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Abstract— This work provides a decentralized approach to
safety by combining tools from control barrier functions (CBF)
and nonlinear model predictive control (NMPC). It is shown
how leveraging backup safety controllers allows for the robust
implementation of CBF over the NMPC computation horizon,
ensuring safety in nonlinear systems with actuation constraints.
A leader-follower approach to control barrier functions (LF-
CBF) enforcement will be introduced as a strategy to enable
a robot leader, in a multi-robot interactions, to complete its
task in minimum time, hence aggressively maneuvering. An
algorithmic implementation of the proposed solution is provided
and safety is verified via simulation.

I. INTRODUCTION

The area of safety-critical systems has been extensively
researched in recent years. The main focus of this work is
on single-robot or multi-robot teams that operate in con-
tested environments with time-critical objectives. Examples
include search and rescue operations [1] where immediate
assistance might be needed, multi-player capture problems as
in pursuit-evasion games [2], [3], or mixed autonomous and
human-operated robot scenarios where cooperation cannot
be expected to preserve safety from other robots in the
environment as shown in Fig. 1. The desired functionality
is to enable safety in multi-robot environments, while the
robots execute aggressive trajectories. In Fig. 1 the provided
approach is demonstrated in an autonomous driving scenario
where a human-operated vehicle (blue) invades the lane of
the autonomous vehicle (orange). The autonomous vehicle
preserves safety by first deaccelerating, then changes lanes
to ensure the desired set speed is maintained.

This work leverages recent contributions in Control Barrier
Functions (CBF) to safety in a minimally invasive way.
CBF research often describes a system objective as the
preservation of two properties, a liveliness property encoding
goal satisfaction, and a safety property ensuring forward
invariance of a safe set [4], [S]. A common way of selecting
input actions for robotic systems in dynamically changing
environments is through Nonlinear Model Predictive Control
(NMPC) [6]. NMPC offers a framework under which the
desired liveliness property can be attained in real-time.
Thus, the proposed approach for this work is to combine
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Fig. 1. Autonomous driving example. Blue robot-7 is selected as the leader
in the LF-CBF allowing the orange robot-j to preserve safety. The block
diagram shows the mechanization of the proposed approach for autonomous
driving where robot-j tries to preserve a set speed while ensuring safety.
The Logic block induces a lane change when the speed falls below a certain
threshold, provided by the dashed line in the speed subplot. The perception
block provides the flow of robot-i.

elements of CBF with NMPC in the context of multi-robot
interactions.

The addressed technical challenge is scalability. Even
if objective of every robot is known to the entire team,
simultaneous computation of all optimal trajectories might be
computationally prohibitive, especially in real-time scenarios
with complex nonlinear plants. Regarding safety, this implies
it is not possible to verify the safety condition at all times.
Thus, the focus is on NMPC problems whose multi-robot
coupling enters as a constraint to ensure safety. Through the
use of CBFs, decentralized constraint enforcement will be
shown possible.

The contributions of the proposed approach are twofold:

o Temporally local approach to safety for optimal trajec-
tories of actuator constrained nonlinear plants,

« Temporally global assurance of individual task satisfac-
tion and trajectory feasibility for multi-robot teams.

The proposed approach leverages work on active set invari-
ance for CBF to provide temporally local input constraints to
NMPC algorithms, thus combining safety and local trajectory
optimality. This contrasts with the work that focuses on CFBs
in combination with Control Lyapunov Functions (CLF)
because there is no notion of optimality or organic way of
embedding final time constraints [7]. It also contrasts with
the use of CBFs as a safety filter after a control action
is selected resulting in non-optimal trajectories [8]. The
advantage of the developed approach is that safety can be
readily incorporated in the NMPC problem by the addition of
affine constraints to the input at the current time through the
evaluation of safe backup strategies. These affine constraints
can be readily decentralized as shown in this work.

This paper is organized as follows. Section II provides the



problem description, Section III contains the mathematical
preliminaries expanded on for this work, and Section IV
provides main results, including an algorithmic implemen-
tation. Simulation examples and analysis are provided in
Section V and Section VI respectively. Section VII provides
the conclusion.

