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Abstract—1In this paper, we present a new control policy
parametrization for the finite-horizon covariance steering prob-
lem for discrete-time Gaussian linear systems (DTGLS) via
which we can reduce the latter stochastic optimal control
problem to a tractable optimization problem. We consider two
different formulations of the covariance steering problem, one
with hard terminal LMI constraints and another one with soft
terminal constraints in the form of a terminal cost which corre-
sponds to the squared Wasserstein distance between the actual
terminal state (Gaussian) distribution and the desired one. We
propose a solution approach that relies on the affine disturbance
feedback parametrization for both problem formulations. We
show that this particular parametrization allows us to reduce
the hard-constrained covariance steering problem into a semi-
definite program (SDP) and the soft-constrained covariance
steering problem into a difference of convex functions program
(DCP). Finally, we show the advantages of our approach over
other covariance steering algorithms in terms of computational
complexity and computation time by means of theoretical
analysis and numerical simulations.

I. INTRODUCTION

In this work, we consider the problem of characterizing
computationally tractable control policies that will steer the
mean and covariance of the terminal state of a discrete-time
linear stochastic system “close” to respective goal quantities.
This type of problems are referred to as covariance steering
(or covariance control) in the literature of stochastic control.
We will consider two variations of the covariance steering
problem. The goal in the first problem formulation is to
steer the mean of the terminal state to a prescribed vector
and have the terminal state covariance satisfy a certain
LMI-type constraint; we refer to this problem as the hard
constrained covariance steering (HCCS) problem. In the
second formulation of the covariance steering problem, we
seek for a control policy that will minimize the distance be-
tween the terminal (Gaussian) distribution of the state and a
desired goal (Gaussian) distribution measured in terms of the
(squared) Wasserstein distance between the two distributions
while satisfying the probabilistic input and state constraints;
we refer to this problem as the soft-constrained covariance
steering (SCCS) problem.

Literature Review: Infinite-horizon covariance control
problems for both continuous-time and discrete-time stochas-
tic linear systems have been addressed in [1]-[3]. Finite-
horizon covariance steering problems have recently received
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significant attention for both the continuous-time case [4],
[5] and the discrete-time case [6]—[8]. Covariance control
problems for the partial information case have been stud-
ied in [9]-[12]. Approaches that consider soft-constrained
formulations of the covariance steering problem (based on
appropriate terminal costs) can be found in [13], [14]
and [15], in which the terminal cost is defined in terms
of, respectively, the squared Wasserstein distance and the
squared Lo spatial norm between the goal distribution and
the distribution attained by the terminal state.

In our previous work, we have addressed covariance steer-
ing problems for discrete-time stochastic (Gaussian) linear
systems under both full state and partial state information
based on techniques from convex optimization [6], [8]-[10]
and difference of convex functions programming [14]. In
these references, the reduction of the stochastic optimal con-
trol problems to tractable optimization problems relied on the
use of the state history feedback control parametrization [16].
By using the state feedback control policy parametrization,
one can reduce the covariance steering problem into a convex
program via a bilinear transformation. [17]. Because, the
whole history of states is used in this method, the dimension
of the resulting optimization problem can be prohibitive for
problems with long time horizons.

Main Contribution: In this paper, we present a new
solution approach to the covariance steering problem (for
both the hard-constrained and the soft-constrained problem
formulations) in the case of full state information. Our
approach is based on a control policy parameterization which
can be interpreted as a stochastic version of the affine
disturbance feedback control parametrization [18] tailored
to the covariance steering problem. We show that by using
this particular control policy parametrization, one can di-
rectly reduce the HCCS problem into a convex optimization
problem and the SCCS problem into a difference of convex
functions program, whose decision variables are essentially
the controller parameters. This is in sharp contrast with
the state history feedback control parametrization which
requires significant pre-processing in order to associate the
controller parameters (decision variables of the stochastic
optimal control problem) with the decisions variables of
the corresponding (finite-dimensional) optimization program
by means of bilinear transformations. The fact that in our
proposed approach the decision variables of the control
and optimization problems are in direct correspondence also
allows us to consider modified control policies which are
based on truncated histories of the disturbances which have
acted upon the system. Using these modified policies lead
to more computationally tractable optimization problems



(problems with fewer decision variables).

