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Abstract— This work provides a decentralized approach to
safety by combining tools from control barrier functions (CBF)
and nonlinear model predictive control (NMPC). It is shown
how leveraging backup safety controllers allows for the robust
implementation of CBF over the NMPC computation horizon,
ensuring safety in nonlinear systems with actuation constraints.
A leader-follower approach to control barrier functions (LF-
CBF) enforcement will be introduced as a strategy to enable
a robot leader, in a multi-robot interactions, to complete its
task in minimum time, hence aggressively maneuvering. An
algorithmic implementation of the proposed solution is provided
and safety is verified via simulation.

I. INTRODUCTION

The area of safety-critical systems has been extensively

researched in recent years. The main focus of this work is

on single-robot or multi-robot teams that operate in con-

tested environments with time-critical objectives. Examples

include search and rescue operations [1] where immediate

assistance might be needed, multi-player capture problems as

in pursuit-evasion games [2], [3], or mixed autonomous and

human-operated robot scenarios where cooperation cannot

be expected to preserve safety from other robots in the

environment as shown in Fig. 1. The desired functionality

is to enable safety in multi-robot environments, while the

robots execute aggressive trajectories. In Fig. 1 the provided

approach is demonstrated in an autonomous driving scenario

where a human-operated vehicle (blue) invades the lane of

the autonomous vehicle (orange). The autonomous vehicle

preserves safety by first deaccelerating, then changes lanes

to ensure the desired set speed is maintained.

This work leverages recent contributions in Control Barrier

Functions (CBF) to safety in a minimally invasive way.

CBF research often describes a system objective as the

preservation of two properties, a liveliness property encoding

goal satisfaction, and a safety property ensuring forward

invariance of a safe set [4], [5]. A common way of selecting

input actions for robotic systems in dynamically changing

environments is through Nonlinear Model Predictive Control

(NMPC) [6]. NMPC offers a framework under which the

desired liveliness property can be attained in real-time.

Thus, the proposed approach for this work is to combine
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Fig. 1. Autonomous driving example. Blue robot-i is selected as the leader
in the LF-CBF allowing the orange robot-j to preserve safety. The block
diagram shows the mechanization of the proposed approach for autonomous
driving where robot-j tries to preserve a set speed while ensuring safety.
The Logic block induces a lane change when the speed falls below a certain
threshold, provided by the dashed line in the speed subplot. The perception
block provides the flow of robot-i.

elements of CBF with NMPC in the context of multi-robot

interactions.

The addressed technical challenge is scalability. Even

if objective of every robot is known to the entire team,

simultaneous computation of all optimal trajectories might be

computationally prohibitive, especially in real-time scenarios

with complex nonlinear plants. Regarding safety, this implies

it is not possible to verify the safety condition at all times.

Thus, the focus is on NMPC problems whose multi-robot

coupling enters as a constraint to ensure safety. Through the

use of CBFs, decentralized constraint enforcement will be

shown possible.

The contributions of the proposed approach are twofold:

• Temporally local approach to safety for optimal trajec-

tories of actuator constrained nonlinear plants,

• Temporally global assurance of individual task satisfac-

tion and trajectory feasibility for multi-robot teams.

The proposed approach leverages work on active set invari-

ance for CBF to provide temporally local input constraints to

NMPC algorithms, thus combining safety and local trajectory

optimality. This contrasts with the work that focuses on CFBs

in combination with Control Lyapunov Functions (CLF)

because there is no notion of optimality or organic way of

embedding final time constraints [7]. It also contrasts with

the use of CBFs as a safety filter after a control action

is selected resulting in non-optimal trajectories [8]. The

advantage of the developed approach is that safety can be

readily incorporated in the NMPC problem by the addition of

affine constraints to the input at the current time through the

evaluation of safe backup strategies. These affine constraints

can be readily decentralized as shown in this work.

This paper is organized as follows. Section II provides the





B. Main Results in Control Barrier Functions

Let us now recall some relevant results from CBFs that

will enable the extension to the NMPC context.