II. PROBLEM DESCRIPTION

The objective is the design of locally optimal trajectories
that ensure objective satisfaction while guaranteeing safety in
multi-robot tasks. To that end, consider a team of /N robots
with Lipschitz continuous nonlinear dynamics

& = f(xi) + g(xi)u
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where z; € R, and U; encodes actuator limits of robot-i.
Safety of the dynamical system in (1) can be encoded as
the satisfaction of internal robot, or robot to environment
inequality h;(z;) > 0, Vi € Z, and robot-team-wise
inequality h, ;(z;,x;) > 0 Vi € I,Vj # i. Thus, defining
the super level set

hm-(xi,xj) > 0, Vi € I,VJ 7& Z},
safety is guaranteed by ensuring forward invariance of the
safe set C, i.e., if the state start in the set, it remains in the
set for a prescribed finite time.

Optimal trajectories of system (1) are obtained through the
Optimal Control Problem (OCP)

@

ty

(up, T7) = argmin M (x;(ts)) Jr/ Lz, u, t)dt  (3)
wgyty to

subject to the system dynamics in (1). In this OCP, the

Mayer Term M (z) is used to enforce task satisfaction. Both

the Mayer term and the Lagrange term L{x,u,t) are task

specific.

The main challenges in guaranteeing safety for the multi-
robot interactions arise from the time-varying nature of the
environment, and the fact that objective satisfaction and
safety may be at odds. By the time-varying nature of the
environment, we imply that it might not be known to robot-7
what the task of robot-j is ahead of time. Therefore it is not
possible to evaluate h; ;(x;,z;) at all times. Furthermore,
even if robot-i is aware of robot-j’s task, it might be that
h(z},z5) < 0. Thus, we seek to develop a decentralized
trajectory optimization framework that is flexible enough
to adapt to time-varying changes in the environment and
ensures the feasibility of the objective satisfaction for all
agents in the presence of actuator limits.

This work assumes the multi-robot systems have model-
based knowledge of all the, potentially heterogeneous, con-
stituents. Assurance of safe task satisfaction will be devel-
oped imposing a leader-follower topology on safety, in which
a selected leader is assumed to share a parameterization of
its optimal input sequence. Furthermore, the only additional
information needed for decentralized safety of the multi-
robot team is knowledge of the neighbors backup strategy as
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Fig. 2.  Safety is evaluated over the flow of the two systems (i, 7)
starting from their individual reachable sets under time Af. An example
of maintaining a safety distance is provided by the two colored circles
connected by the black line, which is considered safe if h; ;(x;, 2;) > 0.

introduced in [8], assuming instantaneous state information
can be measured.

1II. NMPC AND CBF PRELIMINARIES
A. Nonlinear MPC

Direct Transcription provides a commonly used approach
to solving OCP of nonlinear systems [9]. Each robot-: can
formulate the trajectory optimization problem as

t
uirenzj?tf M(zi(ts)) + /tof L{x;, u;, t)dt 4
st & = flx) + g(mi)ug,
hi(z;(t)) > 0, Vt € [tg, ty] (4.2)
hi j(xi(t), z;(1)) >0, Vt € [to, ts].  (4b)

Note that problem (4)-(4.b) is considered a centralized tra-
jectory optimization algorithm because the trajectories of the
multi-robot team are needed to evaluate (4.b). The considered
NMPC solves an OPC and executes the input commands over
a determined time interval At, then recomputes the optimal
trajectory, discarding the remaining input trajectory. This At
accounts for the OCP computation time. These algorithms
can be solved through Sequential Quadratic Programming,
whose convergence is affected by non-convex state feasible
sets [9], [10].

Thus, the proposed approach looks into developing a
decentralized NMPC algorithm by converting the constrains
(4.2)-(4.b) into an affine constraint only on the input over
a fixed time interval, e.g., A;u; < b; Vi € [to,to + Al]
to ensure safety. The general approach will be to construct
CBFs considering the individual robot state flows using the
selected backup controller as shown in Fig. 2. To ensure
safety over the NMPC horizon At, work from CBF over
sampled data systems [11] will be leveraged. It will be shown
that feasibility of the NMPC problem is ensured by the
existence of a safe trajectory from a backup controller.



B. Main Results in Control Barrier Functions

Let us now recall some relevant results from CBFs that
will enable the extension to the NMPC context.

Definition 1 (Control Barrier Function [4]): Let C C
D C R™ be the superlevel set of a continously differentiable
function h : D — R, then h is a control barrier function
(CBF) if there exists an extended class-/C function a such
that for control system (1):

sup |z, u)| + a(h(x)) = 0 )
uel
for all z € D.

