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Abstract— We revisit the covariance steering problem for
discrete-time Gaussian linear systems with a squared Wasser-
stein distance terminal cost and analyze the properties of its
solution in terms of existence and uniqueness. Specifically, we
derive the first and second order conditions for optimality and
provide analytic expressions for the gradient and the Hessian
of the performance index by utilizing specialized tools from
matrix calculus. Subsequently, we prove that the optimization
problem always admits a global minimizer, and finally, we
provide a sufficient condition for the performance index to be
a strictly convex function. In particular, we show that when the
terminal state covariance is lower bounded, with respect to the
Lowner partial order, by the covariance matrix of the desired
terminal normal distribution, then the objective function is
strictly convex.

I. INTRODUCTION

We study the existence and uniqueness of solutions to the
covariance steering problem for discrete-time Gaussian linear
systems with a squared Wasserstein distance terminal cost.
This instance of stochastic optimal control problem seeks for
a feedback control policy that will steer the probability dis-
tribution of the state of the uncertain system, close to a goal
multivariate normal distribution over a finite time horizon,
where the closeness of the two distributions is measured in
terms of the squared Wasserstein distance between them. In
our previous work [1], we have shown that the latter problem
can be reduced into a difference of convex functions program
(DCP) provided that the control policy conforms to the so-
called state feedback control parametrization according to
which the control input can be expressed as an affine function
of the current state and all past states visited by the system.
Whereas the focus in [1] was on the control design problem,
in this work we focus on the analysis of the problem and
in particular, addressing questions about the existence and
uniqueness of solutions and the convexity (or lack thereof)
of the performance index.

Literature review: Early works on covariance control
problems can be attributed to Skelton and his co-authors
who mainly examined infinite-horizon problems in a series
of papers (refer to, for instance, [2]-[4]). Recently, finite-
horizon covariance control problems for Gaussian linear
systems have received significant attention; the reader may
refer to [5]-[7] for the continuous-time case and [8]-[13] for
the discrete-time case. The covariance steering problem for
continuous-time Gaussian linear systems with a Wasserstein
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distance terminal cost was first studied in [14] whereas the
same problem but for the discrete-time case was studied in
[1]. Both of these references present numerical algorithms
(shooting method in [14] and convex-concave procedure in
[1]) for control design but do not address theoretical ques-
tions regarding the existence and uniqueness of solutions, or
investigate convexity properties of the performance index.

Main contributions: First, we establish the existence of
at least one global minimizer to the optimization problem.
Subsequently, we derive first and second order conditions of
optimality, and provide analytic expressions for the gradient
and the Hessian of the performance index by utilizing
specialized tools from matrix calculus (these analytic expres-
sions may also facilitate the implementation of numerical op-
timization algorithms, and thus improve in practice the speed
of convergence). Finally, we present a sufficient condition for
the performance index to be a strictly convex function under
which the optimization problem admits a unique solution. In
particular, we show that when the terminal state covariance
is bounded from above, with respect to the Lowner partial
order over the cone of positive semidefinite matrices, by the
covariance matrix of the goal normal distribution, then the
Hessian of the performance index becomes a strictly positive
definite matrix, which in turn implies that the performance
index is a strictly convex function.

II. PRELIMINARIES

Set and inequality notations: We denote the set of non-
negative integers as Ny := {0,1,2,...}, and for any positive
integer v, let Ng[v] := {0,1,...,v}. We use the inequalities
> and > in the sense of Lowner partial order. Given a square
matrix M, we define sym(M) := (M + M7T)/2.

Kronecker product, Kronecker sum, and the vec operator:
The basic properties of Kronecker product will be useful in
the sequel, including

(My ® Ma) (M3 ®@ My) = (My Mz ® MaMy), (1)

and that matrix transpose and inverse are distributive w.r.t.
the Kronecker product. The vectorization operator vec(-) and
the Kronecker product are related through

vec (My Mo Ms) = (Mg @ M) vec (My). (2)
Furthermore,
trace (M M) = vec(My) Tvee(Ms). (3)

We need the Kronecker sum My & My := My @I +1® Ms,
where I is an identity matrix of commensurate dimension.



For matrices M, L of appropriate size and L non-singular,
we have

(Lo MoM) (L 'e L )=LML'® LML 4)

which is easy to verify using the definition of Kronecker sum
and (1), and will be useful later.

