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ABSTRACT  
 

This paper analyzes the computational practices that four 7th and 8th grade 
students engaged in when learning geometric transformations in two different 
online block-based programming environments. The data sources include video 
footage of students’ interviews in Zoom where they shared their screens and 
cameras. The findings determined that students utilized in particular, 
decomposition and pattern recognition as important computational thinking 
practices required for learning in STEM disciplines. The paper also describes the 
changes made in how research method, data collection, and analysis configured 
opportunities to study computational thinking in remote locations due to the 
restrictions brought on by COVID-19. We identified three main challenges in the 
transition to online research: (a) recruiting research participants which included 
instituting necessary revisions to ethics protocols; (b) rethinking data gathering 
and analysis techniques along with interactions with participants in virtual 
settings; (c) dealing with glitches associated with technologies and virtual 
communication media in just-in-time ways. We conclude that even given the 
challenges with researching during COVID-19, there are still opportunities for 
rich, robust research in online settings.  
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INTRODUCTION  
  Several scholars have suggested that integrating computational thinking can productively 
transform STEM education (Sengupta et al., 2018; Wilensky, Brady, & Horn, 2014). Mathematics is 
a subject that shows many disciplinary overlaps with computer sciences (Hoyles and Noss, 2020; 
Weintrop, et al., 2015; Wing, 2008). In particular, programming as a practice has a geometric 
engagement tradition since Logo’s environment appeared in the 1980’s. Such programming 
environments allow for the study of geometric shapes and its transformations in order to create 
geometrical meaning as students program the path of a turtle (Edwards, 2009; Papert, 1980).   

Although there is a long history of research that has explored the development of students’ 
understandings about geometric transformations through programming, there has been less work to 
date studying the development of students’ computational practices as they learn about geometric 
transformations. The primary aim of this presentation is to share the computational practices 
demonstrated by 7th and 8th grade students in two computational environments, a video game and 
Scratch, in the context of learning about geometric transformations. A secondary aim will be to 
describe how COVID-19 restrictions led to a pivot in regards to the research method, data collection 
and analysis, and preparation of manuscripts while still configuring opportunities to study 
computational thinking in remote locations.  
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The global pandemic has shuttered public life in many ways, but STEM educators have not 
halted their duties as “homeschooling” has become the “new normal.” These settings bring in new 
challenges for educators and researchers as they face uncertain environments that demand adaptative 
capacity to cover the students’ learning necessities (Manning, 2020). In this respect, STEM education 
research can provide suggested strategies and activities that allow students to develop skills in 
physically distanced scenarios with in some cases, a lack of accessible communication and access 
(Bakker & Wagner, 2020). This paper focuses on addressing these issues by describing some 
computational practices grade seven and eight students performed when interacting within a 
conceptually integrated videogame and a Scratch activity adapted for learning in a virtual setting.    

COMPUTATIONAL THINKING  

Extending on Wing’s (2008) elucidation, computational thinking has been broadly defined by 
The National Research Council [NRC](2011), as a skill that “everyone, not just computer scientists, 
can use to help solve problems, design systems, and understand human behavior. [As such,] 
computational thinking is comparable. . . to the mathematical, linguistic, and logical reasoning. . . 
taught to all children” (p. 3). According to Sengupta et al. (2018), the core of computational thinking 
is found in “abstractions,” that “are generalized computational representations that can be used (i.e., 
applied) in multiple situations or contexts” (p. 355). The notion of computational abstraction in “use” 
(Sengupta et al., 2018) is understood as a practice that considers the concepts (e.g., loops and 
conditionals) and other practices (e.g., solving-problem, debugging, pattern recognition) of the 
computer’s science. For instance, programming underlies the notion of an abstraction of a process 
that executes a series of steps and provides an output (solution) to the desired problem (Hoyles & 
Noss, 2020; Wing, 2008).  

