper also describes the
changes made in how research method, data collection, and analysis configured
opportunities to study computational thinking in remote locations due to the
restrictions brought on by COVID-19. We identified three main challenges in the
transition to online research: (a) recruiting research participants which included
instituting necessary revisions to ethics protocols; (b) rethinking data gathering
and analysis techniques along with interactions with participants in virtual
settings; (c) dealing with glitches associated with technologies and virtual
communication media in just-in-time ways. We conclude that even given the
challenges with researching during COVID-19, there are still opportunities for
rich, robust research in online settings.

Keywords: computational thinking, geometric transformations, block-based programming

INTRODUCTION
 Several scholars have suggested that integrating computational thinking can productively
transform STEM education (Sengupta et al., 2018; Wilensky, Brady, & Horn, 2014). Mathematics is
a subject that shows many disciplinary overlaps with computer sciences (Hoyles and Noss, 2020;
Weintrop, et al., 2015; Wing, 2008). In particular, programming as a practice has a geometric
engagement tradition since Logo’s environment appeared in the 1980’s. Such programming
environments allow for the study of geometric shapes and its transformations in order to create
geometrical meaning as students program the path of a turtle (Edwards, 2009; Papert, 1980).

Although there is a long history of research that has explored the development of students’
understandings about geometric transformations through programming, there has been less work to
date studying the development of students’ computational practices as they learn about geometric
transformations. The primary aim of this presentation is to share the computational practices
demonstrated by 7th and 8th grade students in two computational environments, a video game and
Scratch, in the context of learning about geometric transformations. A secondary aim will be to
describe how COVID-19 restrictions led to a pivot in regards to the research method, data collection
and analysis, and preparation of manuscripts while still configuring opportunities to study
computational thinking in remote locations.

 209

The global pandemic has shuttered public life in many ways, but STEM educators have not
halted their duties as “homeschooling” has become the “new normal.” These settings bring in new
challenges for educators and researchers as they face uncertain environments that demand adaptative
capacity to cover the students’ learning necessities (Manning, 2020). In this respect, STEM education
research can provide suggested strategies and activities that allow students to develop skills in
physically distanced scenarios with in some cases, a lack of accessible communication and access
(Bakker & Wagner, 2020). This paper focuses on addressing these issues by describing some
computational practices grade seven and eight students performed when interacting within a
conceptually integrated videogame and a Scratch activity adapted for learning in a virtual setting.

COMPUTATIONAL THINKING

Extending on Wing’s (2008) elucidation, computational thinking has been broadly defined by
The National Research Council [NRC](2011), as a skill that “everyone, not just computer scientists,
can use to help solve problems, design systems, and understand human behavior. [As such,]
computational thinking is comparable. . . to the mathematical, linguistic, and logical reasoning. . .
taught to all children” (p. 3). According to Sengupta et al. (2018), the core of computational thinking
is found in “abstractions,” that “are generalized computational representations that can be used (i.e.,
applied) in multiple situations or contexts” (p. 355). The notion of computational abstraction in “use”
(Sengupta et al., 2018) is understood as a practice that considers the concepts (e.g., loops and
conditionals) and other practices (e.g., solving-problem, debugging, pattern recognition) of the
computer’s science. For instance, programming underlies the notion of an abstraction of a process
that executes a series of steps and provides an output (solution) to the desired problem (Hoyles &
Noss, 2020; Wing, 2008).

Several investigations have characterized concepts (abstractions) and practices (abstractions
in use) fundamental to computational thinking development (Brennan & Resnick, 2012; Gadanidis,
et al., 2017; Weintrop et al., 2015). For this study we drew on computational practices as suggested
by Hoyles and Noss (2020) as follows:
• Decomposition involves solving a problem by solving a set of smaller problems (Weintrop et al.,

2015; Sinclair & Patterson, 2018).
• Algorithmic thinking is the propensity to see tasks in terms of smaller connected steps (Hoyles

& Noss, 2020).
• Abstraction involves seeing a problem at different levels of details as well as the ways in which

expressions within a situation can point beyond the boundaries of that situation. In other words,
is a process from the experience to the concept (Hoyles & Noss, 1996).

• Pattern Recognition is “seeing a new problem as related to problems previously encountered”
(Hoyles & Noss, 2020).

• Generalization involves the transition from seeing specific cases only as such to seeing specific
cases as generic examples (Hoyles & Noss, 1996).
From our analysis, we noted that the students, though engaging to a greater or lesser extent in all

computational practices, resorted most often to (a) decomposition of the sequences or series of
individual steps or instructions that can be executed by the computer, and (b) pattern recognition in
the form of the loop, a technique utilizing the iterated repetition of a set of instructions over and over
again (Brennan & Resnick, 2012; Sinclair & Patterson, 2018), promoting computational efficiency
(where the code runs the shortest possible script to achieve the most robust action).