Definition 1 (Control Barrier Function [4]): Let C ⊂
D ⊂ R

n be the superlevel set of a continously differentiable

function h : D → R, then h is a control barrier function

(CBF) if there exists an extended class-K function α such

that for control system (1):

sup
u∈U

[

ḣ(x, u)
]

+ α(h(x)) ≥ 0 (5)

for all x ∈ D.

From this definition, safety is guaranteed by selecting

inputs from the set that render C safe

Kcbf (x) = {u ∈ U | ḣ(x, u) + α(h(x)) ≥ 0}. (6)

Note that this approach provides safety conditions point-

wise for every x ∈ D. A known issue with extending this

to systems with actuation limits is that when considering

trajectories of system (1), nothing prevents the safe input set

(6) from becoming empty. Approaches have been developed

for jointly optimizing trajectories and parameterized CBFs

to ensure the feasibility of the set [12], [13]. Our approach

instead builds on the work of Active Set Invariance [14],

which relies on evaluating the flow of the system using pre-

designed backup safety controllers, and ensuring the system

remains within reach of the backup controller.

Before presenting results on the active set invariance, one

of the main contributions on CBFs, leveraged in this work,

is provided by the following theorem.

Theorem 1 (Necessity for Safety[4]): Let C be a compact

set that is the superlevel set of a continously differentiable

function h : D → R with the property that ∂h
∂x

(x) 6= 0 for all

x ∈ ∂C. If there exists a control law u = k(x) that renders

C safe, then h : C → R is a CBF on C.

C. Active Set Invariance

To actively ensure the feasability of the CBF condition,

denoted by Kcbf (x) 6= ∅ in (6), the use of safety backup

controllers as suggested in [8], [11], [14] will be leveraged.

The main idea is as follows. If we can ensure that over a fixed

interval of time T , the dynamical system is backward reach-

able from a smaller, but known, safe set using the backup

controller uB(x), then conditions for forward invariance can

be obtained relative to a single safe trajectory of the system.

Let us define B(x) = {x ∈ R
n | hB(x) ≥ 0}, where

B ⊆ C is a smaller control invariant set for which a

backup controller uB(x) can guarantee forward invariance.

Furthermore, let us denote hC as the safety conditions in

(2). One can obtain a new CBF, hS(x) with S as a control

invariant set, such that B ⊆ S ⊆ C, from

h(t) = min

{

min
t′∈[t, t+T ]

hC(φuB

t′−t(x0)), h
B(φuB

T (x0))

}

.

(7)

A sufficient condition for enforcing ḣ + α(h) ≥ 0 in (7) is

given by [14]

∇hB (φuB

T (x0))
(

∇φuB

T (x0)f̃(x0, u)
)

+α
(

hB (φuB

T (x0))
)

≥ 0

∇hC (φuB
τ (x0))

(

∇φuB
τ (x0)f̃(x0, u) +

∂
∂t
φuB
τ (x0)

)

+α
(

hC (φuB
τ (x0))

)

≥ 0

(8)

for τ , t′ − t such that τ ∈ [0, T ], where f̃(x0, u) ,

f(x0)+g(x0)u, and feedback control law uB(x) is fixed. The

expression φuB

T (x0) corresponds to the flow of the system

for a time period T , under the fixed control law uB(x) with

initial conditions x0. Note that ∂
∂τ

(·) = − ∂
∂t
(·). The Jacobian

∇(φu
T (x0)) can be obtained by the forward integration of

Q̇ = ∇(f(x) + g(x)u(x))Q where setting x(0) = x0 and

Q(0) = I , yields Q(T ) = ∇φu
T (x0).

