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ABSTRACT
We state and prove the square root scaling laws for the
amount of traffic injected by a covert attacker into a net-
work from a set of homes under the assumption that traffic
descriptors follow a multivariate Gaussian distribution. We
numerically evaluate the obtained result under realistic set-
tings wherein traffic is collected from real users, leveraging
detectors that exploit multiple features. Under such circum-
stances, we observe that phase transitions predicted by the
model still hold.

1. INTRODUCTION
Distributed denial of service attacks are pervasive1. The

extraordinary amount of traffic generated by those attacks
has already disrupted cloud services and critical infrastruc-
tures, but the visibility of those attacks usually renders them
short lived. From the attacker standpoint, this suggests that
the next generation of botnets may attempt to be covert
(undetectable).

A covert attack must be executed under the limits of de-
tector capabilities. To achieve covertness, the key insight
consists in leveraging a large number of devices, in such a
way that the aggregate amount of traffic regularly generated
by those devices hides the attack traffic.

Prior art. There is vast literature on machine learn-
ing methods for anomaly detection and intrusion detection
systems. The literature on scaling laws of covert attacks
is much scarcer, and the works on communication with low
probability of detection (LPD) typically account for resource
constrained detectors. In this work, we point towards novel
directions to analyze scaling laws for covert attacks, consid-
ering detectors that can account for multiple features while
determining the presence of attacks.

Goals. We consider a set of n compromised home net-
works. In each home network, there is at least one device
amenable to be used by the attacker in an attack campaign.
We pose the following questions: at what rate can the at-
tack traffic grow, with respect to n, while still remaining
covert? How do multiple features impact the scaling laws?
To what extent is covertness sensitive to the nature of the
distribution models?

Our answers to the above questions involve theoretical
and numerical evaluation methods.

1https://www.digitalattackmap.com/
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Contributions. We begin by establishing a square-root
scaling law for the amount of traffic that can be injected
into the network with respect to the number of homes, so
that the attack is covert (Section 3). The law is derived
under the assumption that traffic features follow a multi-
variate Gaussian distribution, and the achievability of the
attack is derived accounting for likelihood ratio test (LRT)
detectors. Then, we illustrate the tightness of the scaling
law regardless of the distribution type (Section 4). Numer-
ical evaluation allows us to assess the square root law with
respect to a multi-feature LRT detector. To that aim, we
partnered with a Brazilian ISP to collect regular traffic from
its home users. Then, we simulate attacks on top of such
traffic and observe that phase transitions predicted by the
model still hold (Section 5).

2. PROBLEM SETUP
Consider a collection of n homes. Each home-router con-

tinuously measures the traffic during a time slot (slot) and
sends this information to an ISP fusion center where detec-
tion takes place. We assume that there is an attacker who
may or may not launch an attack during a slot. The system
administrator (henceforth known as admin) can perform a
hypothesis test on observations with the null hypothesis H0

being that the attacker does not launch an attack and the
alternate hypothesis H1 that he does launch an attack. We
are interested in the following question: can the attacker
launch an attack without being detected by the admin and,
if so, how large can such an attack be? Admin can toler-
ate some false positives, or cases when the statistical test
incorrectly concludes an attack is under way. This rejection
of H0 is known as a false alarm, and, following standard
nomenclature, we denote its probability by pFA. Admin’s
test may also fail to indicate that an attack is taking place.
Acceptance of H0 when it is false is known as a missed de-
tection, and we denote its probability by pMD. Then, the
sum pFA + pMD characterizes the necessary trade-off be-
tween false alarms and missed detections in the design of a
hypothesis test.