Several investigations have characterized concepts (abstractions) and practices (abstractions 
in use) fundamental to computational thinking development (Brennan & Resnick, 2012; Gadanidis, 
et al., 2017; Weintrop et al., 2015). For this study we drew on computational practices as suggested 
by Hoyles and Noss (2020) as follows:   
• Decomposition involves solving a problem by solving a set of smaller problems (Weintrop et al., 

2015; Sinclair & Patterson, 2018).   
• Algorithmic thinking is the propensity to see tasks in terms of smaller connected steps (Hoyles 

& Noss, 2020).   
• Abstraction involves seeing a problem at different levels of details as well as the ways in which 

expressions within a situation can point beyond the boundaries of that situation. In other words, 
is a process from the experience to the concept (Hoyles & Noss, 1996).   

• Pattern Recognition is “seeing a new problem as related to problems previously encountered” 
(Hoyles & Noss, 2020).  

• Generalization involves the transition from seeing specific cases only as such to seeing specific 
cases as generic examples (Hoyles & Noss, 1996).  
From our analysis, we noted that the students, though engaging to a greater or lesser extent in all 

computational practices, resorted most often to (a) decomposition of the sequences or series of 
individual steps or instructions that can be executed by the computer, and (b) pattern recognition in 
the form of the loop, a technique utilizing the iterated repetition of a set of instructions over and over 
again (Brennan & Resnick, 2012; Sinclair & Patterson, 2018), promoting computational efficiency 
(where the code runs the shortest possible script to achieve the most robust action).  

Our study also recognizes the social aspects involved in computational thinking. Sengupta et al. 
(2018) warn about the fallacy of technocentrism, i.e., questions about technology which reference the 
technology itself, leaving aside the individuals who interact with it. Sengupta et al. state that 
commonly the learning objectives and the evaluation of computational thinking focus on the 
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production and improvement of understandings about computational abstractions, instead of focusing 
on the role of discourse, corporeal reasoning or aesthetic experiences of people, as phenomenological 
aspects of computational thinking. Adding a social vision of computing and mathematics in research 
highlights people's productions and their collective experiences. In this way, the uses of the 
abstractions will differ from individual to individual, depending on their context and their reason for 
use. Therefore, we acknowledge that the development of computational and STEM thinking together 
not only relies on conceptual intersections but also on practices and phenomenological aspects.  

METHODOLOGY  

  This study focused on four student cases learning about transformations in two different 
computational environments, a video game and Scratch. Qualitative comparative case study was 
selected as methodology because it allowed for inquiry that was exploratory, explanatory, pragmatic, 
and phenomenological (Harrison et al, 2017). Given COVID-19, we had to re-envision this research 
in an online as opposed to classroom setting. Revisions to the research plan were submitted to the 
university ethics board (CHREB) and approved prior to engaging in the online work with students. 
Due to limited response to participation requests, authors 1, 2, and 4 worked with four students 
individually, each in four separate sessions, two in the game and two in Scratch. Each student brought 
a unique background to the research study as indicated in Table 1.  

 

Table 1. Students’ block-based programming and mathematical experience  
Student  Grade  Block-based programming 

experience  
Mathematics profile   

Zach  7  Extensive experience creating games 
in Scratch  

Previous year’s teacher indicates 
average performance in mathematics  

Simon  8  No block-based programming 
experience  

None provided.  

Paul  8  No block-based programming 
experience   

Parent indicates strong 
mathematical capability but often 
underachieves  

Eric  8  No block-based programming 
experience, but observed friends  

Parent indicates struggle and lack of 
confidence in mathematics  

   
The design of Transformation Quest, led by Author 3, draws on conceptual integration and 

disciplinary integration as indicated by Clark, Sengupta, et al. (2015) where mathematics and 
computational thinking concepts are integrated directly into the mechanics as a central focus for 
reward and achievement, rather than being embedded as an activity that appears after completion of 
other goals in the game.   

