
Calibrating Predictions to Decisions: A Novel

Approach to Multi-Class Calibration

Shengjia Zhao
Stanford University

sjzhao@stanford.edu

Michael P. Kim
UC Berkeley

mpkim@berkeley.edu

Roshni Sahoo
Stanford University

rsahoo@stanford.edu

Tengyu Ma
Stanford University

tengyuma@stanford.edu

Stefano Ermon
Stanford University

ermon@stanford.edu

Abstract

When facing uncertainty, decision-makers want predictions they can trust. A ma-
chine learning provider can convey confidence to decision-makers by guaranteeing
their predictions are distribution calibrated — amongst the inputs that receive a
predicted class probabilities vector q, the actual distribution over classes is q. For
multi-class prediction problems, however, achieving distribution calibration tends
to be infeasible, requiring sample complexity exponential in the number of classes
C. In this work, we introduce a new notion—decision calibration—that requires
the predicted distribution and true distribution to be “indistinguishable” to a set
of downstream decision-makers. When all possible decision makers are under
consideration, decision calibration is the same as distribution calibration. However,
when we only consider decision makers choosing between a bounded number of
actions (e.g. polynomial in C), our main result shows that decisions calibration
becomes feasible — we design a recalibration algorithm that requires sample com-
plexity polynomial in the number of actions and the number of classes. We validate
our recalibration algorithm empirically: compared to existing methods, decision
calibration improves decision-making on skin lesion and ImageNet classification
with modern neural network predictors.

1 Introduction

Machine learning predictions are increasingly employed by downstream decision makers who have
little or no visibility on how the models were designed and trained. In high-stakes settings, such as
healthcare applications, decision makers want predictions they can trust. For example in healthcare,
suppose a machine learning service offers a supervised learning model to healthcare providers that
claims to predict the probability of various skin diseases, given an image of a lesion. Each healthcare
provider want assurance that the model’s predictions lead to beneficial decisions, according to their
own loss functions. As a result, the healthcare providers may reasonably worry that the model was
trained using a loss function different than their own. This mismatch is often inevitable because the
ML service may provide the same prediction model to many healthcare providers, which may have
different treatment options available and loss functions. Even the same healthcare provider could
have different loss functions throughout time, due to changes in treatment availability.

If predicted probabilities perfectly equal the true probability of the event, this issue of trust would
not arise because they would lead to optimal decision making regardless of the loss function or
task considered by downstream decision makers. In practice, however, predicted probabilities are
never perfect. To address this, the healthcare providers may insist that the prediction function be

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

distribution calibrated, requiring that amongst the inputs that receive predicted class probability
vectors q, the actual distribution over classes is q. This solves the trust issue because among the
patients who receive prediction q, the healthcare providers knows that the true label distribution is q,
and hence knows the true expected loss of a treatment on these patients. Unfortunately, to achieve
distribution calibration, we need to reason about the set of individuals x who receive prediction q, for
every possible predicted q. As the number of distinct predictions may naturally grow exponentially
in the number of classes C, the amount of data needed to accurately certify distribution calibration
tends to be prohibitive. Due to this statistical barrier, most work on calibrated multi-class predictions
focuses on obtaining relaxed variants of calibration. These include confidence calibration (Guo et al.,
2017), which calibrates predictions only over the most likely class, and classwise calibration (Kull
et al., 2019), which calibrates predictions for each class marginally. While feasible, these notions are
significantly weaker than distribution calibration and do not address the trust issue highlighted above.
Is there a calibration notion that addresses the issue of trust, but can also be verified and achieved
efficiently? Our paper answers this question affirmatively.

Our Contributions. We introduce a new notion of calibration—decision calibration—where we
take the perspective of potential decision-makers: the only differences in predictions that matter
are those that could lead to different decisions. Inspired by Dwork et al. (2021), we formalize this
intuition by requiring that predictions are “indistinguishable” from the true outcomes, according to a
collection of decision-makers.

First, we show that prior notions of calibration can be characterized as special cases of decision
calibration under different collections of decision-makers. This framing explains the strengths
and weakness of existing notions of calibration, and clarifies the guarantees they offer to decision
makers. For example, we show that a predictor is distribution calibrated if and only if it is decision
calibrated with respect to all loss functions and decision rules. This characterization demonstrates why
distribution calibration is so challenging: achieving distribution calibration requires simultaneously
reasoning about all possible decision tasks.

The set of all decision rules include those that choose between exponentially (in number of classes
C) many actions. In practice, however, decision-makers typically choose from a bounded (or slowly-
growing as a function of C) set of actions. Our main contribution is an algorithm that guarantees
decision calibration for such more realistic decision-makers. In particular, we give a sample-efficient
algorithm that takes a pre-trained predictor and post-processes it to achieve decision calibration
with respect to all decision-makers choosing from a bounded set of actions. Our recalibration
procedure does not harm other common performance metrics, and actually improves accuracy and
likelihood of the predictions. In fact, we argue formally that, in the setting of bounded actions,
optimizing for decision calibration recovers many of the benefits of distribution calibration, while
drastically improving the sample complexity. Empirically, we use our algorithm to recalibrate deep
network predictors on two large scale datasets: skin lesion classification (HAM10000) and Imagenet.
Our recalibration algorithm improves decision making, and allow for more accurate decision loss
estimation compared to existing recalibration methods even under distribution shift.

2 Background

2.1 Setup and Notation

We consider the prediction problem with random variables X and Y , where X ∈ X de-
notes the input features, and Y ∈ Y denotes the label. We focus on classification where
Y = {(1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, 0, · · · , 1)} where each y ∈ Y is a one-hot vector with
C ∈ N classes. 1 A probability prediction function is a map p̂ : X → ∆C where ∆C is the
C-dimensional simplex. We define the support of p̂ as the set of distributions it could predict,
i.e. {p̂(x)|x ∈ X}. We use p∗ : X → ∆C to denote the true conditional probability vector, i.e.
p∗(x) = E[Y | X = x] ∈ ∆C , and for all c ∈ [C], each coordinate gives the probability of the class
p∗(x)c = Pr[Yc | X = x].

1We can also equivalently define Y = {1, 2, · · · , C}, here we denote y by a one-hot vector for notation
convenience when taking expectations.

2

2.2 Decision-Making Tasks and Loss Functions

We formalize a decision-making task as a loss minimization problem. The decision-maker has
some set of available actions A and a loss function ℓ : Y × A → R. In this paper we assume
the loss function does not directly depend on the input features X . For notational simplicity we
often refer to a (action set, loss function) pair (A, ℓ) only by the loss function ℓ: the set of actions
A is implicitly defined by the domain of ℓ. We denote the set of all possible loss functions as
Lall = {ℓ|∀ set A and function ℓ : Y ×A → R}.

We treat all action sets A with the same cardinality as the same set — they are equivalent up to
renaming the actions. A convenient way to think about this is that we only consider actions sets
A ∈ {[1], [2], · · · , [K], · · · ,N,R} where [K] = {1, · · · ,K}.

2.3 Bayes Decision-Making

Given some predicted probability p̂(X) on Y , a decision-maker selects an action in A. We assume that
the decision-maker selects the action based on the predicted probability. That is, we define a decision
function as any map from the predicted probability to an action δ : ∆C → A. and denote by ∆all as the
set of all decision functions with any set of actions ∆all = {δ | ∀ set A and function δ : ∆C → A}.

Typically a decision-maker selects the action that minimizes the expected loss (under the predicted
probability). This strategy is formalized by the following definition of Bayes decision-making.

Definition 1 (Bayes Decision). Choose any ℓ ∈ Lall with corresponding action set A and prediction

p̂, define the Bayes decision function as δℓ(p̂(x)) = arg infa∈A EŶ∼p̂(x)[ℓ(Ŷ , a)]. For any subset

L ⊂ Lall denote the set of all Bayes decision functions as ∆L := {δℓ | ∀ℓ ∈ L}.

3 Calibration: A Decision-Making Perspective

In our setup, the decision-maker outsources the prediction task to a third-party forecaster, which
returns a prediction function p̂ (e.g., an ML Prediction API). The decision maker will use p̂ and a loss
function ℓ to make decisions. However, the forecaster does not necessarily know the loss function ℓ
in advance, and in more challenging cases, needs to serve multiple decision-makers with different
loss functions. For example, the prediction function may be trained to optimize a standard objective
such as L2 error or log likelihood, then sold to decision-makers as an off-the-shelf solution.