Our study also recognizes the social aspects involved in computational thinking. Sengupta et al.
(2018) warn about the fallacy of technocentrism, i.e., questions about technology which reference the
technology itself, leaving aside the individuals who interact with it. Sengupta et al. state that
commonly the learning objectives and the evaluation of computational thinking focus on the

 210

production and improvement of understandings about computational abstractions, instead of focusing
on the role of discourse, corporeal reasoning or aesthetic experiences of people, as phenomenological
aspects of computational thinking. Adding a social vision of computing and mathematics in research
highlights people's productions and their collective experiences. In this way, the uses of the
abstractions will differ from individual to individual, depending on their context and their reason for
use. Therefore, we acknowledge that the development of computational and STEM thinking together
not only relies on conceptual intersections but also on practices and phenomenological aspects.

METHODOLOGY

 This study focused on four student cases learning about transformations in two different
computational environments, a video game and Scratch. Qualitative comparative case study was
selected as methodology because it allowed for inquiry that was exploratory, explanatory, pragmatic,
and phenomenological (Harrison et al, 2017). Given COVID-19, we had to re-envision this research
in an online as opposed to classroom setting. Revisions to the research plan were submitted to the
university ethics board (CHREB) and approved prior to engaging in the online work with students.
Due to limited response to participation requests, authors 1, 2, and 4 worked with four students
individually, each in four separate sessions, two in the game and two in Scratch. Each student brought
a unique background to the research study as indicated in Table 1.

Table 1. Students’ block-based programming and mathematical experience
Student Grade Block-based programming

experience
Mathematics profile

Zach 7 Extensive experience creating games
in Scratch

Previous year’s teacher indicates
average performance in mathematics

Simon 8 No block-based programming
experience

None provided.

Paul 8 No block-based programming
experience

Parent indicates strong
mathematical capability but often
underachieves

Eric 8 No block-based programming
experience, but observed friends

Parent indicates struggle and lack of
confidence in mathematics

The design of Transformation Quest, led by Author 3, draws on conceptual integration and

disciplinary integration as indicated by Clark, Sengupta, et al. (2015) where mathematics and
computational thinking concepts are integrated directly into the mechanics as a central focus for
reward and achievement, rather than being embedded as an activity that appears after completion of
other goals in the game.

In playing the game the students use programming blocks with transformations directives to
position a red right triangle in a Cartesian plane 20x20 sized; The objectives are related to the
collection of magical yellow or blue gems strategically disposed into the cartesian plane, avoiding
static enemies that block gems’ positions and minimizing the number of transformations blocks (e.g.
using the loop block).
 The Scratch activity, Code the Quilts, developed by Author 1, was inspired by the work of
Lehrer et al., (1998) and features the exploration of code sequences used to develop multiple quilt
patterns. In the first session, the students played with the existing code to determine how it led to
emergent quilt patterns. In the second session, the students were encouraged to create their own code,
or use existing code to design a new quilt pattern.

 211

Due to the constraints related to Covid-19, the video footage of student participation was
recorded in a virtual setting (Zoom), where the participants shared their screen with the researchers
during the game play and Scratch activity. Researchers one and two engaged in ongoing dialogue
while the students at this time. Guiding questions helped understand students’ predictions (e.g., What
is your plan? Based on your code, can you tell us where the triangle will map?) and explanations (e.g.,
Can you explain what happened?) It should be noted that when working with student Zach, our first
participant, we were joined by his former teacher (Author 4), who interacted with him as well.

Data analysis of the video footage took place using Nvivo 12 in virtual zoom sessions.
Assigned codes, developed prior to analysis, were utilized to determine student understanding of
computational and mathematical concepts, as well as student implementation of computational and
mathematical practices as evidenced by their discourse, embodied expressions, and coding sequences
in both environments. In addition, researchers observed and noted student comments related to the
game and Scratch experience.

FINDINGS
All four students show evidence of how their prior experiences influenced their

understandings of geometric transformations and computational thinking abstractions, depending on
their individual context and their reason for use. We provide three examples of student computational
and mathematical thinking while engaging in game play and the Scratch activity in an online
environment.

Example 1: Pattern recognition in the service of efficiency

In Scratch (International Scratch Wiki Community, 2020), efficiency is linked to more content
in larger projects within a smaller file size. Following this idea, one problem that makes programming
sequences inefficient is the use of multiple similar scripts (patterns) that can be reduced into one
instruction allowing the program to run faster. In this respect, Zach uses his previous experiences with
Scratch programming:

 A4: Can you just explain more about that loop? Why do you want to repeat it four times?
[Figure 1 right dashed rectangle]

Zach: This, this makes it look more efficient. Because if you did this, you'd have to do
something like this [Figure 1 right]. This is just incredibly inefficient. So that's probably why
you have it there.