Denote by f0 the pdf of the regular traffic by a home-
router in a slot in the absence of an attack (i.e. when H0 is
true) and by f1 the pdf of traffic by a home-router in a slot
in the presence of an attack (i.e. when H1 is true). When
f0 and f1 are known to admin, he can construct an optimal
statistical hypothesis test (such as the Neyman-Pearson or
likelihood ratio test) that minimizes the sum of error prob-
abilities [4, Ch. 13], pE = pFA + pMD. When an attack is
launched the adversary targets each home with probability



q(n); in particular, all homes are chosen when q(n) = 1. An
attack is covert provided that, for any ε > 0, the attacker
has a strategy for each n such that

lim inf
n

pE ≥ 1− ε. (1)

3. ACHIEVABILITY
In the following |M| denotes the determinant of any square

matrix M. We recall that a real matrix M is positive defi-
nite if for any non-zero vector xT ∈ RN , xTMx > 0. Both
regular and attack traffic are represented by vectors. More
precisely, Xr = (Xr,1, . . . , Xr,N ) ∈ RN characterizes the
regular traffic passing from home-router r in a slot and
Y r = (Yr,1, . . . , Yr,N ) ∈ RN characterizes the attack traf-
fic passing from home-router r in a slot. We assume that
X1, . . . , Xn are iid rvs, that Y 1, . . . , Y n are iid rvs, and that
Xr is independent of Y s for any r and s.

As another illustration, take N = 2 with Xr,1 the regu-
lar traffic at home-router r (resp. Yr,1 the attack traffic)
counted in packets and Xr,2 the regular traffic at home-
router r (resp. Yr,2 the attack traffic) counted in bytes.

Denote by f0(x) and g(x, n) the pdfs of Xr and Y r, res-
pectively. Assume that Xr and Y r have multivariate Gaus-
sian distributions with location (mean) parameters µT

0
=

(µ0,1, . . . , µ0,N ) and µ
1
(n)T = (µ1,1(n), . . . , µ1,N (n)), and

positive definite covariance matrices Σ0 and Σ1(n), namely,

f0(x) =
e−

1
2

(x−µ
0
)TΣ−1

0 (x−µ
0
)√

(2π)N |Σ0|
, (2)

g(x, n) =
e−

1
2

(x−µ
1
(n))TΣ1(n)−1(x−µ

1
(n))√

(2π)N |Σ1(n)|
. (3)

The sum of regular and attack traffic, Xr + Yr, at home r
when an attack occurs has pdf

f1(x, n) =
e−

1
2

(x−µ
0
−µ

1
(n))T (Σ0+Σ1(n))−1(x−µ

0
−µ

1
(n))√

(2π)N |Σ0 + Σ1(n)|
.

Under H0, Zr = Xr with pdf f0. Under H1, Zr = Xr +
χrY r with q(n) := P(χr = 1), where χr is an indicator ran-
dom variable which equals 1 if home r is selected to actively
issue an attack, so that the pdf of Zr is given by

h(x, n) = (1− q(n))f0(x) + q(n)f1(x, n).

Denote by f
(n)
0 (resp. h(n)) the joint pdf of X1, . . . , Xn

(resp. Z1, . . . , Zn). It is known that the minimum pE is

p?E = 1− TV
(
f

(n)
0 , h(n)

)
, (4)

with TV (u, v) :=
∫
|u(x)−v(x)|dx the total variance distance

between pdfs u and v [4, Theorem 13.1.1]. The lemma below

gives an upper bound on TV
(
f

(n)
0 , h(n)

)
,

Lemma 3.1 (Ub. on total variation distance).

For all n ≥ 1, TV
(
f

(n)
0 , h(n)

)
≤ 1

2

√
(1 + q(n)2C(n))n − 1,

where constant C(n), known as the Fisher information con-
stant at origin [3], is given by

C(n) = −1 +

∫
RN

f1(x, n)2

f0(x)
dx1 · · · dxN .

The proof is similar to the proof of Lemma 7.1 in [2]. To-
gether with (1) and (4) this yields the following,

Corollary 3.1. Fix ε > 0. If q(n)
√
C(n) = O(1/

√
n)

then lim supn TV
(
f

(n)
0 , h(n)

)
≤ ε.

Let A(n) = (Σ0 +Σ1(n))−1 and B(n) = Σ−1
0 −2Σ−1

0 (Σ−1
0 +

Σ1(n)−1)−1Σ−1
0 .