From this definition, safety is guaranteed by selecting
inputs from the set that render C safe

Kayp(z) = {u e U | h(z,u) + a(h(z)) > 0}.  (6)

Note that this approach provides safety conditions point-
wise for every x € D. A known issue with extending this
to systems with actuation limits is that when considering
trajectories of system (1), nothing prevents the safe input set
(6) from becoming empty. Approaches have been developed
for jointly optimizing trajectories and parameterized CBFs
to ensure the feasibility of the set [12], [13]. Our approach
instead builds on the work of Active Set Invariance [14],
which relies on evaluating the flow of the system using pre-
designed backup safety controllers, and ensuring the system
remains within reach of the backup controller.

Before presenting results on the active set invariance, one
of the main contributions on CBFs, leveraged in this work,
is provided by the following theorem.

Theorem 1 (Necessity for Safety[4]): Let C be a compact
set that is the superlevel set of a continously differentiable
function i : D — R with the property that %(az) = 0 for all
x € JC. If there exists a control law « = k(z) that renders
C safe, then h: C — R is a CBF on C.

C. Active Set Invariance

To actively ensure the feasability of the CBF condition,
denoted by K.pf(x) # () in (6), the use of safety backup
controllers as suggested in [8], [11], [14] will be leveraged.
The main idea is as follows. If we can ensure that over a fixed
interval of time 7', the dynamical system is backward reach-
able from a smaller, but known, safe set using the backup
controller ug(z), then conditions for forward invariance can
be obtained relative to a single safe trajectory of the system.

Let us define B(z) = {z € R" | h®(z) > 0}, where
B C C is a smaller control invariant set for which a
backup controller up(x) can guarantee forward invariance.
Furthermore, let us denote h” as the safety conditions in
(2). One can obtain a new CBF, h°(z) with S as a control
invariant set, such that 8 C S C C, from

min
t'elt, t+T)

W) = min{ RO(612 , (w0)), A (6122 <xo>>} |

(7

A sufficient condition for enforcing i 4+ a((h) > 0 in (7) is
given by [14]

VAP (652 (w0)) (V65? (x0) (0, u)

+a (hB( e (330))) >0

VA (6122 (w0)) (V62 (0) (w0, ) + £ (o) )

+a (B9 (917 (20))) 2 0

®)

for 7 £ ¢ —t such that 7 € [0,7], where f(zo,u) 2
f(xo)+9g(x0)u, and feedback control law u g (z) is fixed. The
expression ¢7” (o) corresponds to the flow of the system
for a time period 7', under the fixed control law up(x) with
initial conditions zo. Note that ;2 (-) = — 2 (-). The Jacobian
V(¢4(zo)) can be obtained by the forward integration of
Q = V(f(z) + g(x)u(x))Q where setting x(0) = z¢ and
Q(0) = I, yields Q(T') = Vip(xo).

D. CBFs for Sampled Data Systems

The mechanization of the NMPC requires a computation
time At > 0. To ensure safety over the computation interval,
considerations from sampled-data systems when applying
CBF as described in [11] will be leveraged. The main idea is
that safety verification in the context of a delayed input can
be verified at a finite set of reachable states by the system. In
this work, a continous form of the safety backup controller
is considered. Thus ~°(x) in (8) can be enforced from

VE (047 |xo) (V612 ko f (%0, )

o (hP (67 ]xp)) = 0

VR (622 1xo) (V027 o F (X0, 10) + 5027 | )
ta (A (647 1x,)) 2 0

€))

V7 € [0,T], where xg = R(z¢, At) =~ x9 + A,, and A, C
R™. The set xg encodes the reachable set of states of the
system over the At time horizon. It can also be used to
accommodate input delays, and state uncertainties.

Remark 1: The significance of result (9) is that it removes

the need for integration over sets and allows for the discrete
evaluation of the CBF at the boundary of the reachable set,
provided the system is incrementally stable [11].
For the remainder of this work, it will be assumed that the
considered backup controllers render the dynamics incre-
mentally stable, such that (9) can be evaluated from a finite
set of points at the reachable set boundary. Furthermore, as
suggested in [8], the conditions in (9) are evaluated at a finite
set of times 75, € [0, T7.