In such a setting, the decision makers may be concerned that the off-the-shelf solution may not perform
well according to their loss function. If the forecaster could predict optimally (i.e. p̂(X) = p∗(X)
almost surely), then there would be no issue of trust; of course, perfect predictions are usually
impossible, so the forecaster needs feasible ways of conveying trust to the decision makers. To
mitigate concerns about the performance of the prediction function, the forecaster might aim to offer
performance guarantees applicable to decision makers whose loss functions come from class of losses
L ⊂ Lall.

3.1 Decision Calibration

First and foremost, a decision maker wants assurance that the Bayes decision rule δℓ with p̂ gives
low expected loss. Second, the decision maker wants to know how much loss is going to be incurred
(before the actions are deployed and outcomes are revealed); the decision maker does not want to
incur any additional loss in surprise that she has not prepared for.

To capture these desiderata we formalize a definition based on the following intuition: suppose a
decision maker with some loss function ℓ considers a decision rule δ ∈ ∆all (that may or may not be
the Bayes decision rule), the decision maker should be able to correctly compute the expected loss of
using δ to make decisions, as a function of the predictions p̂.

Definition 2 (Decision Calibration). For a set of loss functions L ⊂ Lall and a set of decision rules
∆ ⊂ ∆all, we say that a prediction p̂ is (L;∆)-decision calibrated (with respect to p∗) if ∀ℓ ∈ L and
δ ∈ ∆ with the same action space A 2, the computed loss (based on p̂) of δ is the same as the actual

2We require ℓ and δ to have the same action space A for type check reasons. Eq.(2) only has meaning if the
loss ℓ and decision rule δ are associated with the same action space A.

3

loss, i.e.

EXEŶ∼p̂(X)[ℓ(Ŷ , δ(p̂(X)))] = EXEY∼p∗(X)[ℓ(Y, δ(p̂(X)))] (1)

In particular, we say p̂ is L-decision calibrated if it is (L;∆L)-decision calibrated, where ∆L is the
set of all Bayes decision rules for loss functions in L.

The left hand side of Eq.(2) is the “simulated” loss where the outcome Ŷ is hypothetically drawn
from the predicted distribution. The decision maker can compute this just by knowing the input
features X and without knowing the outcome Y . The right hand side of Eq.(2) is the true loss that
the decision maker incurs in reality if she uses the decision rule δ. Intuitively, the definition captures
the idea that the losses in L and decision rules in ∆ do not distinguish between outcomes sampled
according to the predicted probability and the true probability; specifically, the definition can be
viewed as an instantiation of the framework of Outcome Indistinguishability (Dwork et al., 2021).

As a cautionary remark, Eq.(2) should not be mis-interpreted as guarantees about individual decisions;
Eq.(2) only looks at the average loss when X,Y is a random draw from the population. Individual
guarantees are usually impossible without tools beyond machine learning (Zhao & Ermon, 2021). In
addition, Definition 2 does not consider decision rules that can directly depend on X , as δ ∈ ∆all only
depends on X via the predicted probability p̂(X). Studying decision rules that can directly depend
on X require tools such as multicalibration (Hébert-Johnson et al., 2018) which are beyond the scope
of this paper (see related work).

In Definition 2 we also define the special notion of L-decision calibrated because given a set of
loss functions L, we are often only interested in the associated Bayes decision rules ∆L, i.e. the set
of decision rules that are optimal under some loss function. For the rest of the paper we focus on
L-decision calibration for simplicity. L-decision calibration can capture the desiderata we discussed
above formalized in the following proposition.

Proposition 1. If a prediction function p̂ is L-decision calibrated, then it satisfies ∀δ′ ∈ ∆L

EXEY∼p∗(X)[ℓ(Y, δℓ(p̂(X)))] ≤ EXEY∼p∗(X)[ℓ(Y, δ
′(p̂(X)))] (Bayes Decision Optimality)

EXEŶ∼p̂(X)[ℓ(Ŷ , δℓ(p̂(X)))] = EXEY∼p∗(X)[ℓ(Y, δℓ(p̂(X)))] (Accurate loss estimation)

Bayes Decision Optimality states that the Bayes decision rule δℓ is not worse than any alternative
decision rule δ′ ∈ ∆L. In other words, the decision maker is incentivized to take optimal actions
according to their true loss function. That is, using the predictions given by p̂, the decision maker
cannot improve their actions by using a decision rule δ′ that arises from a different loss function
ℓ′ ∈ L.

Accurate loss estimation states that for the Bayes decision rule δℓ, the simulated loss on the left
hand side (which the decision maker can compute before the outcomes are revealed) equals the true
loss on the right hand side. This ensures that the decision maker knows the expected loss that will be
incurred over the distribution of individuals and can prepare for it. This is important because in most
prediction tasks, the labels Y are revealed with a significant delay or never revealed. For example,
the hospital might be unable to follow up on the true outcome of all of its patients.

In practice, the forecaster chooses some set L to achieve L-decision calibration, and advertise it to
decision makers. A decision makers can then check whether their loss function ℓ belongs to the
advertised set L. If it does, the decision maker should be confident that the Bayes decision rule δℓ has
low loss compared to alternatives in ∆L, and they can know in advance the loss that will be incurred.

3.2 Decision Calibration Generalizes Existing Notions of Calibration

We show that by varying the choice of loss class L, decision calibration can actually express prior
notions of calibration. For example, consider confidence calibration, where among the samples whose
the top probability is β, the top accuracy is indeed β. Formally, confidence calibration requires that

Pr[Y = argmax p̂(X) | max p̂(X) = β] = β.

We show that a prediction function p̂ is confidence calibrated if and only if it is Lr-decision calibration,
where Lr is defined by

Lr := {ℓ(y, a) = I(y 6= a ∧ a 6= ⊥) + β · I(a = ⊥) | a ∈ Y ∪ {⊥}, ∀β ∈ [0, 1]}

4

Existing Calibration Definitions Associated Loss Functions

Confidence Calibration (Guo et al., 2017)
Pr[Y = argmax p̂(X) | max p̂(X) = β] = β
∀β ∈ [0, 1]

Lr := {ℓ(y, a;β) | ∀β ∈ [0, 1]}
where ℓ(y, a;β) := I(y 6= a ∧ a 6= ⊥) + β · I(a = ⊥)

a ∈ Y ∪ {⊥}
Classwise Calibration (Kull et al., 2019)
E[Yc | p̂c(X) = β] = β, ∀c ∈ [C], ∀β ∈ [0, 1]

Lcr := {ℓc(y, a;β1, β2, c) | ∀β1, β2 ∈ R, c ∈ [C]}
where ℓ(y, a;β1, β2, c) := I(a = ⊥) + β1 · I(y = c ∧ a = T)

+β2 · I(y 6= c ∧ a = F), a ∈ {T, F,⊥}
Distribution Calibration (Kull & Flach, 2015)

E[Y | p̂(X) = q] = q, ∀q ∈ ∆C Lall = {ℓ|∀ set A and function ℓ : Y ×A → R}

Table 1: A prediction function p̂ satisfies the calibration definitions on the left if and only if it satisfies
L-decision calibration for the loss function families on the right (Theorem 1).

Intuitively, loss functions in Lr corresponds to the refrained prediction task: a decision maker chooses
between reporting a class label, or reporting “I don’t know,” denoted ⊥. She incurs a loss of 0 for
correctly predicting the label y, a loss of 1 for reporting an incorrect class label, and a loss of β < 1
for reporting “I don’t know”. If a decision maker’s loss function belong to this simple class of losses
Lr, he or she can use a confidence calibrated prediction function p̂, because the two desiderata (Bayes
decision optimality and accurate loss estimation) in Proposition 1 are true for the decision maker.
However, such “refrained prediction“ decision tasks only account for a tiny subset of all possible
tasks that are interesting to decision makers. Similarly, classwise calibration can be characterized
through decision calibration using a class of loss functions that penalizes class-specific false positives
and negatives.