Figure 1. Zach’s examples of efficient and inefficient code.

Zach’s left code sequence uses a loop. To explain his understanding of efficiency, Zach shows us a
counterexample to make his point (Figure 1, right). This counterexample shows a repetition pattern
of two instructions that can be synthetized with a repetition block. Zach uses the loop abstraction as
an instantiation for efficiency in relation to pattern recognition in computational thinking practice.

 212

Example 2: Decomposition in Transformation Quest
Paul explores Transformation Quest by screen testing block by block until he solves the

problem. His decomposition practice, using only individual translations, rather than employing
reflections in a pattern is useful for him with no prior programming experience. He explains:

Paul: I will go across to these three [right blue gems], and then down to both these ones

Later he realizes that to finish the level, he needs to apply at least one reflection across the y-
axis, in order to invert the triangle for a successful exit.

Paul: that are reflected on the y-axis to collect this one [blue gem at the left button]. Then we
have this one and then down to the bottom, and then across to here.

Based on his limited experience, Paul does not discern the potential repeating pattern inherent in using
the reflection block, therefore his strategy is to decompose single translation moves in the game, using
inversion as a reflection property only when necessary. That said, Paul constructs an efficient (in
terms of number of blocks used) and pragmatic (in terms of goals achieved) inscription.

Figure 2. Paul’s level 4 solution.

Example 3: Decomposition in Code the Quilts

When asked to create his own quilt, Eric engaged in an aesthetic experience (Sengupta &
Farris, 2016) by modifying the original colors of the quilt and creating a tank shape. In order to
achieve his goal, Eric indicates that simplicity not efficiency, was crucial. Eric built a sequence
reusing the simplest code available (number one) utilizing only the “glide t secs to x y” Scratch block
(Figure 3, left).

Eric: Okay, yeah. Well, since I'm gonna be trying to keep this fairly simple. I think I might
base it off number one.

 213

Figure 3. Student Eric sequence and final tank design

Eric modified this code by using decomposition, testing block by block. Although he articulates an
emphasis on simplicity, his explanation shows he understands the basic functions of the blocks.

Eric: So, point in direction 90 that basically tells the block which way to point. Orient itself.
Go to x and y tells the block where to go. And then switch costumes to quote one gives it the
appearance and stamp closet to stay there.

In this example, Eric was engaged in a personalized programming activity, where his primary focus
was on the construction of the tank shape. By necessity, he oriented the computational practices he
performed to his overall goal. Due to his limited experience in coding, the decomposition practice
was the most affordable way to achieving his goal.
DISCUSSION, COVID-19, AND CONCLUSIONS

In this study, decomposition appears as an intersectional practice of computational and
mathematical thinking. As stated by scholars (Edwards & Zazkis, 1993; Francis & Davis, 2018), not
only is it a powerful problem-solving technique that can be adopted by novice programmers, it is an
experiential-based learning practice that can be used in addition to pattern recognition practice. For
Zach, his experience with pattern recognition and the loop block in the service of efficiency allowed
him to show his transformation geometry understandings using loop abstractions. For Paul and Eric,
their goals in achieving levels in the game and completion of an aesthetic quilt design led them to
utilize decomposition to achieve those ends. The pattern recognition and decomposition practices
exemplified in this study were crucial in the students’ multidisciplinary approach to the development
of thinking required for STEM disciplines. In this respect, the activities in the game and in Scratch,
even though they took place in remote locations, allowed all students to express phenomenological
aspects of computational thinking.

The challenges created by the COVID-19 pandemic, though real, also helped create new
opportunities for us as researchers who turned to online settings as sources of interaction. In
particular, we identified and faced three main challenges: (a) recruiting research participants which
included instituting necessary revisions to ethics protocols; (b) rethinking data gathering and analysis
techniques along with interactions with participants in virtual settings; (c) dealing with glitches
associated with technologies and virtual communication media in just-in-time ways.

This meant we had to be flexible and open to contending with complications as they arose. By
initiating revised ethics permissions from the university ethics review board, we were able to contact
participants through known teacher associates and parents. Given the limited number of volunteers,
however, we had to shift our online sessions to only one student participant at a time. In addition, we

 214

had to ensure students were comfortable in participating with their webcam on, sharing their screen,
and sharing their thinking aloud which allowed researchers to observe and record embodied (e.g.,
body motion and the mouse position on the screen) and verbal data. There were technical
complications that arose during the virtual interviews (e.g., missing data from zoom recordings or
difficulties linking to the online game) which presented implications for thorough data analysis.