E. Decentralized Multi-Robot CBF

Let us regard V; as the gradient with respect to the
state of robot-i. As leveraged in previous work [8], [3], a
decentralized implementation of the h°(z) condition (9) for



the pair (¢, ) can be implemented by robot-i as
|xO> (Vo4 Ixa (x0, u
+ o (5 (677 1x0)) >

VihG; (827 ]xg) (V17 |xO F(x0,1) + 507" bxo

1
+§a (hiC:j (¢UB |xo))

V7 € [0,T]. Here, xo C R*™ is sampled from the reachable
set of both robot-i and robot-j, but the gradient is only
relative to states of robot-i. Given the control-affine form
of the dynamics (1), the inequalities in (10) will have the
form A;u; < b;.

Vihl; (657

)
0
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)
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IV. SAFE TASK SATISFACTION

For each robot-i € 7, we are interested in tasks that
can be encoded in the Mayer term of the OCP in (4),
which include terminal constraints or cost on the final state.
To capture agressively maneuvering interactions, this work
focuses on minimum-time problems, where the Mayer term
in (4) specify a desired state of the system to be reached,
and L(z,u,t) = 1. The solution to this optimization problem
provides an optimal input trajectory as well as a minimum
time (u*(t),T™).

The main technical challenge with decentralized multi-
agent problems is that the optimal flows ¢* (z;) Vi € T
might not be available a priori to all agents, especially
in dynamic environments, to verify and actively enforce
safety. The proposed solution is based on [7] where it is
assumed that robot-i only has access to state information
of its neighboring robots such that decentralized CBF in
the form of (10) can be enforced. However, the proposed
solution in that work relied on an optimization objective that
combined liveliness property for all agents. Given this does
not hold on the current work, decentralized enforcement of
(10) can yield safe agent trajectories that never satisfy the
task encoded in their Mayer term. Thus, we propose a new
strategy that imposes a leader-follower topology on the CBF
condition in (10) to ensure task completion of a selected
leader robot.

A. Task Definitions

We now focus on defining the type of task we want to
perform and conditions under which safe task satisfaction
can be ensured in a decentralized fashion. In what follows,
consider a team of N robots with dynamics of the form (1).
For a robot-7, consider its neighbor set /. This neighborhood
set can either be Z\ ¢ or nearby robots for which safety needs
to be actively preserved as described in [7].

Definition 2 (Minimum Mayer Value): Considering  the
OCP in (4) only subject to constraint (4.a). We define the
Minimum Mayer Value as M* = ming,cx M(z) where
X ={z eR"| hy(z) > 0}.

Definition 3 (Minimum Time): The minimum time 7™ is
given by the solution of the OCP (4) only subject to
constraint (4.a) when L(z;,u;,t) = 1.

Definition 4 (Time-Critical Task): A task is Time-Critical
if the robot needs to achieve the Minimum Mayer Value in
Minimum Time, i.e., M (¢%. (z0)) = M*.

Definition 5 (Persistent Task): A task is persistent if the
Minimum Mayer Value can be achieved at ¢ € [T* o).

Definition 6 (Safe Task Completion): Both Time-Critical
or Persistent Tasks are completed safely by robot-7 if it can
also satisfy constraint h; ;(x;, ;) (4.b) for all j € N while
achieving the Minimum Mayer Value.

Definition 7 (Leader-Follower CBF): Consider the team-
wise safety objective hS ;(xi,xj) > 0, for a leader robot-i
and its follower nelghbor set j € N. The Leader-Follower
CBF is given by

Vi hB (¢T(=’Ez) 77 Ixo J) (V¢T |x0,5.f (XOW ))
+a (hB (‘f’T(zz) 7 %o g)) >0
v]hzcj (¢¢(mi)7¢¢5|x0,j) ( d)u |X0] (X0]7 )

+%¢¢B (X07j)|x0,j> +a (th:g (¢7;(x1)7 ¢¢B ‘Xo,j)) >0

1D
V7 € [0,T], where x; is the state of robot-i at 7 = 0, and
Xo,s is the reachable set of robot-j for 7 € [0, At]. It is
assumed that the robot-i follows the controller selected for
the evaluation of its flow. Thus the term V¢ (xz;) f(z;, u) —
%qﬁ(xi) = 0. The inequality in (11) is only imposed on
robot-j, and given the control-affine form of (1), it will have
the form AjUj < bj.