Theorem 3.1 (Achievability).
The attack is covert if ∃n0 such that B(n) is positive defi-

nite for n ≥ n0 and if q(n)
√
C(n) = O(1/

√
n), where

C(n) = −1 +
|Σ0|

√
|B(n)−1|

|Σ0 + Σ1(n)|

× e
−µ

1
(n)T

(
A(n)−4A(n)B(n)−1A(n)

)
µ
1
(n)
, (5)

B(n) is positive definite if the eigenvalues of Σ0Σ1(n)−1 are
strictly larger than one.

Sketch of proof. By Corollary 3.1 the attacker is covert if
q(n)

√
C(n) = O(1/

√
n). On the other hand, when matrix

B(n) is positive definite one can show that constant C(n) is
given by (5). The last statement of the proof follows from
standard linear algebra arguments.

The proof of Theorem 3.1 holds under the assumption
that admin knows the distribution of the attack traffic. If
this assumption does not hold then Theorem 3.1 still holds
as admin cannot do better with less knowledge.

As a first illustration assume that N = 1 (i.e. Xr and
Yr have Gaussian distributions). Introduce E[Yr] = µ1(n),
var(Xr) = σ2

0 , and var(Yr) = σ1(n)2. Then B(n) = (σ2
0 −

σ1(n)2)/σ2
0(σ2

0 + σ1(n)2) is strictly positive when σ1(n)2 <
σ2

0 , and in this case

C(n) = −1 +
σ2

0√
σ4

0 − σ1(n)4
e

µ1(n)2

σ20−σ1(n)2 . (6)

By Theorem 3.1 it is easily shown from (6) that the attacker
is covert if lim supn σ1(n)2 < σ2

0 , µ1(n) = O(1), q(n)µ1(n) =
O(1/

√
n), and q(n)σ1(n)2 = O(1/

√
n).

Another illustration is N = 2. Choose (with Σ1 := Σ1(n))

Σi =

(
a2
i ρiaibi

ρiaibi b2i

)
, i = 0, 1,

with a0 and b0 ( resp. a1 and b1 ) the standard deviations
of X1,1 and X1,2 (resp. Y1,1 and Y1,2) respectively, and ρ0

(resp. ρ1) the Pearson correlation coefficient of X1,1, X1,2

(resp. Y1,1, Y1,2). Matrix Σi is positive definite iff

−1 < ρi < 1. (7)

The eigenvalues of the (symmetric) matrix Σ0Σ−1
1 are

−2a0b0a1b1ρ0ρ1 + a2
0b

2
1 + b20a

2
1 ±
√
d

2a2
1b

2
1(1− ρ2

1)
, (8)

with

d = −4a0a1b0b1ρ0ρ1(a2
0b

2
1 + a2

1b
2
0)

+ 4a2
0a

2
1b

2
0b

2
1(ρ2

0 + ρ2
1) + (a2

0b
2
1 − a2

1b
2
0)2.

Note that d ≥ 0 since the eigenvalues of a symmetric matrix
are all real. We deduce from (8) that both eigenvalues of
Σ0Σ−1

1 are strictly larger than one iff

−a0b0a1b1ρ0ρ1 +
1

2
(a2

0b
2
1 + b20a

2
1)− 1

2

√
d > a2

1b
2
1(1−ρ2

1). (9)

When (7) holds for i = 0, 1 and (9) is met Theorem 3.1
implies that the attacker is covert when q(n) = O(1/

√
n).



4. CONVERSE
In this section we relax the assumption that Xr and Y r

have multivariate Gaussian distributions. Recall that admin
observes {zr}

n
r=1, zr = (zr,1, . . . , zr,N ), with zr a realization

of Zr, which can be reorganized as {zr,1}nr=1, . . . , {zr,N}nr=1,
where {zr,j}nr=1 contains information about feature j. Ad-
min can therefore detect an attack by investigating sepa-
rately sequences {zr,1}nr=1, . . . , {zr,N}nr=1. From this obser-
vation, the following converse result can be shown,

Theorem 4.1 (Converse).
If for at least one j (j = 1, . . . , N)

0 < inf
n≥1

var(Yn,j) ≤ sup
n≥1

var(Xn,j) <∞, (10)

sup
n≥1

E[|Xn,j − E[Xn,j ]|3] <∞, (11)

lim
n

√
nq(n)E[Yn,j ] = +∞, (12)

q(n)(var(Yn,j) + (1− q(n))E[Yn,j ])) = O(1), (13)

then the attacker is not covert.

