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Abstract— In this paper, we present a new control policy
parametrization for the finite-horizon covariance steering prob-
lem for discrete-time Gaussian linear systems (DTGLS) via
which we can reduce the latter stochastic optimal control
problem to a tractable optimization problem. We consider two
different formulations of the covariance steering problem, one
with hard terminal LMI constraints and another one with soft
terminal constraints in the form of a terminal cost which corre-
sponds to the squared Wasserstein distance between the actual
terminal state (Gaussian) distribution and the desired one. We
propose a solution approach that relies on the affine disturbance
feedback parametrization for both problem formulations. We
show that this particular parametrization allows us to reduce
the hard-constrained covariance steering problem into a semi-
definite program (SDP) and the soft-constrained covariance
steering problem into a difference of convex functions program
(DCP). Finally, we show the advantages of our approach over
other covariance steering algorithms in terms of computational
complexity and computation time by means of theoretical
analysis and numerical simulations.

I. INTRODUCTION

In this work, we consider the problem of characterizing

computationally tractable control policies that will steer the

mean and covariance of the terminal state of a discrete-time

linear stochastic system “close” to respective goal quantities.

This type of problems are referred to as covariance steering

(or covariance control) in the literature of stochastic control.

We will consider two variations of the covariance steering

problem. The goal in the first problem formulation is to

steer the mean of the terminal state to a prescribed vector

and have the terminal state covariance satisfy a certain

LMI-type constraint; we refer to this problem as the hard

constrained covariance steering (HCCS) problem. In the

second formulation of the covariance steering problem, we

seek for a control policy that will minimize the distance be-

tween the terminal (Gaussian) distribution of the state and a

desired goal (Gaussian) distribution measured in terms of the

(squared) Wasserstein distance between the two distributions

while satisfying the probabilistic input and state constraints;

we refer to this problem as the soft-constrained covariance

steering (SCCS) problem.

Literature Review: Infinite-horizon covariance control

problems for both continuous-time and discrete-time stochas-

tic linear systems have been addressed in [1]–[3]. Finite-

horizon covariance steering problems have recently received
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significant attention for both the continuous-time case [4],

[5] and the discrete-time case [6]–[8]. Covariance control

problems for the partial information case have been stud-

ied in [9]–[12]. Approaches that consider soft-constrained

formulations of the covariance steering problem (based on

appropriate terminal costs) can be found in [13], [14]

and [15], in which the terminal cost is defined in terms

of, respectively, the squared Wasserstein distance and the

squared L2 spatial norm between the goal distribution and

the distribution attained by the terminal state.

In our previous work, we have addressed covariance steer-

ing problems for discrete-time stochastic (Gaussian) linear

systems under both full state and partial state information

based on techniques from convex optimization [6], [8]–[10]

and difference of convex functions programming [14]. In

these references, the reduction of the stochastic optimal con-

trol problems to tractable optimization problems relied on the

use of the state history feedback control parametrization [16].

By using the state feedback control policy parametrization,

one can reduce the covariance steering problem into a convex

program via a bilinear transformation. [17]. Because, the

whole history of states is used in this method, the dimension

of the resulting optimization problem can be prohibitive for

problems with long time horizons.

Main Contribution: In this paper, we present a new

solution approach to the covariance steering problem (for

both the hard-constrained and the soft-constrained problem

formulations) in the case of full state information. Our

approach is based on a control policy parameterization which

can be interpreted as a stochastic version of the affine

disturbance feedback control parametrization [18] tailored

to the covariance steering problem. We show that by using

this particular control policy parametrization, one can di-

rectly reduce the HCCS problem into a convex optimization

problem and the SCCS problem into a difference of convex

functions program, whose decision variables are essentially

the controller parameters. This is in sharp contrast with

the state history feedback control parametrization which

requires significant pre-processing in order to associate the

controller parameters (decision variables of the stochastic

optimal control problem) with the decisions variables of

the corresponding (finite-dimensional) optimization program

by means of bilinear transformations. The fact that in our

proposed approach the decision variables of the control

and optimization problems are in direct correspondence also

allows us to consider modified control policies which are

based on truncated histories of the disturbances which have

acted upon the system. Using these modified policies lead

to more computationally tractable optimization problems



(problems with fewer decision variables).