Commutation matrix: The commutation matrix K is the
unique symmetric permutation matrix such that vec (M) =
Kovec (MT), see e.g., [15]. Being orthogonal, Ky satisfies
K;' = KJ = K. Therefore, K is idempotent of order
two. Two useful properties of K are

KO vec (I) = vec (I), KO (M1 (24 Mg) = (MQ (24 Ml)KQ.

Notice that K being symmetric orthogonal, its eigenvalues
are £1. Consequently, the matrix [ + K, which is also
symmetric idempotent, has eigenvalues 0 and 2.

Another observation that will be useful is that I + K
commutes with “self Kronecker product or sum”, i.e., for
any square matrix M, we have

I+Ky)(MeM)=(Me M)+ Ky),
(I+Ko) (Mo M)=(MoM)(I+ Kp),

(52)
(5b)

which follows from the property of Ky mentioned before.
We also have

I+ K)MaM)™ =MaeM) ' (I+Ky). (6
To see (6), notice that Ko (M ®& M )_1 equals

(M & M) Ky '=((M & M) Ko)~'= (Ko (M & M))™"
=MaeM)'K;'=(Ma& M) " K.

Matrix differential and Jacobian: The matrix differential
d() and the vectorization vec(-) are linear operators that
commute with each other. We will frequently use the Jaco-
bian identification rule [16, Ch. 9, Sec. 5], which for a given
matrix function F'(X), is

dvec (F(X)) = DF(X) d vec X, )

where DF(X) is the Jacobian of F' evaluated at X. In case
F' is independent of X, the Jacobain DF' is a zero matrix.
Some Jacobians of our interest are collected in the Appendix.
Matrix geometric mean: Given two symmetric positive
definite matrices A and B, their geometric mean (see, for
example, [17]) is the symmetric positive definite matrix

1/2
A#4B = A2 (A‘l/QBA‘1/2) A2, (8)

It satisfies intuitive properties such as A#A = A, A#B =
B#A, (A#B)™' = A '#B~1.

Function composition and normal distribution: We use
the symbol o to denote function composition. We write
z ~ N (p,2) to denote that the random vector z has normal
distribution with mean vector p and covariance matrix X.

Preparatory lemmas (proofs omitted):
Lemma 1. Let F(X) := AXB. Then DF(X) = BT ® A.

Lemma 2. Let F(X) := XX7T. Then DF(X) = (I +
Ko) (X ® I).

Lemma 3. Let F(X) := XSXT where S is a given
symmetric positive definite matrix. Then DF(X) = (I +
Ky) (X SeI )

Lemma 4. For X nonsingular, let F(X) := X1 Then
DF(X)=—-(X"ToXx!).

Lemma 5. Let A € R"™™ and B = BT € R™". If
sym(A) = 0 and B > O then both sym(AB) = 0,
sym(BA) = 0 hold.

ITI. PROBLEM SET UP
We consider a discrete-time stochastic linear system

k € No, ©))

where zp € R™, up € R™, and wi € R™ denote the
state, control input, and disturbance vectors at time ¢ = k,
respectively. It is assumed that the initial state is a normal
vector and in particular, zg ~ N (o, So), where g € R”
and Sy > 0, and in addition, the disturbance process is a
sequence of independent and identically distributed random
vectors wy, ~ N(0,S,) for all £ € Ny and S, = 0. We
suppose that zy and wy, are mutually independent for all & €
Ny, from which it follows that E[zqw; ] = 0 for all k € N,
where E [-] denotes the expectation functional. We assume
that the matrices Gy, are full rank for all k € No[V — 1].

Tpt1 = Aprr + Brug + Grwy,

For N € Ny, let = := [zf,2],...,2%]F €
RN gy o= ol uf, . uk JF € RVN™ and w =
[wa,wl,...,wk_;]T € RN™w Then, we can write

x=Tzy+ H,u+ H,w, (10)
where the block (column) vector
I:=[I, ®"(1,0) ®7(2,0) ... ®"(N,0)]" (a1

and for all k,n € Ny with k& > n, the matrices ®(k,n) :=
Ag_1...A,,and ®(n,n) := I (note that D(n+1,n) = A,).
Furthermore,

0 0 .. 0
Bo 0 .. 0
®(2,1)By B .. 0

H, = , (12)