D. CBFs for Sampled Data Systems

The mechanization of the NMPC requires a computation

time ∆t > 0. To ensure safety over the computation interval,

considerations from sampled-data systems when applying

CBF as described in [11] will be leveraged. The main idea is

that safety verification in the context of a delayed input can

be verified at a finite set of reachable states by the system. In

this work, a continous form of the safety backup controller

is considered. Thus hS(x) in (8) can be enforced from

∇hB (φuB

T |x0
)
(

∇φuB

T |x0
f̃(x0, u)

)

+α
(

hB (φuB

T |x0
)
)

≥ 0

∇hC (φuB
τ |x0

)
(

∇φuB
τ |x0

f̃(x0, u) +
∂
∂t
φuB
τ |x0

)

+α
(

hC (φuB
τ |x0

)
)

≥ 0

(9)

∀τ ∈ [0, T ], where x0 , R(x0,∆t) ≈ x0 +∆x, and ∆x ⊂
R

n. The set x0 encodes the reachable set of states of the

system over the ∆t time horizon. It can also be used to

accommodate input delays, and state uncertainties.

Remark 1: The significance of result (9) is that it removes

the need for integration over sets and allows for the discrete

evaluation of the CBF at the boundary of the reachable set,

provided the system is incrementally stable [11].

For the remainder of this work, it will be assumed that the

considered backup controllers render the dynamics incre-

mentally stable, such that (9) can be evaluated from a finite

set of points at the reachable set boundary. Furthermore, as

suggested in [8], the conditions in (9) are evaluated at a finite

set of times τk ∈ [0, T ].

E. Decentralized Multi-Robot CBF

Let us regard ∇i as the gradient with respect to the

state of robot-i. As leveraged in previous work [8], [3], a

decentralized implementation of the hS(x) condition (9) for



the pair (i, j) can be implemented by robot-i as

∇ih
B
i,j (φ

uB

T |x0
)
(

∇φuB

T |x0
f̃(x0, u)

)

+
1

2
α
(

hB
i,j (φ

uB

T |x0
)
)

≥ 0

∇ih
C
i,j (φ

uB
τ |x0

)
(

∇φuB
τ |x0

f̃(x0, u) +
∂
∂t
φuB
τ |x0

)

+
1

2
α
(

hC
i,j (φ

uB
τ |x0

)
)

≥ 0

(10)

∀τ ∈ [0, T ]. Here, x0 ⊂ R
2·n is sampled from the reachable

set of both robot-i and robot-j, but the gradient is only

relative to states of robot-i. Given the control-affine form

of the dynamics (1), the inequalities in (10) will have the

form Aiui ≤ bi.

IV. SAFE TASK SATISFACTION

For each robot-i ∈ I, we are interested in tasks that

can be encoded in the Mayer term of the OCP in (4),

which include terminal constraints or cost on the final state.

To capture agressively maneuvering interactions, this work

focuses on minimum-time problems, where the Mayer term

in (4) specify a desired state of the system to be reached,

and L(x, u, t) = 1. The solution to this optimization problem

provides an optimal input trajectory as well as a minimum

time (u⋆(t), T ⋆).
The main technical challenge with decentralized multi-

agent problems is that the optimal flows φu⋆

τ (xi) ∀i ∈ I
might not be available a priori to all agents, especially

in dynamic environments, to verify and actively enforce

safety. The proposed solution is based on [7] where it is

assumed that robot-i only has access to state information

of its neighboring robots such that decentralized CBF in

the form of (10) can be enforced. However, the proposed

solution in that work relied on an optimization objective that

combined liveliness property for all agents. Given this does

not hold on the current work, decentralized enforcement of

(10) can yield safe agent trajectories that never satisfy the

task encoded in their Mayer term. Thus, we propose a new

strategy that imposes a leader-follower topology on the CBF

condition in (10) to ensure task completion of a selected

leader robot.

A. Task Definitions

We now focus on defining the type of task we want to

perform and conditions under which safe task satisfaction

can be ensured in a decentralized fashion. In what follows,

consider a team of N robots with dynamics of the form (1).

For a robot-i, consider its neighbor setN . This neighborhood

set can either be I\i or nearby robots for which safety needs

to be actively preserved as described in [7].

Definition 2 (Minimum Mayer Value): Considering the

OCP in (4) only subject to constraint (4.a). We define the

Minimum Mayer Value as M⋆ = minx∈X M(x) where

X = {x ∈ R
n | hi(x) ≥ 0}.

Definition 3 (Minimum Time): The minimum time T ⋆ is

given by the solution of the OCP (4) only subject to

constraint (4.a) when L(xi, ui, t) = 1.