Structure of the paper: The rest of the paper is organized

as follows. In Section II, we formulate the two variations of

the covariance steering problem and introduce our proposed

policy parametrization. The reduction of the stochastic opti-

mal control problem into a convex semidefinite program (for

the HCCS problem) and a difference of convex functions

program (for the SCCS problem) are described in Sections

III and IV, respectively. In Section V, we present numerical

simulations and finally, we conclude the paper in Section

VI.

II. PROBLEM FORMULATION

A. Notation

We denote by R
n the set of n-dimensional real vectors

and by Z the set of integers. We write E [·] to denote

the expectation functional. [τ1, τ2] denotes the set {τ1, τ1 +
1, . . . , τ2}. Given a finite sequence of vectors X , we denote

by vertcat(X ) the concatenation of its vectors, that is,

vertcat(X ) := [xT
1 , . . . , x

T
m]T. Given a matrix A, we

denote its Frobenius norm by ‖A‖F and its nuclear norm

by ‖A‖∗square matrix A; if in addition A is a square

matrix, we denote its trace by tr(A). We write 0 and In to

denote the zero matrix (of suitable dimensions) and the n×n

identity matrix, respectively. We will denote the convex cone

of n×n symmetric positive semi-definite (symmetric positive

definite) matrices by S
+
n (S++

n ). Given A ∈ S
+
n , we denote by

A1/2 ∈ S
+
n its (unique) square root, that is, A1/2A1/2 = A.

We write bdiag(A1, . . . , A`) to denote the block diagonal

matrix formed by the matrices Ai, i ∈ {1, . . . , `}. Finally,

we denote by µz and varz the mean and the variance of

a random vector z, respectively, that is, µz := E[z] and

varz := E[(z − µz)(z − µz)
T] = E[zzT]− µzµ

T
z .

B. Squared Wasserstein Distance

The Wasserstein distance defines a valid metric (i.e.,

satisfies all relevant axioms of a metric) in the space of

probability distributions. Although, in general, it is not

possible to find a closed-form expression for the Wasser-

stein distance between two arbitrary probability distributions,

the Wasserstein distance between two Gaussian distribu-

tions admits a closed form expression [19]. In particular,

given two multivariate Gaussian distributions N1(µ1,Σ1)
and N2(µ2,Σ2), with µ1, µ2 ∈ R

n and Σ1, Σ2 ∈ S
++
n ,

the squared Wasserstein distance between them is given as

follows:

W 2 (N1,N2) = ‖µ1 − µ2‖22
+ tr

(

Σ1 +Σ2 − 2
(

Σ
1/2
2 Σ1Σ

1/2
2

)1/2
)

. (1)

For more details, the reader may refer to [13], [14].

C. Problem Setup

We consider the following discrete-time stochastic linear

system

x(t+ 1) = A(t)x(t) +B(t)u(t) + w(t), (2a)

x(0) = x0, x0 ∼ N (µ0,Σ0), (2b)

for t ∈ [0, T −1]d, where µ0 ∈ R
n and Σ0 ∈ S

++
n are given.

Let X0:t := {x(τ) ∈ R
n : τ ∈ [0, t]d}, for t ∈ [0, T ]d,

U0:t := {u(τ) ∈ R
m : τ ∈ [0, t]d}, for t ∈ [0, T − 1]d,

and W0:t := {w(τ) ∈ R
n : τ ∈ [0, t]d}, for t ∈ [0, T −

1]d. We assume that the noise process W0:t corresponds to a

sequence of independent and identically distributed normal

random variables with

E [w(t)] = 0, E
[

w(t)w(t)T
]

= δ(t, τ)W, (3)

for all t, τ ∈ [0, T − 1]d, where W ∈ S
+
n and δ(t, τ) := 1,

when t = τ , and δ(t, τ) := 0, otherwise. Furthermore, x0 is

independent of W0:T−1, that is,

E
[

x0w(t)
T
]

= 0, E
[

w(t)xT
0

]

= 0, (4)

for all t ∈ [0, T − 1]d.