In this way, decision calibration clarifies the implications of existing notions of calibration on decision
making: relaxed notions of calibration correspond to decision calibration over restricted classes of
losses. In general, decision calibration provides a unified view of most existing notions of calibration
as the following theorem shows.

Theorem 1. [Decision Calibration Generalizes Existing Notions] For any true distribution p∗, and
for the loss function sets Lr,Lcr defined in Table 1, a prediction function p̂ is

• confidence calibrated iff it is Lr-decision calibrated.

• classwise calibrated iff it is Lcr-decision calibrated.

• distribution calibrated iff it is Lall-decision calibrated.

For proof of this theorem see Appendix C. In Table 1, confidence and classwise calibration are weak
notions of calibration; correspondingly the loss function families Lr and Lcr are also very restricted.

On the other hand, distribution calibration (i.e. E[Y | p̂(X) = q] = q, ∀q ∈ ∆C) is equivalent to
Lall-decision calibration. This means that a distribution calibrated predictor guarantees the Bayes
decision optimality and accurate loss estimation properties as in Proposition 1 to a decision maker
holding any loss functions. Unfortunately, distribution calibration is very challenging to verify or
achieve. To understand the challenges, consider certifying whether a given predictor p̂ is distribution
calibrated. Because we need to reason about the conditional distribution E[Y | p̂(X) = q] for every
q that p̂ can predict (i.e. the support of p̂), the necessary sample complexity grows linearly in the
support of p̂. Of course, for a trivial predictors that map all inputs x to the same prediction q0 (i.e.
p̂(x) = q0, ∀x ∈ X) distribution calibration is easy to certify (Widmann et al., 2019), but such
predictors have no practical use.

Our characterization of distribution calibration further sheds light on why it is so difficult to achieve.
Lall consists of all loss function, including all loss functions ℓ : Y × A → R whose action space
A contains exponentially many elements (e.g. |A| = 2C). The corresponding decision rules
δ ∈ ∆Lall

: ∆C → A may also map ∆C to exponentially many possible values. Enforcing
Definition 2 for such complex loss functions and decision rules is naturally difficult.

3.3 Decision Calibration over Bounded Action Space

In many contexts, directly optimizing for distribution calibration may be overkill. In particular,
in most realistic settings, decision makers tend to have a bounded number of possible actions, so
the relevant losses come from LK for reasonable K ∈ N. Thus, we consider obtaining decision
calibration for all loss functions defined over a bounded number of actions K. In the remainder of the

5

paper, we focus on this restriction of decision calibration to the class of losses with bounded action
space; we reiterate the definition of decision calibration for the special case of LK .

Definition 3 (LK-Decision Calibration). Let LK be the set of all loss functions with K actions
LK = {ℓ | ∀A, |A| = K, ∀ℓ : Y × A → R}, we say that a prediction p̂ is LK-decision calibrated
(with respect to p∗) if ∀ℓ ∈ LK and δ ∈ ∆LK

EXEŶ∼p̂(X)[ℓ(Ŷ , δ(p̂(X)))] = EXEY∼p∗(X)[ℓ(Y, δ(p̂(X)))] (2)

The key result (that we show in Section 4) is that LK-decision calibration can be efficiently verified
and achieved for all predictors. Specifically, we show that the sample complexity necessary to learn
LK -decision calibrated predictors depends on the number of actions K, not on the support of p̂. This
is in contrast to the standard approach for establishing distribution calibration, where the sample
complexity scales with the support of p̂ (which is typically exponentially in the number of classes).

4 Achieving Decision Calibration with PAC Guarantees

4.1 Approximate LK Decision Calibration is Verifiable and Achievable

Decision calibration in Definition 2 usually cannot be achieved perfectly. The definition has to be
relaxed to allow for statistical and numerical errors. To meaningfully define approximate calibration
we assume that the loss functions are bounded, i.e. no outcome y ∈ Y and action a ∈ A can incur an

infinite loss. In particular, we bound ℓ by its 2-norm maxa‖ℓ(·, a)‖2 := maxa
√

∑

y∈Y ℓ(y, a)
2. 3

Now we can proceed to define approximate decision calibration. In particular, we compare the
difference between the two sides in Eq.(2) of Definition 2 with the maximum magnitude of the loss
function.

Definition 4 (Approximate decision calibration). A prediction function p̂ is (L, ǫ)-decision calibrated
(with respect to p∗) if ∀ℓ ∈ L and δ ∈ ∆L

∣

∣

∣
E[ℓ(Ŷ , δ(p̂(X)))]− E[ℓ(Y, δ(p̂(X)))]

∣

∣

∣
≤ ǫ sup

a∈A
‖ℓ(·, a)‖2 (3)

Definition 4 is a relaxation of Definition 2: if a prediction function is (L, 0)-decision calibrated, then
it is L-decision calibrated (Definition 2).

The main observation in our paper is that for the set of loss functions withK actions, (LK , ǫ)-decision
calibration can be verified and achieved with polynomially many samples. In addition, we achieve
decision calibration without deteriorating the L2 error E[‖p̂(X)− Y ‖22].
Theorem 2 (Main Theorem, informal). There is an algorithm, such that for any predictor p̂ and
given polynomially (in K,C, 1/ǫ) many samples, can with high probability

1. correctly decide if p̂ satisfies (LK , ǫ)-decision calibration

2. output a new predictor p̂′ that satisfies (LK , ǫ)-decision calibration without degrading the
original predictions (in terms of L2 error).

Note that trivial predictors p̂(x) ≡ E[Y], ∀x satisfy (LK , 0)-decision calibration. To maintain a
meaningful prediction function we also require “sharpness” which we measure by L2 error. We
guarantee that the L2 error of p̂′ can only improve under post-processing; that is, E[‖p̂′(X)−Y ‖22] ≤
E[‖p̂(X) − Y ‖22]. In fact, the algorithm works by iteratively updating the predictions to make
progress in L2. In addition to L2 error, empirically our recalibration algorithm also slightly improves
the likelihood and accuracy. For rest of this section, we propose concrete algorithms that satisfy
Theorem 2.

4.2 Verification of Decision Calibration

This section focuses on the first part of Theorem 2 where we certify (LK , ǫ)-decision calibration. A
naive approach use samples to directly estimate (by replacing all expectations with empirical sample

3The choice of 2-norm is for convenience. All p-norms are equivalent up to a multiplicative factor polynomial
in C, so our main theorem (Theorem 2) still hold for any p-norms up to the polynomial factor.

6

averages)

sup
δ∈∆

LK

sup
ℓ∈LK

∣

∣

∣
E[ℓ(Ŷ , δ(p̂(X)))]− E[ℓ(Y, δ(p̂(X)))]

∣

∣

∣
/

(

sup
a∈A

‖ℓ(·, a)‖2
)

(4)

and compare it with ǫ. Even though it might be possible to upper bound the estimation error for Eq.(4)
directly, the analysis would be complex because of the multiple sup in the equation. To gain deeper
insight into the problem and simplify its analysis, we will make several observations to transform this
complex optimization problem to a simpler problem that resembles linear classification.

Observation 1. The first observation is that we do not have to take the supremum over LK because
for any choice of δ ∈ ∆ by simple calculations we have

sup
ℓ∈LK

∣

∣

∣
E[ℓ(Ŷ , δ(p̂(X)))]− E[ℓ(Y, δ(p̂(X)))]

∣

∣

∣

supa∈A‖ℓ(·, a)‖2
=

K
∑

a=1

∥

∥

∥
E[(Ŷ − Y)I(δ(p̂(X)) = a)]

∥

∥

∥

2
(5)

This statement is formally proved as part of the proof for Proposition 3 in Appendix C.3. Intuitively
on the right hand side, δ partitions the probabilities ∆C based on the optimal decision ∆1 := {q ∈
∆C , I(δ(q) = 1)}, · · · ,∆K := {q ∈ ∆C , I(δ(q) = K)}. For each partition ∆k we measure the

difference between predicted label and true label on average, i.e. E[(Ŷ − Y)I(p̂(X) ∈ ∆k)].