Remark 2: Note that Definition 7 interprets the enforce-
ment of the inequality (9) in a leader-follower sense because
robot- is free to select its input, then robot-j selects its input
to enforce the inequality.

B. Decentralized Safety in Multi-Robot Teams

We now provide the main results of this work that cap-
ture sufficient conditions under which safe task satisfaction
can be achieved by a multi-robot team in a decentralized
environment for aggressively maneuvering trajectories.

Lemma 1: For every initial condition xy € xg and 7 €
[0, T, if the backup controller up(x) € U provides a system
flow ¢%2(z) € S C C, then Koy (022 (x0)) # 0 for all
T €0,T].

Proof: This follows from Theorem 1, which states that h°
is a control barrier function that renders S C C forward
invariant. Thus, at each « € ¢¥5(x) and 7 € [0,T], there
exists a extended class-/C function that satisfies Definition 1.
This renders the set in (6) not empty. [ ]

Lemma 2: For the Leader-Follower CBF in Definition 7,
if for all z; € x¢,; and 7 € [0,T] the objective h; ; > 0,
then K.y ((b“(xl) 2@ (5.)) # 0 for all 7 € [0,T).
Proof: This follows from defining a joint flow of robot-¢
and robot-7j, then recalling Lemma 1. [ |

Proposition 1: If for every ¢ € T \ iy there exists a
backup controller up(x) with time horizon T > At, which
simultaneously yields h; > 0 and h; ; > 0 for all zy € xg,



Vi € N, V1 € [0,T], then the decentralized OCP problem
min

uieu,i,tf
st @ = f(z:) + g(xi)ui,

Aju; < b;, Vt € [O, Aﬂ

ty
0 (12)

where A;u; < b; arise from CBF conditions in (9), (10)
and/or (11), is guaranteed to be feasible while rendering the
safe set S C C forward invariant V¢ € [0, At].

Proof: The existence of backup controllers for all ¢ €
T\ ir, which satisfy inequalities h; > 0 and h; ; > 0 over
the flow of all systems, imply X; = {z; € R | &; =
f(@i) + g(zi)u, h(z:) 20, hij(zi;3;) >0, VieI\ir}
is not empty. By Lemma 1-2, the CBF inequalities can be
constructed such that the input set is not empty over the
backup controller time horizon. Forward invariance follows
from recalling the conditions from Lemma 1 for individual
objectives h; or joint objectives of type (10), and Lemma 2
for Leader-Follower CBF with leader index 7y,. |

Theorem 2: Consider a NMPC approach that solves the
trajectory optimization problem in (12) at every At. Also
consider a time horizon Ty over which the NMPC problems
will be executed for the robot team. If the conditions of
Proposition 1 are satisfied at the beginning of every NMPC
computation V¢ € [0, T], then the NMPC approach renders
the safe set S C C forward invariant over [0, T%].

Proof: Given the conditions of Proposition 1 are
satisfied at every NMPC computation time, the safe set B
is forward invariant V¢ € [(n — 1)At,nAt] where n =
{1,...,[Ty/At]}. Thus, the safe set is forward invariant
vt € [0,T%]. [

What Theorem 2 states is that by designing a backup
safety controller that ensures safety over a time horizon
greater than the NMPC routine, and constructing CBF in-
equalities based on this safe trajectory, we can ensure the
NMPC solution is safe over the computation horizon. This
allows the NMPC routine great flexibility in optimizing the
individual robot trajectories while guaranteeing safety, but it
does not ensure task completion. The next Theorem states
that task completion is achieved by the leader robot.

Theorem 3: If at a time tg, robot-i;, has a solution
(u*,T™) to OCP (4)-(4.a) that achieves the Minimum Mayer
Value, and every ¢ € Z \ iy, robot selects trajectories through
the NMPC in Theorem 2 with 7, as the leader, then robot-,
achieves safe time-critical task completion.

Proof: By the theorem statement, robot-i; can achieve
minimum-time task completion in the absence of robot-to-
robot safety constraints. Given that i € Z \ i;, satisfy the
conditions in Proposition 1, the Leader-Follower CBF can be
enforced by the multi-robot team, rendering S C C forward
invariant. Thus, robot-i;, can complete the time critical task,
while robots ¢ € Z \ iy ensure safety for the multi-robot
team. |

When robot-i, is selected as leader, the following algo-

rithm verifies if robot-i can simultaneously use the same

backup controller to enforce the Leader-Follower CBF in
(11) and (10) for robots j € N\ ir. Let us define Up as the
set of backup controllers.