®(N,1)By ®(N,2)B; Bn_1

and H,, is defined likewise by replacing the matrices
{Bi}n=! in (12) with the matrices {Gy} o '

The problem of interest is to perform minimum energy
feedback control synthesis for (9) over a time horizon of
length N, such that the distribution of the terminal state
xy goes close to desired distribution A (14, Sg) where
ua € R™ Sz = 0 are given. The mismatch between the
desired distribution and the distribution of the actual terminal
state x is penalized as a terminal cost quantified using
the squared 2-Wasserstein distance W3 (-,-) between those
two distributions. We refer the readers to [1, Sec. II] for the
details on problem formulation.



To recover the statistics of the terminal state x from the
concatenated state x, the following relation will be useful:
xy = Fx, where F :=[0,...,0,1,_].

It was shown in [1] that the problem of discrete time
covariance steering with Wasserstein terminal cost subject
to (9) (or equivalently (10)), can be reduced to a difference
of convex functions program, provided the control policy is
parameterized as k

Uk = uf kg + Z K (o) (e — 24)
t=0

13)

where Z; := [ [x4], and the parameters of the control policy
are ugr € R™, K € R™*™ for all {(k,t) € No |
k > t}. The concatenated control input w can be written as

u = ug+ K(x—Z) where & := E[z], K := {K 0}, and
K,0) 0 0
a0 Koy 0

= : . (14)

Kn-10 Kw-1,1) K(n_1,n-1)

The controller synthesis thus amounts to computing the

optimal feedforward control and feedback gain pair (ug, K).

In [1], the authors proposed a bijective mapping K — ©
and back, given by

©=K(I-H,K)', K:=0(+H,0) "

With the new feedback gain parameterization ©, it was
deduced in [1] that the optimal pair (ug, ®) minimizes the
objective J : RN x RNmMux(N+Une s Ry oiven by

J(ug, ®) = JOOL (yg @) + \W3 (ug, ®),  (16)
where A\ > 0 is given, and
JOO (yg @) = trace (GS’GT) + [Jug |3, (17)

W3 (ug, ©) = || — (Tpo + Hyug) |3
Ftr (F(I + H,0)S(I+ H,0)"FT + Sd>

— 2t (( SuF(I + H,©)3(I + H,©)TFTy/ 5(1)1/2) :

where S := T'SoT'" + H,,WH_ and the block diagonal
matrix W := blkdiag(Sy, ..., Sy).

Proposition 1. S :=I'S,I'" + H,WH,, > 0.

Proof. It is clear that S = o. Suppose for the sake of
contradiction, that S is singular. Then there exists (N +
1)ng x 1 vector v # 0 such that vTSv = vT(TSI'T +
HwWHE,)v = 0, which in turn, is possible iff I''v =0
and Hlv = 0, since Sy = 0, S,, = 0.
T

Now let v := [vg,v],...,v}] where the sub-vector
v; € R™ for all i € No[N]. From HLv = 0, we get v; =
vy = ... = vy = 0 since the matrices {Gj}~_; are full
rank per our assumption. In I'"'v = 0, substituting v; = vy =
...=wvn =0, yields vg = 0. Thus, v = 0 which contradicts
our hypothesis. Therefore, the positive semidefinite matrix S
is nonsingular, i.e., S > 0. [ |

Remark 1. An important consideration is that in order
to ensure causality of the control policy, the matrix © €

RN xX(N+D)na should be constrained to be block lower
triangular of the form

6o.0 0 0 0
01,0 91,1 0 0

e = (18)

On—10 On-1:1 On-1,Nn-1 O

where 0; ; € R™*"= for all index pairs (i, 7).

The block lower triangular condition on ® in Remark 1
can be equivalently expressed as 0; ; = 0V (¢,7) € No[[N —
1] x No[N] s.t. 7 > i. We transcribe this constraint in terms
of the decision variable © as

£ui®E); =0 V(i,j)eH (19)

where H = {(¢, 7)|(¢,5) € No[N — 1] x No[N] and j > i}
Eui € R™xmulN and &, ; € R%Xne(N+1) are defined as
block vectors whose (i + 1) and (j + 1)™ blocks are equal
to the identity matrices of suitable dimensions; all the other
blocks are equal to the zero matrix.