Observation 2. We observe that the partitions of ∆C are defined by linear classification boundaries.
Formally, we introduce a new notation for the linear multi-class classification functions

BK =
{

bw | ∀w ∈ R
K×C

}

where bw(q, a) = I(a = arg sup
a′∈[K]

〈q, wa′〉) (6)

Note that this new classification task is a tool to aid in understanding decision calibration, and bears
no relationship with the original prediction task (predicting Y from X). Intuitively w defines the
weights of a linear classifier; given input features q ∈ ∆C and a candidate class a, bw outputs an
indicator: bw(q, a) = 1 if the optimal decision of q is equal to a and 0 otherwise.

The following equality draws the connection between Eq.(5) and linear classification. The proof is
simply a translation from the original notations to the new notations.

sup
δ∈∆

LK

K
∑

a=1

∥

∥

∥
E[(Ŷ − Y)I(δ(p̂(X))) = a)]

∥

∥

∥

2
= sup

b∈BK

K
∑

a=1

∥

∥

∥
E[(Ŷ − Y)b(p̂(X), a)]

∥

∥

∥

2
(7)

The final outcome of our derivations is the following proposition (Proof in Appendix C.3)

Proposition 2. A predictor p̂ satisfies (LK , ǫ)-decision calibration if and only if

sup
b∈BK

K
∑

a=1

∥

∥

∥
E[(Ŷ − Y)b(p̂(X), a)]

∥

∥

∥

2
≤ ǫ (8)

In words, p̂ satisfies decision calibration if and only if there is no linear classification function that can

partition ∆C into K parts, such that the average difference Ŷ −Y (or equivalently p̂(X)− p∗(X)) in
each partition is large. Theorem 2.1 follows naturally because BK has low Radamacher complexity,
so the left hand side of Eq.(8) can be accurately estimated with polynomially many samples. For a
formal statement and proof see Appendix C.3.

The remaining problem is computation. With unlimited compute, we can upper bound Eq.(8) by brute
force search over BK ; in practice, we use a surrogate objective optimizable with gradient descent.
This is the topic of Section 4.4.

4.3 Recalibration Algorithm

This section discusses the second part of Theorem 2 where we design a post-processing recalibration
algorithm. The algorithm is based on the following intuition, inspired by (Hébert-Johnson et al.,
2018): given a predictor p̂ we find the worst b ∈ BK that violates Eq.(8) (line 3 of Algorithm 1); then,

7

we make an update to p̂ to minimize the violation of Eq.(8) for the worst b (line 4,5 of Algorithm 1).
This process is be repeated until we get a (BK , ǫ)-decision calibrated prediction (line 2). The sketch
of the algorithm is shown in Algorithm 1 and the detailed algorithm is in the Appendix.

Algorithm 1: Recalibration algorithm to achieve LK decision calibration.

1 Input current prediction function p̂, tolerance ǫ. Initialize p̂(0) = p̂;

2 for t = 1, 2, · · · , T until output p̂(T) when it satisfies Eq.(8) do

3 Find b ∈ BK that maximizes
∑K

a=1

∥

∥E[(Y − p̂(t−1)(X))b(p̂(t−1)(X), a)
∥

∥ ;

4 Compute the adjustments da = E[(Y − p̂(t−1)(X))b(p̂(t−1)(X), a)]/E[b(p̂(t−1)(X), a)] ;

5 Set p̂(t) : x 7→ p̂(t−1)(x) +
∑K

a=1 b(p̂
(t−1)(x), a) · da (projecting onto [0, 1] if necessary) ;

6 end

Given a dataset withN samples, the expectations in Algorithm 1 are replaced with empirical averages.
The following theorem demonstrates that Algorithm 1 satisfies the conditions stated in Theorem 2.

Theorem 2.2. Given any input p̂ and tolerance ǫ, Algorithm 1 terminates in O(K/ǫ2) iterations.
For any λ > 0, given O(poly(K,C, log(1/δ), λ)) samples, with 1 − δ probability Algorithm 1
outputs a (LK , ǫ+ λ)-decision calibrated prediction function p̂′ that satisfies E[‖p̂′(X)− Y ‖22] ≤
E[‖p̂(X)− Y ‖22] + λ.

The theorem demonstrates that if we can solve the inner search problem over BK , then we can obtain
decision calibrated predictions efficiently in samples and computation.

4.4 Relaxation of Decision Calibration for Computational Efficiency

We complete the discussion by addressing the open computational question. Directly optimizing over
BK is difficult, so we instead define the softmax relaxation.

B̄K =
{

b̄w | ∀w ∈ R
K×C

}

where b̄w(q, a) =
e〈q,wa〉

∑

a′ e〈q,wa′ 〉

The key motivation behind this relaxation is that b̄w ∈ B̄K is now differentiable in w, so we can
optimize over B̄K using gradient descent. Correspondingly some technical details in Algorithm 1
change to accommodate soft partitions; we address these modifications in Appendix A and show
that after these modifications Theorem 2.2 still holds. Intuitively, the main reason that we can still
achieve decision calibration with softmax relaxation is because BK is a subset of the closure of B̄K .
Therefore, compared to Eq.(8), we enforce a slightly stronger condition with the softmax relaxation.
This can be formalized in the following proposition.

Proposition 3. A prediction function p̂ is (LK , ǫ)-decision calibrated if it satisfies

sup
b̄∈B̄K

K
∑

a=1

∥

∥

∥
E[(Ŷ − Y)b̄(p̂(X), a)]

∥

∥

∥

2
≤ ǫ : (9)

We remark that unlike Proposition 2 (which is an “if and only if” statement), Proposition 3 is a “if”
statement. This is because Eq.(9) implies Eq.(8) but not vice versa.

5 Empirical Evaluation

5.1 Skin Legion Classification

This experiment materializes our motivating example in the introduction. We aim to show on a real
medical prediction dataset, our recalibration algorithm improves both the decision loss and reduces
the decision loss estimation error. For the estimation error, as in Definition 4 for any loss function ℓ
and corresponding Bayes decision rule δℓ we measure

loss gap :=
∣

∣

∣
E[ℓ(Ŷ , δℓ(p̂(X)))]− E[ℓ(Y, δℓ(p̂(X)))]

∣

∣

∣
/ sup
a∈A

‖ℓ(·, a)‖2 (10)

In addition to the loss function in Figure 1 (which is motivated by medical domain knowledge), we also
consider a set of 500 random loss functions where for each y ∈ Y, a ∈ A, ℓ(y, a) ∼ Normal(0, 1),
and report both the average loss gap and the maximum loss gap across the loss functions.

8

7 Acknowledgements

SZ is supported in part by a JP Morgan fellowship and a Qualcomm innovation fellowship. MPK
is supported by the Miller Institute for Basic Research in Science and the Simons Collaboration
on the Theory of Algorithmic Fairness. TM acknowledges support of Google Faculty Award and
NSF IIS 2045685. SE acknowledges support by NSF(#1651565, #1522054, #1733686), ONR
(N000141912145), AFOSR (FA95501910024), ARO (W911NF-21-1-0125) and Sloan Fellowship.

References

Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. The limits of
distribution-free conditional predictive inference. arXiv preprint arXiv:1903.04684, 2019.

Glenn W Brier. Verification of forecasts expressed in terms of probability. Monthly weather review,
78(1):1–3, 1950.

A Philip Dawid. Present position and potential developments: Some personal views statistical theory
the prequential approach. Journal of the Royal Statistical Society: Series A (General), 147(2):
278–290, 1984.

Cynthia Dwork, Michael P Kim, Omer Reingold, Guy N Rothblum, and Gal Yona. Learning from
outcomes: Evidence-based rankings. In 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 106–125. IEEE, 2019.

Cynthia Dwork, Michael P Kim, Omer Reingold, Guy N Rothblum, and Gal Yona. Outcome
indistinguishability. STOC, 2021.

Yuguang Fang, Kenneth A Loparo, and Xiangbo Feng. Inequalities for the trace of matrix product.
IEEE Transactions on Automatic Control, 39(12):2489–2490, 1994.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning, pp. 1321–1330. PMLR, 2017.

Ursula Hébert-Johnson, Michael Kim, Omer Reingold, and Guy Rothblum. Multicalibration: Cali-
bration for the (computationally-identifiable) masses. In International Conference on Machine
Learning, pp. 1939–1948. PMLR, 2018.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Christopher Jung, Changhwa Lee, Mallesh M Pai, Aaron Roth, and Rakesh Vohra. Moment multical-
ibration for uncertainty estimation. arXiv preprint arXiv:2008.08037, 2020.