Definition 4 (Time-Critical Task): A task is Time-Critical

if the robot needs to achieve the Minimum Mayer Value in

Minimum Time, i.e., M
(

φu⋆

T⋆(x0)
)

= M⋆.

Definition 5 (Persistent Task): A task is persistent if the

Minimum Mayer Value can be achieved at t ∈ [T ⋆ ∞).

Definition 6 (Safe Task Completion): Both Time-Critical

or Persistent Tasks are completed safely by robot-i if it can

also satisfy constraint hi,j(xi, xj) (4.b) for all j ∈ N while

achieving the Minimum Mayer Value.

Definition 7 (Leader-Follower CBF): Consider the team-

wise safety objective hC
i,j(xi, xj) ≥ 0, for a leader robot-i

and its follower neighbor set j ∈ N . The Leader-Follower

CBF is given by

∇jh
B
i,j

(

φu
T (xi), φ

uB

T |x0,j

)

(

∇φuB

T |x0,j
f̃(x0,j , u)

)

+α
(

hB
i,j

(

φu
T (xi), φ

uB

T |x0,j

))

≥ 0

∇jh
C
i,j

(

φu
τ (xi), φ

uB
τ |x0,j

)

(

∇φuB
τ |x0,j

f̃(x0,j , u)

+ ∂
∂t
φuB
τ (x0,j)|x0,j

)

+ α
(

hC
i,j

(

φu
τ (xi), φ

uB
τ |x0,j

))

≥ 0

(11)

∀τ ∈ [0, T ], where xi is the state of robot-i at τ = 0, and

x0,f is the reachable set of robot-j for τ ∈ [0,∆t]. It is

assumed that the robot-i follows the controller selected for

the evaluation of its flow. Thus the term ∇φu
τ (xi)f(xi, u)−

∂
∂t
φu
τ (xi) = 0. The inequality in (11) is only imposed on

robot-j, and given the control-affine form of (1), it will have

the form Ajuj ≤ bj .

Remark 2: Note that Definition 7 interprets the enforce-

ment of the inequality (9) in a leader-follower sense because

robot-i is free to select its input, then robot-j selects its input

to enforce the inequality.

B. Decentralized Safety in Multi-Robot Teams

We now provide the main results of this work that cap-

ture sufficient conditions under which safe task satisfaction

can be achieved by a multi-robot team in a decentralized

environment for aggressively maneuvering trajectories.

Lemma 1: For every initial condition x0 ∈ x0 and τ ∈
[0, T ], if the backup controller uB(x) ∈ U provides a system

flow φuB
τ (x) ∈ S ⊆ C, then Kcbf (φ

uB
τ (x0)) 6= ∅ for all

τ ∈ [0, T ].
Proof: This follows from Theorem 1, which states that hS

is a control barrier function that renders S ⊆ C forward

invariant. Thus, at each x ∈ φuB
τ (x0) and τ ∈ [0, T ], there

exists a extended class-K function that satisfies Definition 1.

This renders the set in (6) not empty.

Lemma 2: For the Leader-Follower CBF in Definition 7,

if for all xj ∈ x0,j and τ ∈ [0, T ] the objective hi,j ≥ 0,

then Kcbf

(

φu
τ (xi), φ

uB(x)
τ (xj)

)

6= ∅ for all τ ∈ [0, T ].

Proof: This follows from defining a joint flow of robot-i
and robot-j, then recalling Lemma 1.

Proposition 1: If for every i ∈ I \ iL there exists a

backup controller uB(x) with time horizon T ≥ ∆t, which

simultaneously yields hi ≥ 0 and hi,j ≥ 0 for all x0 ∈ x0,



∀j ∈ N , ∀τ ∈ [0, T ], then the decentralized OCP problem

min
ui∈Ui,tf

M(xi, T ) +

∫ tf

0

L(xi, ui, t)dt

s.t. ẋi = f(xi) + g(xi)ui,

Aiui ≤ bi, ∀t ∈ [0,∆t]

(12)

where Aiui ≤ bi arise from CBF conditions in (9), (10)

and/or (11), is guaranteed to be feasible while rendering the

safe set S ⊆ C forward invariant ∀t ∈ [0,∆t].