Equation (2) can be written more compactly as follows:

x = Guu+Gww +G0x0, (5)

where x := vertcat(X0:T ) ∈ R
(T+1)n, u :=

vertcat(U0:T−1) ∈ R
Tm and w := vertcat(W0:T−1) ∈

R
Tn. The exact expressions for Gu,Gw and G0 are omitted

due to space constraints. The reader can refer to [14] for

further details. Additionally, we have

E [w] = 0, E
[

wwT
]

= W, (6)

where in light of (3)

W := E
[

bdiag(w(0)w(0)T, . . . , w(T − 1)w(T − 1)T
]

= bdiag(W, . . . ,W ).

D. Affine Disturbance Feedback Controller Parametrization

Under the assumption of perfect state information, one

can recover at each stage the disturbance terms that have

acted upon the system at all previous stages. Thus, one can

use all these past distrurbances to compute the control input

that will be applied to the system at each stage. Next, we

propose a modified version of the so-called affine disturbance

feedback control policy parametrization, which we denote by

κ(t,W0:t−1, x(0)) which is defined as follows:

κ(t) =











ū(t) + Lt (x(0)− µ0)

+
∑t−1

τ=0 K(t−1,τ)w(τ) if t ∈ [1, T − 1]d,

ū(0) + Lt (x(0)− µ0) if t = 0,

(7)

where Lt,K(t,τ) ∈ R
m×n, ∀t, τ ∈ [0, T − 1]d.

It is worth noting that the parametrization we propose

is different from the standard affine disturbance feedback

parametrization due to the presence of the extra term

Lt(x(0) − µ0) for all t ∈ [0, T − 1]d. To understand the

necessity of this extra term, one can think of a case in

which the system is not acted upon any disturbances, that

is, w(t) = 0 for all t ∈ [0, T ]d (although there are no

disturbances, the initial state is still uncertain), and also

Lt ≡ 0. In this case, κ(t) = baru(t), which means that

there is not feedback terms to control the evolution of the

state covariance.

Remark 1 To reduce the computational burden, one can

truncate the disturbance history feedback policy (7) up to



a desired number, that is, to use only a portion of the past

disturbances that have acted upon the system to compute

the control input. We denote by γ ∈ [0, T ]d a parameter that

determines the length of the truncated history of disturbances

such that the term
∑t−1

τ=0 K(t−1,τ)w(τ) that appears in (7)

is replaced by the term
∑t−1

τ=t−(1+γ) K(t−1,τ)w(τ). To solve

the SCCS and HCCS problems based on the truncation of

the disturbance history, the optimization (matrix) variable K

which is defined in (15) will have to be revised by setting

the blocks K(t−1,τ) equal to 0 for all τ < t− (1 + γ).

E. Problem Formulation

Next, we provide the precise formulations for the two

variants of the covariance steering problems based on the

control policy parametrization given in (7).

Problem 1 (Hard Constrained Covariance Steering). Let

µd, µ0 ∈ R
n, Σd ∈ S

++
n , ρ ∈ R

+ be given. Consider

the system described by (2). Then, find the collection of

matrix gains K := {K(t,τ), Lt ∈ R
m×n : (t, τ) ∈

[0, T − 2]× [0, T − 2], t ≥ τ} and the sequence of vectors

U := {ū(0), . . . , ū(T − 1)} that minimize the following

performance index:

J1(U ,K ) := E

[ T−1
∑

t=0

u(t)Tu(t)

]

(8)

subject to the boundary condition on the terminal mean and

covariance:

µx(T ) = µd, (9)

varx(T ) � Σd. (10)

Remark 2 The objective function defined in (8) represents

the expected value of the total control effort. The constraint

in (9) dictates that the terminal state mean be equal to

the desired mean and the constraint in (10) dictates that

terminal state covariance be upper bounded, with respect to

the Lowner partial order, by the desired covariance matrix.

Problem 2 (Soft Constrained Covariance Steering). Let

µf , µ0 ∈ R
n, Σf ,Σ0 ∈ S

++
n and ρ ∈ R

+ be given. Consider

the system described by (2). Then, find the collection of

matrix gains K := {K(t,τ), Lt ∈ R
m×n : (t, τ) ∈

[0, T − 2]× [0, T − 2], t ≥ τ} and the sequence of vectors

U := {ū(0), . . . , ū(T − 1)} that minimize the following

performance index:

J2(U ,K ) := W 2
2 (Nf ,Nd), (11)

subject to input constraint Ctotal(U ,K ) ≤ 0 , where

C(U ,K ) := E

[

T−1
∑

t=0

u(t)Tu(t)
]

− ρ2, (12)

Nf = N (µx(T ), varx(T )) and Nd = N (µd,Σd) represent the

Gaussian probability distribution of the terminal state at t =
T and the desired (goal) Gaussian probability distribution,

respectively.