In playing the game the students use programming blocks with transformations directives to 
position a red right triangle in a Cartesian plane 20x20 sized; The objectives are related to the 
collection of magical yellow or blue gems strategically disposed into the cartesian plane, avoiding 
static enemies that block gems’ positions and minimizing the number of transformations blocks (e.g. 
using the loop block).   
  The Scratch activity, Code the Quilts, developed by Author 1, was inspired by the work of 
Lehrer et al., (1998) and features the exploration of code sequences used to develop multiple quilt 
patterns. In the first session, the students played with the existing code to determine how it led to 
emergent quilt patterns. In the second session, the students were encouraged to create their own code, 
or use existing code to design a new quilt pattern.   
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Due to the constraints related to Covid-19, the video footage of student participation was 
recorded in a virtual setting (Zoom), where the participants shared their screen with the researchers 
during the game play and Scratch activity. Researchers one and two engaged in ongoing dialogue 
while the students at this time. Guiding questions helped understand students’ predictions (e.g., What 
is your plan? Based on your code, can you tell us where the triangle will map?) and explanations (e.g., 
Can you explain what happened?) It should be noted that when working with student Zach, our first 
participant, we were joined by his former teacher (Author 4), who interacted with him as well.       

Data analysis of the video footage took place using Nvivo 12 in virtual zoom sessions. 
Assigned codes, developed prior to analysis, were utilized to determine student understanding of 
computational and mathematical concepts, as well as student implementation of computational and 
mathematical practices as evidenced by their discourse, embodied expressions, and coding sequences 
in both environments. In addition, researchers observed and noted student comments related to the 
game and Scratch experience.   

FINDINGS  
All four students show evidence of how their prior experiences influenced their 

understandings of geometric transformations and computational thinking abstractions, depending on 
their individual context and their reason for use. We provide three examples of student computational 
and mathematical thinking while engaging in game play and the Scratch activity in an online 
environment.  

Example 1: Pattern recognition in the service of efficiency  

In Scratch (International Scratch Wiki Community, 2020), efficiency is linked to more content 
in larger projects within a smaller file size. Following this idea, one problem that makes programming 
sequences inefficient is the use of multiple similar scripts (patterns) that can be reduced into one 
instruction allowing the program to run faster. In this respect, Zach uses his previous experiences with 
Scratch programming:  

 A4: Can you just explain more about that loop? Why do you want to repeat it four times? 
[Figure 1 right dashed rectangle]  

Zach: This, this makes it look more efficient. Because if you did this, you'd have to do 
something like this [Figure 1 right]. This is just incredibly inefficient. So that's probably why 
you have it there.  

  
Figure 1. Zach’s examples of efficient and inefficient code.  

Zach’s left code sequence uses a loop. To explain his understanding of efficiency, Zach shows us a 
counterexample to make his point (Figure 1, right). This counterexample shows a repetition pattern 
of two instructions that can be synthetized with a repetition block. Zach uses the loop abstraction as 
an instantiation for efficiency in relation to pattern recognition in computational thinking practice.    
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Example 2: Decomposition in Transformation Quest  
Paul explores Transformation Quest by screen testing block by block until he solves the 

problem. His decomposition practice, using only individual translations, rather than employing 
reflections in a pattern is useful for him with no prior programming experience. He explains:   

Paul: I will go across to these three [right blue gems], and then down to both these ones  

Later he realizes that to finish the level, he needs to apply at least one reflection across the y-
axis, in order to invert the triangle for a successful exit.   

Paul: that are reflected on the y-axis to collect this one [blue gem at the left button]. Then we 
have this one and then down to the bottom, and then across to here.  

Based on his limited experience, Paul does not discern the potential repeating pattern inherent in using 
the reflection block, therefore his strategy is to decompose single translation moves in the game, using 
inversion as a reflection property only when necessary. That said, Paul constructs an efficient (in 
terms of number of blocks used) and pragmatic (in terms of goals achieved) inscription.   

  

  
Figure 2. Paul’s level 4 solution.  