Proof: The existence of backup controllers for all i ∈
I \ iL, which satisfy inequalities hi ≥ 0 and hi,j ≥ 0 over

the flow of all systems, imply Xi = {xi ∈ R
n | ẋi =

f(xi) + g(xi)u, h(xi) ≥ 0, hi,j(xi, xj) ≥ 0, ∀i ∈ I \ iL}
is not empty. By Lemma 1-2, the CBF inequalities can be

constructed such that the input set is not empty over the

backup controller time horizon. Forward invariance follows

from recalling the conditions from Lemma 1 for individual

objectives hi or joint objectives of type (10), and Lemma 2

for Leader-Follower CBF with leader index iL.

Theorem 2: Consider a NMPC approach that solves the

trajectory optimization problem in (12) at every ∆t. Also

consider a time horizon Tf over which the NMPC problems

will be executed for the robot team. If the conditions of

Proposition 1 are satisfied at the beginning of every NMPC

computation ∀t ∈ [0, Tf ], then the NMPC approach renders

the safe set S ⊆ C forward invariant over [0, Tf ].
Proof: Given the conditions of Proposition 1 are

satisfied at every NMPC computation time, the safe set B
is forward invariant ∀t ∈ [(n − 1)∆t, n∆t] where n =
{1, . . . , ⌈Tf/∆t⌉}. Thus, the safe set is forward invariant

∀t ∈ [0, Tf ].
What Theorem 2 states is that by designing a backup

safety controller that ensures safety over a time horizon

greater than the NMPC routine, and constructing CBF in-

equalities based on this safe trajectory, we can ensure the

NMPC solution is safe over the computation horizon. This

allows the NMPC routine great flexibility in optimizing the

individual robot trajectories while guaranteeing safety, but it

does not ensure task completion. The next Theorem states

that task completion is achieved by the leader robot.

Theorem 3: If at a time t0, robot-iL has a solution

(u⋆, T ⋆) to OCP (4)-(4.a) that achieves the Minimum Mayer

Value, and every i ∈ I \ iL robot selects trajectories through

the NMPC in Theorem 2 with iL as the leader, then robot-iL
achieves safe time-critical task completion.

Proof: By the theorem statement, robot-iL can achieve

minimum-time task completion in the absence of robot-to-

robot safety constraints. Given that i ∈ I \ iL satisfy the

conditions in Proposition 1, the Leader-Follower CBF can be

enforced by the multi-robot team, rendering S ⊆ C forward

invariant. Thus, robot-iL can complete the time critical task,

while robots i ∈ I \ iL ensure safety for the multi-robot

team.

When robot-iL is selected as leader, the following algo-

rithm verifies if robot-i can simultaneously use the same

backup controller to enforce the Leader-Follower CBF in

(11) and (10) for robots j ∈ N \ iL. Let us define UB as the

set of backup controllers.

Algorithm 1 Leader Selection for LF-CBF

procedure Feasible-Leader

LF ← 0, K ← ∅
for uk

B ∈ UB do

C1: Verify (9) for individual safety

C2: Verify (10) ∀j ∈ N \ iL for robot-team safety

C3: Verify (11) for robot leader iL
if C1 ∧ C2 ∧ C3 then

LF ← 1
K ← K ∪ {k}

end if

end for

The rational for Algorithm 1 is as follows. In the fully

cooperative setting, safety backup controllers that enforce

simple maneuvers such as decelerating and turning have been

shown effective to ensure safety of a robot team [8]. In the

Leader-Follower CBF that is not the case, and the design

of controllers with safety guarantees is beyond the scope

of this work. The adopted approach verifies that at least

one backup strategy is sufficient to guarantee safety against

the leader for its entire task horizon, while still ensuring

safety against all other robots in the team. Once a leader is

selected, the Algorithm 2 can be executed in real time on all

robots to ensure safety. If all robots contain backup strategies

that render the problem feasible for the selected leader, then

Proposition 1 guarantees they can solve the NMPC problem

with the Leader-Follower CBF in (11). If the conditions of

Proposition 1 are not verified by all robots, then they ensure

safety through (10).