Michael P Kim, Amirata Ghorbani, and James Zou. Multiaccuracy: Black-box post-processing for
fairness in classification. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and
Society, pp. 247–254, 2019.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair determi-
nation of risk scores. arXiv preprint arXiv:1609.05807, 2016.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning
using calibrated regression. In International Conference on Machine Learning, pp. 2796–2804.
PMLR, 2018.

Meelis Kull and Peter Flach. Novel decompositions of proper scoring rules for classification: Score
adjustment as precursor to calibration. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 68–85. Springer, 2015.

11

Meelis Kull, Miquel Perello-Nieto, Markus Kängsepp, Hao Song, Peter Flach, et al. Beyond
temperature scaling: Obtaining well-calibrated multiclass probabilities with dirichlet calibration.
arXiv preprint arXiv:1910.12656, 2019.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT
press, 2018.

John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On fairness and
calibration. In Advances in Neural Information Processing Systems, pp. 5680–5689, 2017.

Eliran Shabat, Lee Cohen, and Yishay Mansour. Sample complexity of uniform convergence for
multicalibration. NeurIPS, 2020.

Hao Song, Tom Diethe, Meelis Kull, and Peter Flach. Distribution calibration for regression. In
International Conference on Machine Learning, pp. 5897–5906. PMLR, 2019.

Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset, a large collection of
multi-source dermatoscopic images of common pigmented skin lesions. Scientific data, 5(1):1–9,
2018.

David Widmann, Fredrik Lindsten, and Dave Zachariah. Calibration tests in multi-class classification:
A unifying framework. arXiv preprint arXiv:1910.11385, 2019.

Shengjia Zhao and Stefano Ermon. Right decisions from wrong predictions: A mechanism design
alternative to individual calibration. In International Conference on Artificial Intelligence and
Statistics, pp. 2683–2691. PMLR, 2021.

Shengjia Zhao, Tengyu Ma, and Stefano Ermon. Individual calibration with randomized forecasting.
arXiv preprint arXiv:2006.10288, 2020.

12

A Relaxations to Decision Calibration

We define the algorithm that corresponds to Algorithm 1 but for softmax relaxed functions. Before
defining our algorithm at each iteration t we first lighten our notation with a shorthand ba(X) =
b(p̂(t−1)(X), a) (at different iteration t, ba denotes different functions), and b(X) is the vector of
(b1(X), · · · , bK(X)).

Algorithm 2: Recalibration Algorithm to achieve decision calibration.

1 Input current prediction function p̂, a dataset D = {(x1, y1), · · · , (xM , yM)} tolerance ǫ ;

2 Initialize p̂(0) = p̂, v(0) = +∞;

3 for t = 1, 2, · · · until v(t−1) < ǫ2/K do

4 v(t), b(t) = sup, arg supb∈B̄K

∑K
a=1

∥

∥E[(Y − p̂(t−1)(X))ba(X)]
∥

∥

2
;

5 Compute D ∈ R
K×K where Daa′ = E[b

(t)
a (X)b

(t)
a′ (X)] ;

6 Compute R ∈ R
K×C where Ra = E[(Y − p̂(t−1)(X))b

(t)
a (X)] ;

7 Set p̂(t) : x 7→ π(p̂(t−1)(x) +RTD−1b(t)(x)) where π is the normalization projection;

8 end

9 Output p̂(T) where T is the number of iterations

For the intuition of the algorithm, consider the t-th iteration where the current predic-

tion function is p̂(t−1). On line 4 we find the worst case b(t) that maximizes the “error”
∑K

a=1

∥

∥

∥
E[(Y − p̂t−1(X))b

(t)
a (X)]

∥

∥

∥

2

, and on line 5-7 we make the adjustment p̂(t−1) → p̂(t) to

minimize this error
∑K

a=1

∥

∥

∥
E[(Y − p̂t(X))b

(t)
a (X)]

∥

∥

∥

2

. In particular, the adjustment we aim to find

on line 5-7 (which we denote by U ∈ R
C×K) should satisfy the following: if we let

p̂(t)(X) = p̂(t−1)(X) + Ub(t)(X)

we can minimize

L(U) :=

K
∑

a=1

∥

∥

∥
E[(Y − p̂(t)(X))b(t)a (X)]

∥

∥

∥

2

We make some simple algebra manipulations on L to get

L(U) =

K
∑

a=1

∥

∥

∥
E[(Y − p̂(t−1)(X))b(t)a (X)− Ub(t)(X)b(t)a (X)]

∥

∥

∥

2

=

K
∑

a=1

∥

∥Ra − (DUT)a
∥

∥

2
=
∥

∥R−DUT
∥

∥

2

Suppose D is invertible, then the optimum of the objective is

U∗ := arg inf L(U) = RTD−1, L(U∗) = 0

When D is not invertible we can use the pseudo-inverse, though we observe in the experiments that
D is always invertible.

For the relaxed algorithm we also have a theorem that is equivalent to Theorem 2.2. The statement
of the theorem is identical; the proof is also essentially the same except for the use of some new
technical tools.

Theorem 2.2’. Algorithm 2 terminates in O(K/ǫ2) iterations. For any λ > 0, given
O(poly(K,C, log(1/δ), λ)) samples, with 1 − δ probability Algorithm 1 outputs a (LK , ǫ + λ)-
decision calibrated prediction function p̂′ that satisfies E[‖p̂′(X)− Y ‖22] ≤ E[‖p̂(X)− Y ‖22] + λ.

B Additional Experiment Details and Results

Additional experiments are shown in Figure 4 and Figure 5. The observations are similar to those in
the main paper.

13

Part 1 When the loss function is ℓ : y, a 7→ I(y 6= a ∩ a 6= ⊥) + βI(a = ⊥), the Bayes decision is
given by

δℓ(x) =

{

argmax p̂(x) max p̂(x) > 1− β
⊥ otherwise

DenoteU = max p̂(X) and V = argmax p̂(X). For any pair of loss functions ℓ and ℓ′ parameterized
by β and β′ we have

E[ℓ′(Y, δℓ(X))]− E[ℓ′(Ŷ , δℓ(X))]

= E[(ℓ′(Y,⊥)− ℓ′(Ŷ ,⊥))I(δℓ(X) = ⊥)] + E[(ℓ′(Y, δℓ(X))− ℓ′(Ŷ , δℓ(X)))I(δℓ(X) 6= ⊥)] Tower

= 0 + E[(p∗V (X)− p̂V (X))I(max p̂(x) > 1− β)] Def of ℓ

= E[(p∗V (X)− U)I(U > 1− β)]

Suppose p̂ is confidence calibrated, then almost surely

U = Pr[Y = argmax p̂(X) | U] = E[p∗V (X) | U]

which implies almost surely E[p∗V (X)− U | U] = 0. By Lemma 1 we can conclude that

0 = E[(p∗V (X)− U)I(U > 1− β)] = E[ℓ′(Y, δℓ(X))]− E[ℓ′(Ŷ , δℓ(X))]

so p̂ is Lr-weakly calibrated.

Conversely suppose p̂ is Lr weakly calibrated, then ∀β ∈ [0, 1], E[(p∗V (X)− U)I(U > 1− β)] = 0.
By Lemma 1 we can conclude that almost surely

0 = E[p∗V (X)− U | U] = E[p∗V (X) | U]− U

so p̂ is confidence calibrated.