Even given the challenges faced in conducting online research however, we were able to engage
in rich learning experiences for both the students and ourselves, as evidenced by Simon and Eric, who
indicated they would like to continue working with us. In this sense, social aspects inherent in these
computational thinking activities may enhance the interactions between participants, researchers, and
teachers in online settings.

We contend that even given the challenges with conducting research during the time of COVID19,
there are still opportunities for rich, robust study in online settings. Though we would have preferred
to conduct research in student pairs with a broader range of participants, we did find that students
drew on their own experiential background to enact computational practices that assisted them in
achieving the goals they set within a game and Scratch environment.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant
No. 1742257. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

REFERENCES
Bakker, A., & Wagner, D. (2020). Pademic: lessons for today and tomorrow? Educational Studies

in Mathematics, 104, 1-4. https://doi.org/10.1007/s10649-020-09946-3
Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development

of computational thinking. American Educational Research Association Meeting, (pp. 1-25).
Vancouver, BC.

Clark, D., Sengupta, P., & Brady, C. (2015). Disciplinary integration of digital games for science
learning. IJ STEM Ed, 2(2). https://doi.org/10.1186/s40594-014-0014-4

Edwards, L. (2009). Transformation geometry from an embodied perpective. In W.-M. Roth (Ed.),
Mathematical Representation At The Interface of Body and Culture (pp. 27-44). Charlotte,
North Carolina, USA: Information Age Publishing Inc.

Edwards, L., & Zazkis, R. (1993). Transformation geometry: Naive ideas and formal embodiments.
Journal of Computers in Mathematics and Science Teaching, 12(2), 121-145.

Francis, K., & Davis, B. (2018). Coding robots as a source of instantiations for arithmetic. Digital
Experiences in Mathematics Education. https://doi.org/10.1007/s40751-018-0042-7

Gadanidis, G., Cendros, R., Floyd, L., & Namukasa, I. (2017). Computational thinking in
mathematics teacher education. Contemporary Issues in Technology and Teacher
Education, 458-477.

Harrison, H., Birks, M., Franklin, R., & Mills, J. (2017, January). Case study research: Foundations
and methodological orientations. Forum Qualitative Sozialforschung/Forum: Qualitative
Social Research, 18(1).

Hoyles, C., & Noss, R. (2020, June 19). Online seminar series on programming in mathematics
education. (C. Bateau, & G. Gadanidis, Eds.) Retrieved November 19, 2020, from
Mathematics Knowledge Network: http://mkn-rcm.ca/online-seminar-series-on-
programming-in-mathematics-education/

International Scratch Wiki Community. (2020, November 11). Scratch wiki. Retrieved from
Efficient programming: https://en.scratch-wiki.info/wiki/Efficient_Programming

 215

Lehrer, R., Jenkins, M., & Osana, H. (1998). Longitudinal study of children’s reasoning about
space and geometry. In R. Lehrer, & D. Chazan (Eds.), Designing learning environments for
developing understanding of geometry and space (pp. 137-167). Mahwah, NJ: Lawrence
Erlbaum Associates.

Manning, A. (2020, June 15). How teachers are adapting to COVID-19 disruptions is subject of
new study. Retrieved from Phys.org: https://phys.org/news/2020-06-teachers-covid-
disruptionssubject.html?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Phys.o
rg_TrendMD_1

National Research Council. (2011). Report of a Workshop on the Pedagogical Aspects of
Computational Thinking. Washington, DC: The National Academies Press.
https://doi.org/10.17226/13170

Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: learning cultures and
computers. London: Kluwer academic publishers.

Papert, S. (1980). Mindstorms, children, computers, and powerful ideas. USA: Basic Books, Inc.
Sengupta, P., Dickes, A., & Farris, A. (2018). Toward a phenomenology of computational thinking

in STEM education. In M. Khine (Ed.), Computational Thinking in the STEM Disciplines
(pp. 49-72). Springer, Cham. https://doi.org/10.1007/978-3-319-93566-9_4

Sinclair, N., & Patterson, M. (2018). The dynamic geometrisation of computer programming.
Mathematical Thinking and Learning, 54-74.
https://doi.org/10.1080/10986065.2018.1403541

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2015).
Defining computational thinking for mathematics and science classrooms. Journal of
Science Education and Technology, 25(1), 127-147. https://doi.org/10.1007/s10956-015-
9581-5

Wilensky, U., Corey, B., & Horn, M. (2014). Fostering computational literacy in science
classrooms. Communications of the ACM, 57(8), 24-28.

Wing, J. (2008). Computational thinking and thinking about computing. Phil. Trans. R. Soc. A,
3717-3725. https://doi.org/10.1098/rsta.2008.0118

View publication statsView publication stats

https://www.researchgate.net/publication/354774345