Algorithm 2 LF-CBF for Safe Task Satisfaction

procedure NMPC-CBF

Solve NMPC (4) without state constraints, obtain u⋆

uB ← argminuk
B
|k∈K ‖u

⋆ − uk
B‖

if LFj = 1 ∀j ∈ N then

Solve NMPC (12) subject to (9), (10), (11)

else

Solve NMPC (12) subject to (9), (10)

end if

By Theorem 3, Algorithm 2 guarantees robot-iL can

complete its time critical task safely. It is thus expected for

robot-iL to select its optimal input command by solving (4)

only subject to (4.a). It is important to note that the leader

selection process is problem specific.

Theorem 4: Consider a team of N robots with persistent

tasks. Assume for i ∈ I \ iL, a backup safety controller

uB(x) can always be found for any leader iL ∈ I, and

the conditions of Theorem 2 are verified. Let us adopt the

notation of iL(t0) for a leader that is selected at time t0. Then

selecting a new leader iL(tn) ∈ I \ iL(tn−1) \ · · · \ iL(t0)





a simple lane change if the speed of the robot falls below a

certain threshold, and the LF-CBF approach ensures safety

of the multi-robot interaction. Notice how in these type of

scenarios a cooperative approach to safety is not expected,

thus the LF-CBF approach allows for robot-j to ensure safety

in the presence of actuator constraints.

A more in depth experiment is provided in Fig. 3, where

four robots are attempting to reach a target position across

the 2D arena. All robots are initialized at equal length to

their target position, except robot-4 which is 1 distance unit

closer. Fig. 3(a) shows a fully cooperative implementation

where the LF flag in Algorithm 1 is always set to false;

hence, no leader is selected. Fig. 3(b) shows the Leader-

Follower implementation, where the leader is selected as the

agent with the smallest tf from (15). The different traces

correspond to different values 0.4 ≤ α0 ≤ 2, the solid

line corresponding to α0 = 2 in both plots. First, notice

how even though at each NMPC iteration a minimum time

problem is solved, depending on the conservatism of the

CBF, the resulting trajectory can deviate largely from the

minimum time one. This is especially noticeable in Fig. 3(a)

where robot-4 deviates largely for smaller values of α0. In

contrast, the Leader-Follower implementation shown in Fig.

3(b) enables safe task completion on robot-4, and of every

subsequent leader.

Fig. 3(c) show the minimum and average values of the

performance metrics for this scenario under varying values

of α0. First note that the minimum distance ds = 2 was

not violated on any experiment, with the most amount of

conservatism provided for the smaller values of α0. The

minimum time metric excludes the performance of robot-

4 to make a relevant comparison between the (CC) and

(LF) implementations. This is because robot-4 was always

selected the first leader in the (LF) implementation, leading

to the same smallest task completion. Note that even though

the leader is selected one at a time, the minimum task

completion time of the remaining robots was always smaller

in the (LF) implementation.

VII. CONCLUSIONS

This work presented an approach to ensuring safety in

aggressively maneuvering robot interactions by combining

tools from nonlinear model predictive control and control

barrier functions. Control barrier functions allow for a scal-

able way of ensuring safety by providing temporally local

constraints on the individual robot inputs to preserve the

existence of a safe trajectory. This approach was extended to

NMPC by accounting for the numerical solution computation

time as an input delay of a continuous time system. Imple-

menting safety in a leader-follower sense, where a leader is

selected to complete its minimum time task independent of

team safety constraints, allows for individual minimum time

task satisfaction. The approach does not required a common

shared objective for the multi-robot task as in the CLF-

based cooperation, thus extending the NMPC implementa-

tion to hierarchical approaches to autonomy where a path

planning layer might provide a set of way-points, and the

path following layer tracks them in real-time. Future work

includes the exploration of strategies that allow for multiple

leader selection while ensuring safety, and accounting for

perception estimation errors. This will extend the proposed

approach to environments where no cooperation is expected

in multi-robot interactions.
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