III. REDUCTION OF THE HCCS PROBLEM INTO A

SEMIDEFINITE PROGRAM

To reduce Problems 1 and 2 into tractable optimization

problems, first we need to express the control input vector

u in terms of the decision variables in (7). In particular,

the concatenated control input vector can be expressed as

follows:

u = ū+L(x0 − µ0) +Kw, (13)

where K = [ 0 0

K 0
] and

ū := [ū(0)T, ū(1)T . . . , ū(T − 1)T]T, (14)

K :=











K(0,0) 0 . . . 0

K(1,0) K(1,1) . . . 0

...
...

. . .
...

K(T−2,0) K(T−2,1) . . . K(T−2,T−2)











, (15)

L := [L(0)T, L(1)T . . . , L(T − 1)T]T. (16)

By plugging equation (13) into equation (5), we get

x = Guū+ (Gw +GuK)w +G0x0 +GuLx̃(0), (17)

where x̃(0) = x(0) − µ0. Now, x(t) can be expressed as

x(t) = Pt+1x, where Pt+1 := [0, . . . , In, . . . ,0] is a block

row vector whose tth block is equal to In whereas all other

blocks are equal to the zero matrix.

Next we provide analytical expressions for the mean and

the variance of x and the state x(t) for all t ∈ [0, T ]d.

Proposition 1. The mean and the variance of the random

vector x which satisfies equation (17) is given by:

µx = f(ū), varx = h(L,K), (18)

where

f(ū) := Guū+G0µ0, (19a)

h(L,K) := (G0 +GuL)Σ0(G0 +GuL)T

+ (Gw +GuK)W(Gw +GuK)T. (19b)

Furthermore, the mean and the variance of the state x(t)
are given by

µx(t) = Pt+1f(ū) (20a)

varx(t) = Pt+1h(L,K)PT
t+1. (20b)

The proofs of the main theoretical results of this paper are

omitted due to space constraints and can be found in [20].

Next, we obtain an expression for the performance index

of the HCCS (Problem 1) in terms of the decision variables

(ū,L,K).

Proposition 2. The performance index J1(U ,K ) which is

defined in (8) is equal to J1(ū,L,K), where

J1(ū,L,K) := ūTū+ tr(KWK
T) + tr(LΣ0L

T) (21)

provided that the pairs of decision variables (U ,K ) and

(ū,L,K) are related by (15). Furthermore, J1(ū,L,K) is

a convex function.



The next proposition shows that terminal covariance con-

straint (10) can be written as a positive semidefinite con-

straint.

Proposition 3. The positive semi-definite constraint Σd �
varx(T ) is satisfied iff V(L,K) ∈ S

+
n where

V(L,K) :=

[

Σd ζ(L,K)
ζ(L,K)T In

]

(22)

and ζ(L,K) is defined as in (23).

To show that the terminal covariance constraint in (10) can

be written as the positive semidefinite constraint (22), let

ζ(L,K) := PT+1

[

(G0 +GuL) (Gw +GuK)
]

R

(23)

where RR
T =

[

Σ0 0

0 W

]

and PT+1h(L,K)PT
T+1 =

ζ(L,K)ζ(L,K)T.

Theorem 1. Problem 1 is equivalent to the following semi-

definite program:

min
ū,L,K

J1(ū,L,K) (24a)

subject to PT+1f(ū) = µd (24b)

V(L,K) ∈ S
+
n (24c)

Remark 3 Theorem 2 is a direct consequence of Proposi-

tions 1, 2 and 3. In view of this theorem, Problem 1 reduces

into a semi-definite program.

IV. REDUCTION OF THE SCCS PROBLEM INTO A

DIFFERENCE OF CONVEX FUNCTIONS PROGRAM

In this section, we associate the SCCS problem with a

difference of convex functions program (DCP). In order to

do that, we utilize the control policy parametrization in (7)

and use the results from Section III.