Part 2 For any loss function ℓ : y, a 7→ I(a = ⊥) + β1I(y 6= c ∧ a = T) + β2I(y = c ∧ a = F)
where β1, β2 > 1, observe that the Bayes decision for loss function ℓ is

δℓ(x) =

{

T p̂c(x) > max(1− 1/β1, β1/(β1 + β2))
F p̂c(x) < min(1/β2, β1/(β1 + β2))
⊥ otherwise

Choose any pair of numbers α ≥ γ, we can choose β1, β2 such that α := max(1− 1/β1, β1/(β1 +
β2)), γ := min(1/β2, β1/(β1 + β2)). For any pair of loss functions ℓ and ℓ′ parameterized by
β1, β2, β

′
1, β

′
2 (with associated threshold α ≥ γ, α′ ≥ γ′) we have

E[ℓ′(Y, δℓ(X))− E[ℓ′(Ŷ , δℓ(X))]

= E[(ℓ′(Y, δℓ(X))− ℓ′(Ŷ , δℓ(X)))I(δℓ(X) = T)] + E[(ℓ′(Y, δℓ(X))− ℓ′(Ŷ , δℓ(X)))I(δℓ(X) = F)]

= E[(ℓ′(Y, T)− ℓ′(Ŷ , T))I(δℓ(X) = T)] + E[(ℓ′(Y, F)− ℓ′(Ŷ , F))I(δℓ(X) = F)]

= β′
1E[(p̂c(X)− p∗c(X))I(p̂c(X) > α)] + β′

2E[(p
∗
c(X)− p̂c(X))I(p̂c(X) < γ)]

Similar to the argument for part 1, suppose p̂ is classwise calibrated then ∀α, γ, E[(p∗c(X) −
p̂c(X))I(p̂c(X) > α)] = 0 and E[(p∗c(X)− p̂c(X))I(p̂c(X) < γ)] = 0; therefore it is Lcr-decision
calibrated.

Conversely suppose p̂ is Lcr-decision calibrated, then ∀α we have E[(p̂c(X)− p∗c(X))I(p̂c(X) >
α)] = 0, which implies that p̂ is classwise calibrated according to Lemma 1.

Part 3 Choose the special loss function A = ∆C and ℓ as the log loss ℓ : y, a 7→ − log ay then the
Bayes action can be computed as

δℓ(x) = arg inf
a∈∆C

EŶ∼p̂(X)[− log aŶ] = p̂(x)

Denote U = p̂(X) then let LB be the set of all bounded loss functions, i.e. LB = {ℓ, |ℓ(y, a)| ≤ B}

sup
ℓ′∈LB

E[ℓ′(Y, δℓ(X))]− E[ℓ′(Ŷ , δℓ(X))]

sup
ℓ′∈LB

E[E[ℓ′(Y, U)− ℓ′(Ŷ , U) | U]] Tower

17

= BE[‖E[p∗(X)− p̂(X) | U]‖1] Cauchy Schwarz

If p̂ satisfies distribution calibration, then ‖E[p∗(X)− p̂(X) | U]‖1 = 0 almost surely, which
implies that p̂ is LB decision calibrated. Conversely, if p̂ is LB decision calibrated, then
‖E[p∗(X)− p̂(X) | U]‖1 = 0 almost surely (because if the expectation of a non-negative ran-
dom variable is zero, the random variable must be zero almost surely), which implies that p̂ is
distribution calibrated. The theorem follows because B is arbitrarily chosen.

C.2 From Decision Calibration to Distribution Calibration

*

Proof of Proposition ??. First we observe from Proposition 2 that if a predictor p̂ is LK-decision
calibrated, then for all a ∈ [K] such that {x, δℓ(p̂(x)) = a} has non-zero probability,

EXEŶ∼p̂(X)[Ŷ | δℓ(p̂(X)) = a] = EXEY∼p∗(X)[Y | δℓ(p̂(X)) = a] (11)

We now show a simple compression scheme that achieves the properties required for Proposition ??.
Given a loss ℓ ∈ LK , we compress the predictions along the partitions defined by δℓ.

Suppose p̂ is LK-decision calibrated. For a fixed loss ℓ ∈ LK , consider the following predictor p̂ℓ
that arises by compressing p̂ according to the optimal decision rule δℓ.

p̂ℓ(x) = EX [p̂(X) | δℓ(p̂(X)) = δℓ(p̂(x))]

First, note that by averaging over each set {x, δℓ(p̂(x) = a)}, the support size of p̂ℓ is bounded by at
most K. Next, we note that by construction and Eq.(11), p̂ℓ is distribution calibrated. To see this,
consider each q ∈ ∆C supported by p̂ℓ; for each q, there is some optimal action aq ∈ [K]. That is,
the sets {x : p̂ℓ(x) = q} = {x : δℓ(p̂(x)) = aq} are the same. Distribution calibration follows.

EXEY∼p∗(X)[Y | p̂ℓ(X) = q] = EXEY∼p∗(X)[Y | δℓ(p̂(X)) = aq]

= EXEŶ∼p̂ℓ(X)[Ŷ | δℓ(p̂(X)) = aq]

= EXEŶ∼p̂ℓ(X)[Ŷ | p̂ℓ(X) = q]

= q

Finally, it remains to show that the optimal decision rule resulting from p̂ℓ and p̂ are the same,
pointwise for all x ∈ X . As an immediate corollary, the expected loss using p̂ℓ and p̂ is the same.
We show that the decision rule will be preserved by the fact that for each x ∈ X , the compressed
prediction is a convex combination of predictions that gave rise to the same optimal action.

Specifically, consider any x such that p̂ℓ(x) = q. By the argument above, there is some action
aq ∈ [K] that is optimal for all such x. Optimality implies that for all a ∈ [K]

〈ℓaq
, p̂(x)〉 ≤ 〈ℓa, p̂(x)〉.

Thus, by linearity of expectation, averaging over {x : p̂ℓ(x) = q}, the optimal action aq is preserved.

〈ℓaq
, q〉 = 〈ℓaq

,E[p̂(X) | δℓ(p̂(X)) = aq]〉
= E[〈ℓaq

, p̂(X)〉 | δℓ(p̂(X)) = aq]

≤ E[〈ℓa, p̂(X)〉 | δℓ(p̂(X)) = aq]

= 〈ℓa,E[p̂(X) | δℓ(p̂(X)) = aq]〉
= 〈ℓa, q〉

Thus, the optimal action is preserved for all x ∈ X .

C.3 Proofs for Section 4

Proposition 2. A predictor p̂ satisfies (LK , ǫ)-decision calibration if and only if

sup
b∈BK

K
∑

a=1

∥

∥

∥
E[(Ŷ − Y)b(p̂(X), a)]

∥

∥

∥

2
≤ ǫ (8)

18

Proof of Proposition 2. We first introduce a new set of notations to make the proof easier to follow.
Because A = [K] and Y ≃ [C], a loss function can be uniquely identified with K vectors ℓ1, · · · , ℓK
where ℓac = ℓ(c, a). Given prediction function p̂ : X → ∆C and the expected loss can be denoted as

EŶ∼p̂(x)[ℓ(Ŷ , a)] = 〈p̂(x), ℓa〉 (12)

Choose any Bayes decision function δℓ′ for some loss ℓ′ ∈ LK , as a notation shorthand denote
δℓ′(p̂(x)) = δℓ′(x). We can compute the gap between the left hand side and right hand side of
Definition 2 as

sup
ℓ

∣

∣

∣
EXEŶ∼p̂(X)[ℓ(Ŷ , δℓ′(X))]− EXEY∼p∗(X)[ℓ(Y, δℓ′(X))]

∣

∣

∣

supa‖ℓ(·, a)‖2
= sup

ℓ,‖ℓ(·,a)‖2≤1

∣

∣

∣
EXEŶ∼p̂(X)[ℓ(Ŷ , δℓ′(X))]− EXEY∼p∗(X)[ℓ(Y, δℓ′(X))]

∣

∣

∣
Normalize

= sup
ℓ,‖ℓ(·,a)‖2≤1

∣

∣EX

[

〈ℓδℓ′ (X), p̂(X)〉
]

− EX

[

〈ℓδℓ′ (X), p
∗(X)〉

]∣

∣ Eq.12

= sup
ℓ,‖ℓ(·,a)‖2≤1

∣

∣

∣

∣

∣

∑

a

EX [〈p̂(X), ℓa〉I(δℓ′(X) = a)]−
∑

a

EX [〈p∗(X), ℓa〉I(δℓ′(X) = a)]

∣

∣

∣

∣

∣

Total Probability

= sup
ℓ,‖ℓ(·,a)‖2≤1

∣

∣

∣

∣

∣

∑

a

〈EX [(p∗(X)− p̂(X))I(δℓ′(X) = a)], ℓa〉
∣

∣

∣

∣

∣

Linearity

=
∑

a

‖EX [(p∗(X)− p̂(X))I(δℓ′(X) = a)]‖2 Cauchy Schwarz

Finally we complete the proof by observing that the set of maps

{q, a 7→ I(δℓ(q) = a), ℓ ∈ LK , q ∈ ∆C}

is the same as the set of maps BK . We do this by establishing a correspondence where ℓa =
−wa/‖wa‖2 then

I(δℓ(q) = a) = I(arg inf
a′
〈ℓa′ , q〉 = a) = I(arg sup

a′

〈wa′ , q〉 = a) = bw(q, a)

C.4 Formal Statements and Proofs for Theorem 2

Formal Statement of Theorem 2, part I. We first define a new notation. Given a set of samples

D = {(X1, Y1), · · · , (XN , YN)}, and for any function ψ : X × Y → R denote ÊD[ψ(X,Y)] as the
empirical expectation, i.e.