The proof uses a detector of the form 1
n

∑n
r=1 zr,j ≶ τj for

feature j and the Berry-Esseen theorem. The detector built
in the proof of Theorem 4.1 does not use the attack distri-
bution. However, Theorem 4.1 still holds if admin knows it
as this knowledge can only increase the effectiveness of the
detector.

When Xr and Y r have multivariate Gaussian distribu-
tions given in (2)-(3), E[Xn,j ] = µ0,j , E[Yn,j ] = µ1,j(n),
var(Xn,j) = σ2

0,j , and var(Yn,j) = σ2
1,j , with σ2

0,j (resp.

σ1,j(n)2) the jth diagonal element of the covariance ma-
trix Σ0 (resp. Σ1(n)). In this case (10) becomes 0 <
infn≥1 σ1,j(n)2 < σ2

0,j and (11) is automatically satisfied.

5. EVALUATION
Next, we report numerical results relying on real network

traffic. Our goal is to show that the phase transition on the
error probability predicted by the model still holds beyond
the assumptions considered in the model. In particular, the
model considers features sampled from a multivariate Gaus-
sian, whereas we consider real network traffic.

Evaluation setup. We base our results on real data
of regular traffic collected from network interfaces of more
than 2000 home-routers between June 10th 2018 and August
18th 2018. These routers gather information about network
usage. For the purpose of this work, we use packet and byte
counts of upstream and downstream traffic. We observe
that the joint probability distribution of data (upload and
download, byte and packet counts) can be characterized by
a mixture of five multivariate Gaussian distributions. Then,
we ran a controlled experiment in the lab to estimate the
distribution of traffic generated by a typical DDoS attack
[5]. The obtained statistics were used as a baseline to gen-
erate the synthetic data of attack traffic from a multivariate
Gaussian mixture model with four components, where

µ
1,i

(n) = δcin
−α and Σ1,i(n)2 = δCin

−α, (14)

with i ∈ {1, 2, 3, 4}. When considering an attacker that
issues an attack from a fraction of the homes, we let

q(n) = cqn
−β and α = 0. (15)

(a) all homes (b) fraction of homes

Figure 1: Phase transition under real traffic.

In the experiments, the number of observations is assumed
to be n, i.e., the number of compromised homes.

Phase transitions under real traffic. Figure 1 re-
ports the error probability as a function of the aggressive-
ness of the attacker. We start from our reference setup, with
pFA = 0.01 and δ = 0.1, considering an attacker issuing at-
tack from all homes (Figure 1(a)). The average total traffic
injected by the attacker is proportional to n1−α: as α grows
the total attack traffic decreases and the probability of error
transitions from 0 to 1. For values of n as small as 1,000, we
already observe a sharp phase transition occurring around
α = 0.5, in agreement with the square root law. Then, we
consider a variation obtained after considering attacks from
a subset of homes and letting δ = 1, where the fraction of
homes q(n) is given by q(n) = n−β (Figure 1(b)). As β
grows the total attack traffic decreases and the probability
of error transitions from 0 to 1, with a phase transition at
β = 0.5, agreeing with the square root law.

To produce Figure 1 we consider a simple binary classi-
fier for attack detection that implements a likelihood ratio
test [1, Chapter 9], wherein the likelihood ratio is compared
against a threshold τ to determine the class of a given set of
traffic samples. Both threshold and probability of error are
computed using Monte Carlo methods, where given a tar-
get pFA, we obtain the threshold τ for the hypothesis test.
Then, we assess the probability of error pFA + pMD.

6. CONCLUSION
In this work we extend the square-root scaling laws of

DDoS attacks in the realm of covertness [2] to the multi-
feature setup. Our results pave the way towards a method
for extending and validating scaling laws associated to covert
attacks in realistic settings.
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