Structure of the paper: The rest of the paper is organized
as follows. In Section II, we formulate the two variations of
the covariance steering problem and introduce our proposed
policy parametrization. The reduction of the stochastic opti-
mal control problem into a convex semidefinite program (for
the HCCS problem) and a difference of convex functions
program (for the SCCS problem) are described in Sections
IIT and IV, respectively. In Section V, we present numerical
simulations and finally, we conclude the paper in Section
VL

II. PROBLEM FORMULATION
A. Notation

We denote by R"™ the set of n-dimensional real vectors
and by Z the set of integers. We write E[-] to denote
the expectation functional. [y, 73] denotes the set {r,71 +
1,...,72}. Given a finite sequence of vectors 2, we denote
by vertcat(Z") the concatenation of its vectors, that is,
vertcat(2) := [z1,...,2L]T. Given a matrix A, we
denote its Frobenius norm by ||A||r and its nuclear norm
by ||All.square matrix A; if in addition A is a square
matrix, we denote its trace by tr(A). We write 0 and I,, to
denote the zero matrix (of suitable dimensions) and the n xn
identity matrix, respectively. We will denote the convex cone
of n xn symmetric positive semi-definite (symmetric positive
definite) matrices by S, (S;/1). Given A € S}, we denote by
Al/?2 ¢ S, its (unique) square root, that is, AV2 A2 = A,
We write bdiag(A;, ..., As) to denote the block diagonal
matrix formed by the matrices A4;, i € {1,...,¢}. Finally,
we denote by p. and var, the mean and the variance of
a random vector z, respectively, that is, p, := E[z] and

var, i= E[(z — 1.)( — )] = E[z27] — popiT.
B. Squared Wasserstein Distance

The Wasserstein distance defines a valid metric (i.e.,
satisfies all relevant axioms of a metric) in the space of
probability distributions. Although, in general, it is not
possible to find a closed-form expression for the Wasser-
stein distance between two arbitrary probability distributions,
the Wasserstein distance between two Gaussian distribu-
tions admits a closed form expression [19]. In particular,
given two multivariate Gaussian distributions N7 (g1, 1)
and NQ(,LLQ,ZQ), with 1, po € R™ and X4, ¥y € Sj;—i_,
the squared Wasserstein distance between them is given as
follows:

W2 (N N2) = [l — palls

1/2
Ttr <21 £3y -2 (25/22125/2) > S

For more details, the reader may refer to [13], [14].

C. Problem Setup
We consider the following discrete-time stochastic linear
system
z(t+1) = A(t)z(t) + B(t)u(t) + w(t),
z(0) = o, xo ~ N (o, Xo),

(2a)
(2b)

for ¢t € [0,T —1]4, where pp € R™ and 3 € S} are given.
Let 20 = {z(r) € R" : 7 € [0,t]q}, for t € [0,T]4,
Uor == {u(r) € R™ : 7 € [0,t]q}, for t € [0,T — 1]g,
and #5.: == {w(r) € R" : 7 € [0,t]4}, for t € [0,T —
1]4. We assume that the noise process #{.; corresponds to a
sequence of independent and identically distributed normal
random variables with

Ew®)]=0, E[w®wt)"]=6s¢tnW, @3)

for all t,7 € [0,7 — 1]4, where W € S} and 6(¢,7) := 1,

when ¢t = 7, and 4(t, 7) := 0, otherwise. Furthermore, z is

independent of Wy.r_1, that is,
E [J;ow(t)T] =0,

forall t € [0,T — 1]4.
Equation (2) can be written more compactly as follows:

E [w(t)zg | =0, ©))

r = Guu+ Guw + Gozg, 5)

where = = vertcat(Zor) € RITUR 4 =
vertcat(%.r—1) € RT™ and w := vertcat(#.r_1) €
R™™, The exact expressions for G, G and G are omitted
due to space constraints. The reader can refer to [14] for
further details. Additionally, we have

E[w] =0, E[lww'] =W, (6)
where in light of (3)

W := E[bdiag(w(0)w(0)7,...,
= bdiag(W, ..., W).

w(T — Dw(T —1)7]

D. Affine Disturbance Feedback Controller Parametrization

Under the assumption of perfect state information, one
can recover at each stage the disturbance terms that have
acted upon the system at all previous stages. Thus, one can
use all these past distrurbances to compute the control input
that will be applied to the system at each stage. Next, we
propose a modified version of the so-called affine disturbance
feedback control policy parametrization, which we denote by
k(t, Wo.t—1, 2(0)) which is defined as follows:

u(t) + Ly (2(0) — po)
+ 3 Ky yw(r) ifte[1,T —
u(0) + L¢ (z(0) — po)  if =0,

where Ly, K(; -y € R™*", Vt, 7 € [0,T — 1]q.

It is worth noting that the parametrization we propose
is different from the standard affine disturbance feedback
parametrization due to the presence of the extra term
L (x(0) — po) for all t € [0,T — 1]4. To understand the
necessity of this extra term, one can think of a case in
which the system is not acted upon any disturbances, that
is, w(t) = 0 for all ¢ € [0,T]4 (although there are no
disturbances, the initial state is still uncertain), and also
L; = 0. In this case, k(t) = baru(t), which means that
there is not feedback terms to control the evolution of the
state covariance.

K(t) = 14, (D

Remark 1 To reduce the computational burden, one can
truncate the disturbance history feedback policy (7) up to



a desired number, that is, to use only a portion of the past
disturbances that have acted upon the system to compute
the control input. We denote by v € [0, 74 a parameter that
determines the length of the truncated history of disturbances
such that the term Zt;:lo K(—1,-w(7) that appears in (7)
is replaced by the term Zt;:lt_(pw) K—1yw(T). To solve
the SCCS and HCCS problems based on the truncation of
the disturbance history, the optimization (matrix) variable /C
which is defined in (15) will have to be revised by setting
the blocks K(; 1 ;y equal to O for all 7 <t — (1+1).

E. Problem Formulation

Next, we provide the precise formulations for the two
variants of the covariance steering problems based on the
control policy parametrization given in (7).

Problem 1 (Hard Constrained Covariance Steering). Let
ta, o € R, Xq € St p € RT be given. Consider
the system described by (2). Then, find the collection of
matrix gains X = {Kyr., Li € R™" : (t,1) €
[0, — 2] x [0,T — 2], t > 7} and the sequence of vectors
U = {u(0),...,a(T — 1)} that minimize the following
performance index:

JW( %, %) =F [ z_: u(t)Tu(t)] (8)

t=0

subject to the boundary condition on the terminal mean and
covariance:

Ha(T) = Pds )

Val"x(T) < Ed. (10)
Remark 2 The objective function defined in (8) represents
the expected value of the total control effort. The constraint
in (9) dictates that the terminal state mean be equal to
the desired mean and the constraint in (10) dictates that
terminal state covariance be upper bounded, with respect to
the Lowner partial order, by the desired covariance matrix.

Problem 2 (Soft Constrained Covariance Steering). Let
ues o € R™, 3¢, 30 € ST and p € RT be given. Consider
the system described by (2). Then, find the collection of
matrix gains K = {Kq., Ly € R™" o (t,1) €
[0, —2] x [0,T — 2], t > 7} and the sequence of vectors
U = {u(0),...,u(T — 1)} that minimize the following
performance index:

Jo(U, ) = WE(Nt, Ny), (11)
subject to input constraint Cyopq1(% , #) < 0, where
T-1
C,A)=E[ Y uTu)] -4, (2

t=0

Nt = N (po(1y, vary(ry) and Ng = N (pq, Xq) represent the
Gaussian probability distribution of the terminal state at t =
T and the desired (goal) Gaussian probability distribution,
respectively.