ÊD[ψ(X,Y)] :=
1

N

∑

n

ψ(Xn, Yn)

Theorem 2.1 (Formal). Let BK be as defined by Eq.(6), for any true distribution over X,Y and any
p̂, given a set of N samples D = {(X1, Y1), · · · , (XN , YN)}, with probability 1 − δ over random
draws of D,

sup
b∈BK

K
∑

a=1

‖E[(p̂(X)− Y)b(p̂(X), a)]‖2 −
K
∑

a=1

∥

∥

∥
ÊD[(p̂(X)− Y)b(p̂(X), a)]

∥

∥

∥

2
≤ Õ

(

K3/2C√
N

)

(13)

where Õ denotes equal up to constant and logarithmic terms.

Note that in the theorem δ does not appear on the RHS of Eq.(13). This is because the bound depends
logarithmically on δ.

19

Proof of Theorem 2.1. Before proving this theorem we first need a few uniform convergence Lemmas
which we will prove in Appendix C.5.

Lemma 2. LetB by any set of functions {b : ∆C → [0, 1]} and U, V be any pair of random variables
where U takes values in [−1, 1]C and V takes values in ∆C . Let D = {(U1, V1), · · · , (UN , VN)} be
an i.i.d. draw of N samples from U, V , define the Radamacher complexity of B by

RN (B) := ED,σi∼Uniform({−1,1})

[

sup
b∈B

1

N

N
∑

n=1

σib(Vi)

]

then for any δ > 0, with probability 1− δ (under random draws of D), ∀b ∈ B

‖ÊD[Ub(V)]− E[Ub(V)]‖2 ≤
√
CRN (B) +

√

2C

N
log

2C

δ

Lemma 3. Define the function family

BK
a =

{

b : z 7→ I(a = arg sup
a′

〈z, wa〉), wa ∈ R
C , a = 1, · · · ,K, z ∈ ∆C

}

B̄K
a =

{

b : z 7→ e〈z,wa〉

∑

a′ e〈z,wa′ 〉
, wa ∈ R

C , a = 1, · · · ,K, z ∈ ∆C

}

then RN (BK
a) = O

(

√

CK logK logN
N

)

and RN (B̄K
a) = O

(

(

K
N

)1/4
log N

K

)

.

Proof of the theorem is straight-forward given the above Lemmas. As a notation shorthand denote
U = p̂(X)− Y . Note that U is a random vector raking values in [−1, 1]C . We can rewrite the left
hand side of Eq.(13) as

sup
b∈BK

∑

a

‖E[Ub(p̂(X), a)]‖2 − ‖ÊD[Ub(p̂(X), a)]‖2 (14)

≤
∑

a

sup
b∈BK

a

‖E[Ub(p̂(X), a)]‖2 − ‖ÊD[Ub(p̂(X), a)]‖2 Jensen (15)

≤
∑

a

sup
b∈BK

a

‖E[Ub(p̂(X), a)]− ÊD[Ub(p̂(X), a)]‖2 Triangle (16)

≤
∑

a

√
CRN (BK

a) +

√

2C

N
log

2C

δ
(w.p. 1− δ) Lemma 2 (17)

≤
∑

a

√
CO

(

√

CK logK logN

N

)

+

√

2C

N
log

2C

δ
Lemma 3 (18)

≤ K
√
CO

(

√

CK logK logN

N

)

+K

√

2C

N
log

2C

δ
(19)

= Õ

(

K3/2C√
N

)

(20)

Formal Statement Theorem 2, Part II

Theorem 2.2. Given any input p̂ and tolerance ǫ, Algorithm 1 terminates in O(K/ǫ2) iterations.
For any λ > 0, given O(poly(K,C, log(1/δ), λ)) samples, with 1 − δ probability Algorithm 1
outputs a (LK , ǫ+ λ)-decision calibrated prediction function p̂′ that satisfies E[‖p̂′(X)− Y ‖22] ≤
E[‖p̂(X)− Y ‖22] + λ.

Proof of Theorem 2.2. We adapt the proof strategy in (Hébert-Johnson et al., 2018). The key idea
is to show that a potential function must decrease after each iteration of the algorithm. We choose

the potential function as Ê[(Y − p̂(X))2]. Similar to Appendix A at each iteration t we first lighten

20

our notation with a shorthand ba(X) = b(p̂(t−1)(X), a) (at different iteration t, ba denotes different
functions), and b(X) is the vector of (b1(X), · · · , bK(X)). If the algorithm did not terminate that
implies that b satisfies

∑

a

‖Ê[(p̂(X)− Y)ba(X)]‖ ≥ ǫ (21)

Denote γ ∈ R
K×K where γa = Ê[(Y − p̂(X))b(X, a)]/Ê[b(X, a)]. The adjustment we make is

p̂′(X) = π(p̂(X) +
∑

a γab(X, a))

Ê[‖Y − p̂(X)‖2]− Ê[‖Y − p̂′(X)‖2]
= Ê[‖Y − p̂(X)‖2 − ‖Y − π(p̂(X) +

∑

a

γab(X, a))‖2]

≥ Ê[‖Y − p̂(X)‖2 − ‖Y − p̂(X)−
∑

a

γab(X, a)‖2] Projection ineq

= Ê

[

(2Y − 2p̂(X)−
∑

a

γab(X, a))
T

(

∑

a

γab(X, a)

)]

a2 − b2 = (a+ b)(a− b)

= 2
∑

a

γTa γaÊ[b(X, a)]−
∑

a,a′

γTa γa′ Ê[b(X, a)b(X, a′)] Definitionγa

= 2
∑

a

γTa γaÊ[b(X, a)]−
∑

a

γTa γaÊ[b(X, a)b(X, a)] b(x, a)b(x, a′) = 0, ∀a 6= a′

= 2
∑

a

γTa γaÊ[b(X, a)]−
∑

a

γTa γaÊ[b(X, a)] b(X, a)2 = b(X, a)

=
∑

a

‖γa‖2Ê[b(X, a)] ≥
1

K

(

∑

a

‖γa‖Ê[b(X, a)]
)2

Norm inequality

=
1

K

(

∑

a

∥

∥

∥
Ê[(Y − p̂(X)b(X, a)]

∥

∥

∥

)2

≥ ǫ2

K
Definition γa

Because initially for the original predictor p̂ we must have

Ê[‖p∗(X)− p̂(X)‖22] ≤ Ê[‖p∗(X)− p̂(X)‖21] ≤ 1

the algorithm must converge in K/ǫ2 iterations and output a predictor p̂′ where
∑

a

‖Ê[(p̂′(X)− Y)ba(X)]‖ ≤ ǫ

In addition we know that

Ê[‖p̂′(X)− Y ‖22] ≤ Ê[‖p̂(X)− Y ‖22]

Now that we have proven the theorem for empirical averages (i.e. all expectations are Ê), we
can convert this proof to use true expectations (i.e. all expectations are E) by observing that all

expectations involved in the proof satisfy E[·] ∈ Ê[·] ± κ for any κ > 0 and sample size that is
polynomial in κ.

Proof of Theorem 2.2’. Observe that the matrix D defined in Algorithm 2 is a symmetric, positive
semi-definite and non-negative matrix such that

∑

a,a′ Daa′ = 1. To show that the algorithm

converges we first need two Lemmas on the properties of such matrices. For a positive semi-definite
(PSD) symmetric matrix, let λ1 denote the largest eigenvalue, and λn denote the smallest eigenvalue
(which are always real numbers). The first Lemma is a simple consequence of the Perron-Frobenius
theorem,

Lemma 4. Let D be any symmetric PSD non-negative matrix such that
∑

a,a′ Daa′ = 1, then

λ1(D) ≤ 1, so λn(D
−1) ≥ 1.