Example 3: Decomposition in Code the Quilts  

When asked to create his own quilt, Eric engaged in an aesthetic experience (Sengupta & 
Farris, 2016) by modifying the original colors of the quilt and creating a tank shape. In order to 
achieve his goal, Eric indicates that simplicity not efficiency, was crucial. Eric built a sequence 
reusing the simplest code available (number one) utilizing only the “glide t secs to x y” Scratch block 
(Figure 3, left).   

Eric: Okay, yeah. Well, since I'm gonna be trying to keep this fairly simple. I think I might 
base it off number one.   
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Figure 3.  Student Eric sequence and final tank design  

Eric modified this code by using decomposition, testing block by block. Although he articulates an 
emphasis on simplicity, his explanation shows he understands the basic functions of the blocks.   

Eric: So, point in direction 90 that basically tells the block which way to point. Orient itself. 
Go to x and y tells the block where to go. And then switch costumes to quote one gives it the 
appearance and stamp closet to stay there.  

In this example, Eric was engaged in a personalized programming activity, where his primary focus 
was on the construction of the tank shape. By necessity, he oriented the computational practices he 
performed to his overall goal. Due to his limited experience in coding, the decomposition practice 
was the most affordable way to achieving his goal.   
DISCUSSION, COVID-19, AND CONCLUSIONS  

In this study, decomposition appears as an intersectional practice of computational and 
mathematical thinking. As stated by scholars (Edwards & Zazkis, 1993; Francis & Davis, 2018), not 
only is it a powerful problem-solving technique that can be adopted by novice programmers, it is an 
experiential-based learning practice that can be used in addition to pattern recognition practice. For 
Zach, his experience with pattern recognition and the loop block in the service of efficiency allowed 
him to show his transformation geometry understandings using loop abstractions. For Paul and Eric, 
their goals in achieving levels in the game and completion of an aesthetic quilt design led them to 
utilize decomposition to achieve those ends. The pattern recognition and decomposition practices 
exemplified in this study were crucial in the students’ multidisciplinary approach to the development 
of thinking required for STEM disciplines. In this respect, the activities in the game and in Scratch, 
even though they took place in remote locations, allowed all students to express phenomenological 
aspects of computational thinking.   

The challenges created by the COVID-19 pandemic, though real, also helped create new 
opportunities for us as researchers who turned to online settings as sources of interaction. In 
particular, we identified and faced three main challenges: (a) recruiting research participants which 
included instituting necessary revisions to ethics protocols; (b) rethinking data gathering and analysis 
techniques along with interactions with participants in virtual settings; (c) dealing with glitches 
associated with technologies and virtual communication media in just-in-time ways.       

This meant we had to be flexible and open to contending with complications as they arose. By 
initiating revised ethics permissions from the university ethics review board, we were able to contact 
participants through known teacher associates and parents. Given the limited number of volunteers, 
however, we had to shift our online sessions to only one student participant at a time.  In addition, we 
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had to ensure students were comfortable in participating with their webcam on, sharing their screen, 
and sharing their thinking aloud which allowed researchers to observe and record embodied (e.g., 
body motion and the mouse position on the screen) and verbal data. There were technical 
complications that arose during the virtual interviews (e.g., missing data from zoom recordings or 
difficulties linking to the online game) which presented implications for thorough data analysis.  

Even given the challenges faced in conducting online research however, we were able to engage 
in rich learning experiences for both the students and ourselves, as evidenced by Simon and Eric, who 
indicated they would like to continue working with us. In this sense, social aspects inherent in these 
computational thinking activities may enhance the interactions between participants, researchers, and 
teachers in online settings.   

We contend that even given the challenges with conducting research during the time of COVID19, 
there are still opportunities for rich, robust study in online settings. Though we would have preferred 
to conduct research in student pairs with a broader range of participants, we did find that students 
drew on their own experiential background to enact computational practices that assisted them in 
achieving the goals they set within a game and Scratch environment.    
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