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Abstract

To mitigate a malware threat it is important to understand the
malware’s behavior. The MITRE ATT&ACK ontology spec-
ifies an enumeration of tactics, techniques, and procedures
(TTP) that characterize malware. However, absent are auto-
mated procedures that would characterize, given the malware
executable, which part of the execution flow is connected with
a specific TTP. This paper provides an automation methodol-
ogy to locate TTP in a sub-part of the control flow graph that
describes the execution flow of a malware executable. This
methodology merges graph representation learning and tools
for machine learning explanation.

Introduction

Malware applications create significant monetary damages
and represent a menace for people. The challenging task of
mitigating the effects of a malware application requires deep
understanding of what the application does. Understanding
of malware actions is aided by connecting these actions with
the specific macro tactics, techniques, and procedures (TTP)
enumerated in the MITRE ATT&CK ontology. The Control
Flow Graph (CFG) of an application (or malware) describes
the actions of the program during execution, and the flow of
all the internal and external function calls.

To the best of our knowledge related works focus on the
detection of malware or on the classification of the malware
family. Often the MITRE ATT&CK® TTP are applied to
associate a malware to a specific family of malware (e.g.,
spyware, Trojan, etc.), and this association of malware fam-
ily to TTP is done by a human. The aim to this paper is to
use the control flow graph to identify which subset of the
actions in the graph has high likelihood of being responsible
for the specific TTP.

We propose a novel approach to identify ATT&CK® TTP
in a CFG by applying Graph Machine Learning techniques
on Android Malware. Specifically, our approach associates
the TTP with a subgraph of a CFG. We use the Graph Neu-
ral Network and SIR-GN node representation learning ap-
proach to process the CFG, and create a model that clas-
sifies the associated TTP. Furthermore, we use attribution
techniques to identify the subgraph in the CFG connected
with the specific TTP.
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Methodology

Our methodology has three parts: (1) data collection and
processing for training a graph TTP classifier, (2) SIR-GN
graph representation learning procedure integrated in the
graph TTP classification, (3) an Attribution procedure ex-
plaining the TTP classification task by propagating the re-
sults through the graph representation learning procedure to
identify a CFG subgraph responsible for the specific TTP.

Data Collection

We use a sub sample of the Android malware (apk) pro-
vided by Virus Total !. For each of this malware we use
the Virus Total API to collect the human curated list of
TTPs (from MITRE Att&ck). Successively we convert each
android malware into its corresponding control flow graph
(CFG).

To obtain the CFG graph from each apk malware we use
AndroGuard ? which is a tool for static analysis of android
executables. The final output is a set of different directed
graphs, one for each android apk, and a ground truth which
associates to each graph a list of TTPs.

SIR-GN for TTP Classification Task

Graph data are not naturally processed through standard ma-
chine learning models. Graph representation learning such
as SIR-GN (Joaristi and Serra 2021) produces a vectorial
representation for each node.

Given the vectorial representation of SIR-GN, (Layne and
Serra 2021) provides a procedure to create a unique graph
representation technique. Such techniques identify groups
of nodes in a fixed number. Each group contains nodes with
similar vectorial representations. Given this set of groups the
method creates a pseudo adjacency matrix working on the
groups that, once flattened, represents the vectorial repre-
sentation of the graph. Then, the vectorial representations of
two graphs are comparable if the computation of the node
representations and the definition of the groups of nodes
for the pseudo adjacency matrices are identical for the two
graphs. To guarantee this property we use inferential SIR-
GN (Layne and Serra 2021) which is a procedure able to
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perform inferences and that is pretrained on a specific fam-
ily of directed random graphs. Note that since the groups
are created on the basis of structural similarities among the
nodes, the graph representation is invariant under permuta-
tion of the nodes in the graph.

This methodology assures a fast and comparable creation
of graph vectorial representations. Once the vectorial repre-
sentation of each graph is created, we use a standard ma-
chine learning model to classify the presence of specific
TTP. The main technique we use is a random forests clas-
sification algorithm. This algorithm gives the best classifi-
cation performance. It is important to note that graph neural
networks can achieve the same task. However, it is experi-
mentally demonstrated that they do not perform as well as
SIR-GN.

TTP Attribution to Identify Subgraphs in the CFG

To identify the subgraph in the CFG responsible for the TTP
classification we use SHAP(Lundberg and Lee 2017) and
the interpretability procedure provided for Graph Represen-
tation in inferential SIR-GN (Layne and Serra 2021).

More specifically, SHAP is a procedure to interpret stan-
dard classification models based on the Shapley value so-
lution concept for coalition games. SHAP, given a specific
example represented by a vector of features, is able to give
an attribution value for each feature in the input to the clas-
sifier. This attribution value explains the relevance of that
feature for the classification. In particular, since our classifi-
cation model is the random forest, we use SHAP defined for
tree-based models (Lundberg et al. 2020), which is the most
efficient.

Once each feature receives its attribution values, these val-
ues have to be propagated from the vectorial graph represen-
tation to the graph itself. This task is accomplished using the
propagation procedure described in (Layne and Serra 2021).
This procedure moves the attribution value of each edge in
the pseudo adjacency matrix, created for the graph represen-
tation, to the original graph by weighting each original edge
according to its contribution to the specific pseudo edge fea-
ture value. Then, each edge of the graph is provided an at-
tribution value describing its importance for the TTP Clas-
sification. By selecting, based on attribution value, the top
important edges, this procedure locates the subgraph of the
CFG responsible for the specific TTP classification.

Experiments
Data Collection Information

We collected 3250 malware apks, providing 3250 graphs
with an average of 5775 nodes an 12581 edges per graph.
In total our dataset has 136993 nodes and 333854 edges.
This set of malware has the following TTPs: “Initial Ac-
ces”, “Execution”, “Defense Evasion”, “Discovery”, “Con-
fidential Access”, “Lateral Movement”, and “Collection”. In
terms of binary classification, the first four TTPs have a ratio
40-70 % (contains the TTP) vs 60-30 % (does not contain the
TTP). The remaining three are drastically unbalanced with
ratio around 13 % vs 87 %.

Technique | F1 Score  Accuracy
GIN 0.627 0.669
GAT 0.495 0.675

SIR-GN 0.927 0.896

Table 1: Average Binary TTP Classification Results

Classification Results

We compare our procedure combining SIR-GN and Random
Forest with Graph Attention Network (GAN) (Velickovi¢
et al. 2017) and Graph Isomorphic Network (GIN) (Xu et al.
2018). The average results for all seven binary TTP classifi-
cations are reported in Table 1. Our procedure clearly shows
superior performance in comparison with graph neural net-
works.

Identify the Subgraph for the TTP Classification

We perform a qualitative analysis to validate how the api
calls of each subgraph responsible for a TTP classification
are related to the specific TTP. This analysis shows that the
api calls selected by our method are always logically related
to the TTP definition. In the case of “Initial Access” TTP
that represents the vectors adversaries use to gain an ini-
tial foothold into a mobile device. Our automatic procedure
identifies as the most important API calls the ones of user in-
terface (i.e., android/app and android/widget need for the ads
that would pop up within the browser) and ”com/madhouse-
/android/ads/bj/getLeft” (Madhouse is a famous mobile ad).
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