21

Lemma 5 ((Fang et al., 1994) Theorem 1). Let D be a symmtric PSD matrix, then for any matrix B
(that has the appropriate shape to multiply with D)

λn(D)trace(B) ≤ trace(BD) ≤ λ1(D)trace(B)

Now we can proveed to prove our main result. We have to show that the L2 error Ê[(Y − p̂(t−1)(X))2]
must decrease at iteration t if we still have

ǫ2/K ≤
∑

a

‖Ê[(Y − p̂(t−1)(X))b(t)a (X)]‖2 := trace(RRT)

We can compute the reduction in L2 error after the adjustment

Ê[(Y − p̂(t−1)(X))2]− Ê[(Y − p̂(t)(X))2]

= Ê

[

(2(Y − p̂(t−1)(X))−RTD−1b(t)(X))TRTD−1b(t)(X)
]

Definition

= 2Ê
[

(Y − p̂(t−1)(X))TRTD−1b(t)(X)
]

− Ê

[

b(t)(X)TD−TRRTD−1b(t)(X)
]

= 2trace
(

Ê

[

b(t)(X)(Y − p̂(t−1)(X))TRTD−1
])

− trace
(

Ê

[

b(t)(X)b(t)(X)TD−TRRTD−1
])

Cyclic property

= 2trace
(

RRTD−1
)

− trace(RRTD−1) = trace(RRTD−1) Definition

≥ trace(RRT) ≥ ǫ2/K Lemma 5 and 4

Therefore, the algorithm cannot run for more than O(K/ǫ2) iterations. Suppose the algorithm
terminates we must have

sup
b∈BK

∑

a

‖Ê[(Y − p̂(t−1)(X))b(t)a (X)]‖ ≤ sup
b∈B̄K

∑

a

‖Ê[(Y − p̂(t−1)(X))b(t)a (X)]‖

≤ sup
b∈B̄K

√
K

√

∑

a

‖Ê[(Y − p̂(t−1)(X))b
(t)
a (X)]‖2

≤
√
Kǫ/

√
K = ǫ

So by Proposition 3 we can conclude that the algorithm must output a (LK , ǫ)-decision calibrated
prediction function.

C.5 Proof of Remaining Lemmas

Proof of Lemma 1. By the orthogonal property of the condition expectation, for any event A in the
sigma algebra induced by V , we have

E[(U − E[U | V])IA] = 0

This includes the event V > c

E[(U − E[U | V])I(V > c)] = 0

In other words,

E[U I(V > c)] = E[E[U | V]I(V > c)]

Proof of Lemma 2. First observe that by the norm inequality ‖z‖α ≤ C1/α‖z‖∞ we have

‖ÊD[Ub(V)]− E[Ub(V)]‖2 ≤
√
C‖Ê[Ub(V)]− E[Ub(V)]‖∞ (22)

Denote the c-th dimension of U by U c; we now provide bounds for |Ê[U cb(V)] − E[U cb(V)]|
by standard Radamacher complexity arguments. Define a set of ghost samples D̄ =
{(Ū1, V̄1), · · · (ŪN , V̄N)} and Radamacher variables σn ∈ {−1, 1}

ED

[

sup
b
|ÊD[U

cb(V)]− E[U cb(V)]|
]

(23)

22

= ED

[

sup
b

∣

∣

∣
ÊD[U

cb(V)]− ED̄

[

ÊD̄[U
cb(V)]

]
∣

∣

∣

]

Tower (24)

= ED

[

sup
b

∣

∣

∣
ED̄[ÊD[U

cb(V)]− ÊD̄[U
cb(V)]]

∣

∣

∣

]

Linearity (25)

≤ ED

[

sup
b

ED̄

[
∣

∣

∣
ÊD[U

cb(V)]− ÊD̄[U
cb(V)]

∣

∣

∣

]

]

Jensen (26)

≤ ED,D̄

[

sup
b

∣

∣

∣
ÊD[U

cb(V)]− ÊD̄[U
cb(V)]

∣

∣

∣

]

Jensen (27)

≤ Eσ,D,D̄

[

sup
b

∣

∣

∣

∣

∣

1

N

∑

i

σiU
c
i b(Vi)−

1

N

∑

i

σiŪ
c
i b(V̄i)

∣

∣

∣

∣

∣

]

Radamacher (28)

≤ Eσ,D,D̄

[

sup
b

∣

∣

∣

∣

∣

1

N

∑

i

σiU
c
i b(Vi)

∣

∣

∣

∣

∣

+ sup
b

∣

∣

∣

∣

∣

1

N

∑

i

σiŪ
c
i b(V̄i)

∣

∣

∣

∣

∣

]

Jensen (29)

= 2Eσ,D

[

sup
b

∣

∣

∣

∣

∣

1

N

∑

i

σiU
c
i b(Vi)

∣

∣

∣

∣

∣

]

(30)

Suppose we know the Radamacher complexity of the function family b

RN (B) := E

[

sup
b

1

N

∑

i

σib(Vi)

]

(31)

Then by the contraction inequality, and observe that U c
i ∈ [−1, 1] so multiplication by U c

i is a
1-Lipschitz map, we can conclude for any c ∈ [C]

RN (B) ≥ E

[

sup
b

1

N

∑

i

σiUicb(Vi)

]

(32)

Finally observe that the map D → 1
N

∑

i σiUicb(Vi) has 2/N bounded difference, so by Mcdiamid
inequality for any ǫ > 0

Pr

[

sup
b

∣

∣

∣

∣

∣

1

N

∑

i

σiU
c
i b(Vi)

∣

∣

∣

∣

∣

≥ RN (B) + ǫ

]

≤ 2e−Nǫ2/2 (33)

By union bound we have

Pr

[

max
c

sup
b

∣

∣

∣

∣

∣

1

N

∑

i

σiU
c
i b(Vi)

∣

∣

∣

∣

∣

≥ RN (B) + ǫ

]

≤ 2Ce−Nǫ2/2 (34)

We can combine this with Eq.(22) to conclude

Pr

[

sup
b
‖Ê[Ub(V)]− E[Ub(V)]‖2 ≥

√
CRN (B) +

√
Cǫ

]

≤ Pr

[

max
c

sup
b

Ê[U cb(V)]− E[U cb(V)]‖2 ≥ RN (B) + ǫ

]

≤ 2Ce−Nǫ2/2

Rearranging we get ∀δ > 0

Pr

[

sup
b
‖Ê[Ub(V)]− E[Ub(V)]‖2 ≥

√
CRN (B) +

√

2C

N
log

2C

δ

]

≤ δ

Proof of Lemma 3. For BK
a we use the VC dimension approach. Because ∀b ∈ BK

a the set
{z ∈ ∆C , b(z) = 1} is the intersection of K many C-dimensional half plances, its VC dimen-
sion VC(BK

a) ≤ (C + 1)2K log2(3K) (Mohri et al., 2018) (Q3.23). By Sauer’s Lemma we have

RN (BK
a) ≤

√

2VC(BK
a) log(eN/VC(BK

a))

N
= O

(

√

2CK logK logN

N

)

23

	Introduction
	Background
	Setup and Notation
	Decision-Making Tasks and Loss Functions
	Bayes Decision-Making

	Calibration: A Decision-Making Perspective
	Decision Calibration
	Decision Calibration Generalizes Existing Notions of Calibration
	Decision Calibration over Bounded Action Space

	Achieving Decision Calibration with PAC Guarantees
	Approximate LK Decision Calibration is Verifiable and Achievable
	Verification of Decision Calibration
	Recalibration Algorithm
	Relaxation of Decision Calibration for Computational Efficiency

	Empirical Evaluation
	Skin Legion Classification
	Imagenet Classification

	Related Work
	Acknowledgements
	Relaxations to Decision Calibration
	Additional Experiment Details and Results
	Robustness to Distribution Shift

	Proofs
	Equivalence between Decision Calibration and Existing Notions of Calibration
	From Decision Calibration to Distribution Calibration
	Proofs for Section 4
	Formal Statements and Proofs for Theorem 2
	Proof of Remaining Lemmas