Algorithm 1 Leader Selection for LF-CBF
procedure Feasible-Leader
LF+ 0, K« 0
for u% € Up do
C1: Verify (9) for individual safety
C2: Verify (10) V5 € N\ i, for robot-team safety
C3: Verify (11) for robot leader iy,
if C1 A C2 A C3 then
LF +1
K+ K U{k}
end if
end for

The rational for Algorithm 1 is as follows. In the fully
cooperative setting, safety backup controllers that enforce
simple maneuvers such as decelerating and turning have been
shown effective to ensure safety of a robot team [8]. In the
Leader-Follower CBF that is not the case, and the design
of controllers with safety guarantees is beyond the scope
of this work. The adopted approach verifies that at least
one backup strategy is sufficient to guarantee safety against
the leader for its entire task horizon, while still ensuring
safety against all other robots in the team. Once a leader is
selected, the Algorithm 2 can be executed in real time on all
robots to ensure safety. If all robots contain backup strategies
that render the problem feasible for the selected leader, then
Proposition 1 guarantees they can solve the NMPC problem
with the Leader-Follower CBF in (11). If the conditions of
Proposition 1 are not verified by all robots, then they ensure
safety through (10).

Algorithm 2 LF-CBF for Safe Task Satisfaction
procedure NMPC-CBF
Solve NMPC (4) without state constraints, obtain u*
Up = argmin,k e [l — uf
if LF; =1Vj € N then
Solve NMPC (12) subject to (9), (10), (11)
else
Solve NMPC (12) subject to (9), (10)
end if

By Theorem 3, Algorithm 2 guarantees robot-i;, can
complete its time critical task safely. It is thus expected for
robot-iy, to select its optimal input command by solving (4)
only subject to (4.a). It is important to note that the leader
selection process is problem specific.

Theorem 4: Consider a team of N robots with persistent
tasks. Assume for ¢ € Z \ iy, a backup safety controller
uB(x) can always be found for any leader i;, € Z, and
the conditions of Theorem 2 are verified. Let us adopt the
notation of i, (to) for a leader that is selected at time ¢o. Then
selecting a new leader ir,(t,) € Z\ ir(tn—1) \ -+ \ iL(to)
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after a previous leader i, (,_1) achieves task satisfaction,
in Algorithm 1-2 leads to safe task satisfaction by the entire
multi-robot team.
Proof: At time t selecting the leader iy, (%g), by the theorem
statement we have that all robots ¢ € Z \ i;, will find
11, feasible in Algorithm 1. Then solving the OCP in (12)
with Leader-Follower CBF for iy (fp) in Algorithm 2 will
lead to safe Task Satisfaction by robot-ir,(1g) according to
Theorem 3. After i1, (to) achieves safe task satisfaction, select
a new leader iz (t1) € T\ir(to). By the theorem conditions,
Algorithm 1-2 will again lead to safe Task Satisfaction
by robot-iy,(t1). Applying this rule for every new leader
ir(tn) € T\ ip(th—1) \ -+ \ ip(fg) leads to safe task
satisfaction by the multi-robot team. [ |
Theorem 4 provides sufficient conditions for multi-robot
task satisfaction by leveraging a backup saftety controller,
which allows for the Leader-Follower CBF formulation in
(11). The significance of this result is that, even in the
absence of shared knowledge of every task for a multi-robot
team, safe task satisfaction is still enabled in a decentralized
fashion. The OCP problem formulation allows for instances
where task satisfaction requires robot trajectories with ag-
gressive maneuvers as shown in the Section V.

V. IMPLEMENTATION EXAMPLE

For all scenarios, the considered dynamics are of the form

Tp =vcosf

vcosf 0 0
Yp = vsinf _ |vsing )
—w 0 0 1

with states =, = [xp Yp U 9], and input u, = [a w].
The input set I4; is constructed by imposing box constraints
on the input Ib < u; < ub. The safety feature of interest is
collision avoidance

1 0 0 0
o) = lew— ol — o= [g |0 o) a9

where d, is a safety distance.