III. REDUCTION OF THE HCCS PROBLEM INTO A
SEMIDEFINITE PROGRAM

To reduce Problems 1 and 2 into tractable optimization
problems, first we need to express the control input vector
w in terms of the decision variables in (7). In particular,
the concatenated control input vector can be expressed as
follows:

u=1a+ L(xo — po) + Kw, (13)
where I = [ & 9] and
@ := [a0)T a)®. .. a1 -1)T", (14)
K00 0 0
Ko | o Ran . as)
K(T;Z,O) K(T;Q,l) K(T7.2,T72)
L:=[Lo)"Lt..., (T -1 (16)

By plugging equation (13) into equation (5), we get
=Gyt + (Gyw + GuK)w + Gozo + GuLZ(0), (17)

where Z(0) = x(0) — po. Now, z(t) can be expressed as
x(t) = Pyyi@, where Pyyq :=1[0,...,1,,...,0] is a block
row vector whose #** block is equal to I,, whereas all other
blocks are equal to the zero matrix.

Next we provide analytical expressions for the mean and
the variance of = and the state x(¢) for all ¢ € [0,T]4.

Proposition 1. The mean and the variance of the random
vector x which satisfies equation (17) is given by:

pe =f(@),  vary =b(L,K), (18)
where
f(@) := Gu@ + Gopo, (19a)
H(L,K) := (Go + GuL)T(Go + GuL)T
+ (Gw + GuUK)W (G + G, ). (19b)

Furthermore, the mean and the variance of the state x(t)
are given by

(20a)
(20b)

Pty = Pryaf(w)
vary ) = Piiih(L, IC)P;P_H.

The proofs of the main theoretical results of this paper are
omitted due to space constraints and can be found in [20].

Next, we obtain an expression for the performance index
of the HCCS (Problem 1) in terms of the decision variables
(u, L, IC).

Proposition 2. The performance index J,(% ,. %) which is
defined in (8) is equal to J1(u, L, IC), where
Ji(@, £, ) =@ a + tr(KWKT) + tr(£ZoL™) (21)

provided that the pairs of decision variables (%,
(u, L, IC) are related by (15). Furthermore, Ji (1,
a convex function.

X)) and
LK) is



The next proposition shows that terminal covariance con-
straint (10) can be written as a positive semidefinite con-
straint.

Proposition 3. The positive semi-definite constraint g >
var, ) is satisfied iff V(L,IC) € S} where

Ed C(‘C'v K:)
¢L, Kt I,

and ¢(L,IC) is defined as in (23).

V(LK) = (22)

To show that the terminal covariance constraint in (10) can
be written as the positive semidefinite constraint (22), let

C(L,K):=Pry1 [(Go+GuLl) (Guw+GuK)|R
(23)
where RRT = [*0 %] and Pryih(L,K)PT,,
C(L10)C(L, KT

Theorem 1. Problem 1 is equivalent to the following semi-
definite program:

I{Ig,r’lc jl (’EL, £7 ’C) (248.)
subject to Priif(d) = pg (24b)
V(LK) eSS (24c)

Remark 3 Theorem 2 is a direct consequence of Proposi-
tions 1, 2 and 3. In view of this theorem, Problem 1 reduces
into a semi-definite program.

IV. REDUCTION OF THE SCCS PROBLEM INTO A
DIFFERENCE OF CONVEX FUNCTIONS PROGRAM

In this section, we associate the SCCS problem with a
difference of convex functions program (DCP). In order to
do that, we utilize the control policy parametrization in (7)
and use the results from Section III.