By setting µ1 = µx(T ) and Σ1 = varx(T ), where µx(T )

and Σ1 = varx(T ) are defined in (20a) and (20b) for t =
T , respectively, and also µ2 = µf and Σ2 = Σd into the

expression of the squared Wasserstein distance given in (1),

we obtain the following expression of the objective function

(11) in terms of the new decision variables:

J3(ū,L,K) := ‖PT+1f(ū)− µd‖22
+ tr

(

PT+1h(L,K)PT
T+1 +Σd

)

− 2 tr
(

(
√

ΣdPT+1h(L,K)PT
T+1

√

Σd)
1/2

)

. (25)

To show that the function defined in (25) is a difference of

two convex functions we can define the objective function as

a function of ū and ζ, where ζ(L,K) is an affine function

which is defined in (23). In view of (25) and (23), we define

the new objective function as follows:

J̃3(ū, ζ(L,K)) := ‖PT+1f(ū)− µd‖22
+ ‖ζ(L,K)‖2F + tr(Σd)− 2‖

√

Σdζ(L,K)‖∗. (26)

Proposition 4. The performance index J2(U ,K ) that is

defined in equation (11) is equivalent to J̃3(ū, ζ(L,K))
which is defined in (26). Also, the function defined in the

equation (26) is the difference of two convex functions in

variables ū,L,K.

Recall that, Problem 2 has additional constraints compared

with Problem 1. In the next proposition, we show that these

constraints correspond to convex constraints in terms of the

decision variables (ū,L,K).

Proposition 5. The constraint function Ctotal(Ū ,K ) which

is defined in equation (12) can be expressed in terms of the

decision variables (ū,L,K) as

C(ū,L,K) := ūTū+ tr(KWK
T)

+ tr(LΣ0L
T)− ρ2, (27)

and the set of all (ū,L,K) that satisfy the constraint

C(ū,L,K) ≤ 0 defines a convex set.

The next theorem which is a direct consequence of Propo-

sitions 4 and 5 will allow us to reduce Problem 2 into a

difference of convex functions program.

Theorem 2. Problem 2 is equivalent to the following opti-

mization problem:

min
ū,L,K,ξ

J̃ (ū, ζ) (28a)

subject to ξ = ζ(L,K) (28b)

C(ū,L,K) ≤ 0 (28c)

where ζ(L,K) is defined in Equation (23).

One can exploit the structure of the performance index

J3 in (26) to improve computational tractability, by using

the convex-concave procedure (CCP) [21]. In the CCP, the

objective and constraint functions that can be expressed as

a difference of two convex functions are convexified by

linearizing the difference function around the solution of the

previous iteration. Then, the convexified problem is solved

using convex optimization techniques. The procedure is ter-

minated after the difference in the optimal values of convex

sub-problems between iterations are sufficiently close. To use

the CCP as computational scheme for the DCP defined in

Theorem 2, the derivative of the term −2‖√Σdζ(L,K)‖∗
in equation (26) is required. Since the nuclear norm is a

non-smooth function, this derivative may not exist in general

but in this particular case, the derivative has a closed form

expression which is given by the following proposition.

Proposition 6. If ζζT ∈ S
++
n , holds ∀L,K then the gradient

of ‖√Σdζ(L,K)‖∗ is well-defined and given by:

∇ζ‖
√

Σdζ(L,K)‖∗ :=
√

Σd(
√

Σdζζ
T
√

Σd)
−1/2

√

Σdζ. (29)

Remark 4 Since the objective function of the problem given

in (28) corresponds to a difference of convex function and

the constraints determine a convex set, the CCP heuristic is

guaranteed to converge to a stationary point which satisfies

the first order necessary conditions for optimality. [21]

V. NUMERICAL EXPEERIMENTS

In this section, we present results obtained by numeri-

cal experiments in which we compare the proposed pol-

icy parametrization with the parametrization utilized in [8]

in terms of performance and computational efficiency. All



computations were performed on a laptop with 2.8 GHz

Intel Core i7-7700HQ CPU and 16 GB RAM. We used

CVXPY [22] for modelling with MOSEK [23] as the solver.

To solve the SCCS problem, we used the convex-concave

procedure by utilizing Proposition 6 to convexify the DCP

objective function (11). The termination criteria was chosen

as |fk − fk−1| ≤ ε where fk denotes the result of the

optimization problem at kth iteration.