The OCP problem solved is given by

min 8" Qs6 + /tf 1dt
u,d,tf to
st = f(x)+ g(x)u
M(x) = [xp yp]T —pa+d=0
Au < b, V1 € [to, to +At]
Ib <u <ub, Vr € [ty, tf]

15)

where the inequity constraints Au < b are constructed from
the conditions in Algorithms 1-2. For all robots, ub =
[1 1]", Ib = —ub. The NMPC horizon At — 0.2[s]. The
OCP in (15) was solved in ACADO [9], and all simulation
results developed in MATLAB 2020a.

The selected backup controllers where breaking and break
while turning actions as described by

ubte) = |70 ) = | ]

where o(x) = 2/(1+exp(—2x)) — 1 is a saturation function
to enforce the maximum input constraint. The backup con-
trollers look to bring the dynamics to an equilibrium point
given by v = 0 for any position and angle. Thus, as suggested
in [8], the backup safety set was taken as the intersection
between the equilibrium points in the system and the safe
set induced by (14). The parameters in (16) were selected to
ensure an equilibrium point could be reached by 7' = 2. In
all CBF realizations, the selected class-/C function is given
by az) = apz.

V1. ANALYSIS

The first two-robot scenario is presented in Fig. 1 (first
page), where the blue robot is a human-controlled robot,
and the orange robot is autonomous. In this scenario, robot-
i is always selected as the leader in Algorithm 1, and
Algorithm 2 includes additional constraints for lane keeping.
The perception block provides the expected leader flow
¢4 (x;), and the Mayer term in (15) is selected by the lane
keeping logic. For the presented scenario, the logic includes



a simple lane change if the speed of the robot falls below a
certain threshold, and the LF-CBF approach ensures safety
of the multi-robot interaction. Notice how in these type of
scenarios a cooperative approach to safety is not expected,
thus the LF-CBF approach allows for robot-j to ensure safety
in the presence of actuator constraints.

A more in depth experiment is provided in Fig. 3, where
four robots are attempting to reach a target position across
the 2D arena. All robots are initialized at equal length to
their target position, except robot-4 which is 1 distance unit
closer. Fig. 3(a) shows a fully cooperative implementation
where the LF' flag in Algorithm 1 is always set to false;
hence, no leader is selected. Fig. 3(b) shows the Leader-
Follower implementation, where the leader is selected as the
agent with the smallest ¢y from (15). The different traces
correspond to different values 0.4 < «p < 2, the solid
line corresponding to ap = 2 in both plots. First, notice
how even though at each NMPC iteration a minimum time
problem is solved, depending on the conservatism of the
CBF, the resulting trajectory can deviate largely from the
minimum time one. This is especially noticeable in Fig. 3(a)
where robot-4 deviates largely for smaller values of «g. In
contrast, the Leader-Follower implementation shown in Fig.
3(b) enables safe task completion on robot-4, and of every
subsequent leader.

Fig. 3(c) show the minimum and average values of the
performance metrics for this scenario under varying values
of «g. First note that the minimum distance d; = 2 was
not violated on any experiment, with the most amount of
conservatism provided for the smaller values of ag. The
minimum time metric excludes the performance of robot-
4 to make a relevant comparison between the (CC) and
(LF) implementations. This is because robot-4 was always
selected the first leader in the (LF) implementation, leading
to the same smallest task completion. Note that even though
the leader is selected one at a time, the minimum task
completion time of the remaining robots was always smaller
in the (LF) implementation.

VII. CONCLUSIONS

This work presented an approach to ensuring safety in
aggressively maneuvering robot interactions by combining
tools from nonlinear model predictive control and control
barrier functions. Control barrier functions allow for a scal-
able way of ensuring safety by providing temporally local
constraints on the individual robot inputs to preserve the
existence of a safe trajectory. This approach was extended to
NMPC by accounting for the numerical solution computation
time as an input delay of a continuous time system. Imple-
menting safety in a leader-follower sense, where a leader is
selected to complete its minimum time task independent of
team safety constraints, allows for individual minimum time
task satisfaction. The approach does not required a common
shared objective for the multi-robot task as in the CLF-
based cooperation, thus extending the NMPC implementa-
tion to hierarchical approaches to autonomy where a path
planning layer might provide a set of way-points, and the

path following layer tracks them in real-time. Future work
includes the exploration of strategies that allow for multiple
leader selection while ensuring safety, and accounting for
perception estimation errors. This will extend the proposed
approach to environments where no cooperation is expected
in multi-robot interactions.
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