By setting p1 = piz(r) and X1 = vary(r), where p,(r)
and 3y = var,r) are defined in (20a) and (20b) for ¢ =
T, respectively, and also ps = pf and Yo = X4 into the
expression of the squared Wasserstein distance given in (1),
we obtain the following expression of the objective function
(11) in terms of the new decision variables:

T3(ty £,1C) := Py f(@) — pall3
+ tr (PT+1[7(£7 K:)PE-H + Ed)

=2t (VEaPraab (£, ©PE,,VE0)?) . @5)

To show that the function defined in (25) is a difference of
two convex functions we can define the objective function as
a function of @ and ¢, where (£, K) is an affine function
which is defined in (23). In view of (25) and (23), we define
the new objective function as follows:

Js(,¢(£,1C)) = [|Pryaf(@) — pall3
+ICL IO F + tr(2a) — 2[[VEaC(L, )| (26)
Proposition 4. The performance index Jg(?, ) that is
defined in equation (11) is equivalent to J3(a,{(L,K))
which is defined in (26). Also, the function defined in the

equation (26) is the difference of two convex functions in
variables u, L, IC.

Recall that, Problem 2 has additional constraints compared
with Problem 1. In the next proposition, we show that these
constraints correspond to convex constraints in terms of the
decision variables (u, £, IC).

Proposition 5. The constraint function Cyorq) (% , ) which
is defined in equation (12) can be expressed in terms of the
decision variables (u, L, K) as

C(@, L,K) :=a"a+tr(KWKT)
+tr(LSoLT) — p?,

and the set of all (u,L,IC) that satisfy the constraint
C(a, L,IKC) <0 defines a convex set.

27)

The next theorem which is a direct consequence of Propo-
sitions 4 and 5 will allow us to reduce Problem 2 into a
difference of convex functions program.

Theorem 2. Problem 2 is equivalent to the following opti-
mization problem:

a,IiT:l,iJIcl,g J(u,¢) (28a)
subject to € =¢((L,K) (28b)
C(a, L£,K) <0 (28¢)

where (L, KC) is defined in Equation (23).

One can exploit the structure of the performance index
Js in (26) to improve computational tractability, by using
the convex-concave procedure (CCP) [21]. In the CCP, the
objective and constraint functions that can be expressed as
a difference of two convex functions are convexified by
linearizing the difference function around the solution of the
previous iteration. Then, the convexified problem is solved
using convex optimization techniques. The procedure is ter-
minated after the difference in the optimal values of convex
sub-problems between iterations are sufficiently close. To use
the CCP as computational scheme for the DCP defined in
Theorem 2, the derivative of the term —2||v/Sq¢ (L, K) ||«
in equation (26) is required. Since the nuclear norm is a
non-smooth function, this derivative may not exist in general
but in this particular case, the derivative has a closed form
expression which is given by the following proposition.

Proposition 6. If {¢T € S}, holds VL, IC then the gradient
of |VEa€ (L, KC)||« is well-defined and given by:

VelVEa (LK) =
VEa(VEaCTVE) T/ 2aC.

Remark 4 Since the objective function of the problem given
in (28) corresponds to a difference of convex function and
the constraints determine a convex set, the CCP heuristic is
guaranteed to converge to a stationary point which satisfies
the first order necessary conditions for optimality. [21]

(29)

V. NUMERICAL EXPEERIMENTS

In this section, we present results obtained by numeri-
cal experiments in which we compare the proposed pol-
icy parametrization with the parametrization utilized in [8]
in terms of performance and computational efficiency. All



computations were performed on a laptop with 2.8 GHz
Intel Core i7-7700HQ CPU and 16 GB RAM. We used
CVXPY [22] for modelling with MOSEK [23] as the solver.
To solve the SCCS problem, we used the convex-concave
procedure by utilizing Proposition 6 to convexify the DCP
objective function (11). The termination criteria was chosen
as |fr — fxe—1| < e where f; denotes the result of the
optimization problem at k*" iteration.

In our numerical simulations, we consider two examples.
One is based on a randomly generated linear dynamical
system and the other corresponds to linearized model of the
longitudinal dynamics of an aircraft.