In our numerical simulations, we consider two examples.

One is based on a randomly generated linear dynamical

system and the other corresponds to linearized model of the

longitudinal dynamics of an aircraft.

A. Random Linear System

The parameters of the random linear system are taken as

follows:

A(t) =
[

1.1 −0.07
0.23 −0.87

]

, B(t) =
[

0
0.1

]

, W =
[

0.1 0
0 0.3

]

.

In addition, µ0 = [1.0, 0.0]T, Σ0 = I2, µd = [10.0, 0.0]T,

Σd =
[

4.0 −1.5
−1.5 4.0

]

and T = 50. In our simulations, we have

truncated the disturbance history in order to decrease the

number of decision variables of the optimization problem as

explained in Remark 1.

Table I presents comparison results between the truncated

affine disturbance feedback control policy and the state his-

tory feedback control policy [8]. The first column shows the

truncation parameter γ used in the controller parametrization.

The second and third columns show the objective value at

the computed minimizer and the computation time of the

HCCS problem whereas the last two columns show the

corresponding results obtained for the SCCS problem. The

last row of the table shows the results obtained by using the

state history feedback control policy.

Based on these results, we can claim that the full distur-

bance history feedback policy achieves the same value for

both the HCCS and the SCCS problems while reducing the

computational cost. Furthermore, as we increase the trunca-

tion parameter γ, the optimal value does not decrease below

a certain value whereas the computation time increases.

The results based on the experiments with the random

linear system suggests that our policy parametrization may

be equivalent to the one in [8] given that the two policies

achieve the same objective value. However, more research

is needed to establish rigorously the validity of the previous

claim.

B. Linearized Longitudinal Aircraft Dynamics

The discrete-time model of the linearized longitudinal dy-

namics of an aircraft is taken from [12] and is obtained after

the discretization of the continuous-time dynamics with sam-

pling period (∆T = 10s). For our simulations, we used µ0 =
[0.0, 0.0, 0.0, 0.0, 0.0]T and µd = [400.0, 0.0, 0.0, 0.0, 0.0]T

whereas Σ0 = bdiag(100.0, 25.0, 25.0, 1.0, 1.0) and Σd =
bdiag(104, 100.0, 4.0, 1.0, 1.0). For the SCCS simulations,

we used ρ = 4 and T = 40.

In Figures 2 and 3, the statistics of the first component of

the state x(t), which is the deviation from steady flight alti-

tude denoted as ∆h, is shown along with sample trajectories

and the desired mean and covariance. Figure 2 corresponds to

TABLE I: Comparison between affine disturbance feedback

policy with different truncation lengths and state history

feedback policy parametrization in terms of performance

and computation time

HCCS SCCS

γ Value Time (s) Value Time (s)

0 2839.93 1.32 2.00 2.19

1 2535.38 0.89 1.19 3.63

3 2383.88 1.34 0.74 6.17

5 2333.49 1.69 0.59 9.78

10 2288.79 3.29 0.46 15.80

20 2271.51 4.84 0.40 29.77

30 2269.66 6.32 0.39 36.94

40 2269.46 9.78 0.38 38.87

50 2269.44 9.61 0.38 37.38

[6] 2269.44 16.32 0.38 112.39

the HCCS problem whereas Figure 3 to the SCCP problem.

The black curve corresponds to the trajectory of the mean and

the blue shaded area illustrates the 2-σ confidence region,

whereas the green line and green shaded region shows the

desired mean and the 2-σ confidence region of the desired

covariance respectively. The optimal policy is computed in

6.9s and 57.3s for the HCCS and the SCCS, respectively.

VI. CONCLUSION

In this paper, we proposed new covariance steering al-

gorithms for discrete-time Gaussian linear systems based

on a new control policy parametrization. We have studied

two variations of the covariance steering problem, one in

which the constraints on the terminal state covariance are

enforced as hard LMI constraints and another one in which

they correspond to soft constraints encoded in an appropri-

ately selected terminal cost. Our numerical experiments have

demonstrated that the proposed algorithms perform better, in

terms of computational efficiency, than algorithms which are

based on the state (history) feedback policy parametrization,

which have been employed in our previous work. In our

future work, we plan to consider applications of the proposed

covariance steering algorithms in trajectory optimization and

distributed control problems.
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