A. Random Linear System

The parameters of the random linear system are taken as
follows:

At) = {01.'213 :8:2?}, B(t) = {0(.)1}7 W= {001 093}

In addition, pp = [1.0,0.0]T, $¢ = I, uq = [10.0,0.0]7T,
La=[4% 2%°] and T = 50. In our simulations, we have
truncated the disturbance history in order to decrease the
number of decision variables of the optimization problem as
explained in Remark 1.

Table I presents comparison results between the truncated
affine disturbance feedback control policy and the state his-
tory feedback control policy [8]. The first column shows the
truncation parameter y used in the controller parametrization.
The second and third columns show the objective value at
the computed minimizer and the computation time of the
HCCS problem whereas the last two columns show the
corresponding results obtained for the SCCS problem. The
last row of the table shows the results obtained by using the
state history feedback control policy.

Based on these results, we can claim that the full distur-
bance history feedback policy achieves the same value for
both the HCCS and the SCCS problems while reducing the
computational cost. Furthermore, as we increase the trunca-
tion parameter -, the optimal value does not decrease below
a certain value whereas the computation time increases.

The results based on the experiments with the random
linear system suggests that our policy parametrization may
be equivalent to the one in [8] given that the two policies
achieve the same objective value. However, more research
is needed to establish rigorously the validity of the previous
claim.

B. Linearized Longitudinal Aircraft Dynamics

The discrete-time model of the linearized longitudinal dy-
namics of an aircraft is taken from [12] and is obtained after
the discretization of the continuous-time dynamics with sam-
pling period (AT = 10s). For our simulations, we used pg =
[0.0,0.0,0.0,0.0,0.0]* and ugq = [400.0,0.0,0.0,0.0,0.0]T
whereas ¥y = bdiag(100.0,25.0,25.0,1.0,1.0) and X4 =
bdiag(10%,100.0,4.0,1.0,1.0). For the SCCS simulations,
we used p =4 and T = 40.

In Figures 2 and 3, the statistics of the first component of
the state x(¢), which is the deviation from steady flight alti-
tude denoted as Ah, is shown along with sample trajectories
and the desired mean and covariance. Figure 2 corresponds to

TABLE I: Comparison between affine disturbance feedback
policy with different truncation lengths and state history
feedback policy parametrization in terms of performance

and computation time

HCCS SCCS
¥ Value Time (s) Value | Time (s)
0 2839.93 1.32 2.00 2.19
1 2535.38 0.89 1.19 3.63
3 2383.88 1.34 0.74 6.17
5 2333.49 1.69 0.59 9.78
10 | 2288.79 3.29 0.46 15.80
20 | 2271.51 4.84 0.40 29.77
30 | 2269.66 6.32 0.39 36.94
40 | 2269.46 9.78 0.38 38.87
50 | 2269.44 9.61 0.38 37.38
[[6] ] 226944 [ 1632 ][ 038 [ 11239 |

the HCCS problem whereas Figure 3 to the SCCP problem.
The black curve corresponds to the trajectory of the mean and
the blue shaded area illustrates the 2-0 confidence region,
whereas the green line and green shaded region shows the
desired mean and the 2-0 confidence region of the desired
covariance respectively. The optimal policy is computed in
6.9s and 57.3s for the HCCS and the SCCS, respectively.

VI. CONCLUSION

In this paper, we proposed new covariance steering al-
gorithms for discrete-time Gaussian linear systems based
on a new control policy parametrization. We have studied
two variations of the covariance steering problem, one in
which the constraints on the terminal state covariance are
enforced as hard LMI constraints and another one in which
they correspond to soft constraints encoded in an appropri-
ately selected terminal cost. Our numerical experiments have
demonstrated that the proposed algorithms perform better, in
terms of computational efficiency, than algorithms which are
based on the state (history) feedback policy parametrization,
which have been employed in our previous work. In our
future work, we plan to consider applications of the proposed
covariance steering algorithms in trajectory optimization and
distributed control problems.
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