It is clear that (17) is a convex quadratic function in its
arguments. The squared Wasserstein distance is a difference
of convex functions in (ug,®). Thus, the objective J in
(16) is a difference of convex functions in the decision
variables, and as such, it is unclear when it might in fact
be convex. In [1], we used the convex-concave procedure
[18] to numerically compute the optimal solution. In our
numerical experiments, we observed multiple local minima
which motivates investigating the conditions of optimality for
(16). This is what we pursue in Sections IV and V. Before
doing so, we show that the objective J in (16) is not convex
in general but there exists a global minimizer.

Proposition 2. The problem of minimizing the objective
J in (16) subject to the constraints (19), admits a global
minimizing pair (ug, ©).

Proof. The objective J in (16) is continuous and coercive
(i-e., lim |5 —00,||®ls— 00 J = 00) in its arguments.

That J is continuous in (ug, ©) is immediate. To establish
coercivity, following [1, see equation (26)], we write

J (ug,®) = Ji (ug) + J2 (@) + J3 (@) — J4 (©), (20)

Ji (un) == |lug|3 + M| F (Tuo + Huug) — pallz,  (21a)
J2 (©) := trace (@S@T) , 21b)
J5 (©) := A tr (F (I+H.,©)3(I+H,0)" F"
+54) 1)
J1(©) =2\ tr ((s;/%* (I+H,0)3(+ H,0)"
1/2
FTS;/Z) > . 21d)

Since Ji(ug) in (21a) is strictly convex quadratic in ug,
it is clear that Ji(ug) — 0o as |[ug|2 — oo.

We note that J5(©) equals trace(©T©S) due to invari-
ance of the trace operator under cyclic permutation. Using
(2) and (3), we then write

J2(©) = vec(©)" (S @ I)vec(O). (22)
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Fig. 1: J(7) versus ~ for Example 1.

Since I > 0,5 > 0 (by Proposition 1), we have S ® I >
0. Thus, J5(®) is a strictly convex quadratic function and
J2(®) — o0 as [|®]|2 — oc.

Finally, since J3(©®)— J4(0®) equals to a squared Wasser-
stein distance between two zero mean Gaussians, it is lower
bounded by zero. Thus, lim|jy 1,0, ©]]s—00 J = 00, i.€.,
the function J(ug, ®) in (20) is coercive.

Moreover, the constraint set

{(ug, ©) € RN™ 5 RN X(NHIm= | (19) holds}

is closed. Thus, minimizing the objective J in (16) subject
to the constraints (19), amounts to minimizing a continuous
coercive function over a closed set. Hence, there exists a
global minimizing pair (ug, ®) for this problem. |

Notice that Proposition 2 only guarantees the existence of
a global minimizer; it does not guarantee uniqueness. The
following example shows that in general, J is nonconvex,
and there might be multiple local minima which makes it
challenging to find the global minimizer.

Example 1. (Nonconvexity of J) Consider system matrices

1.0 0.1 0.0 1.0 0.0
A = [0.0 1.0] » Br = {0.1] G = {0.0 1.0] Vk € No,

with time horizon N = 10. The initial and desired mean
vectors are jig = [0.0,0.0]T, g = [10.0,5.0]%, respectively.
The initial covariance is Sy = Is. With this data, for two
different desired distributions N (pq, Sa1) s N (pta, Saz) with
4.0 =20 0.2 0.0
Sa1 = {2.0 2.0 ] » Saz = {0.0 0.1] ’

we numerically computed (using the convex-concave pro-
cedure, see [I, Sec. IV]) the minimizers (uflT,G')l) and
(u%f, ®2). Since the desired mean vector Wd is the same in
both cases, u%f = u?f.

For v € R, define an affine function g(vy) = (uf +
Y(ug —ug), O +~(0%—0)) and let J(v) := Jog(y).
The function J is convex iff its restriction to a line, J, is

convex. Fig. 1 shows that the function J (v) has multiple
local minima, thus the function J(ug, ®) is nonconvex.

IV. FIRST ORDER CONDITIONS FOR OPTIMALITY

Recall the function J(ug, ®) in (20) and (21). We define
the index set Z := {(7,7) € No[N — 1] x Ng[N] | j > i}.

Now consider the Lagrangian

L(ug, O N)=J(ug,©)+ > (¥,;,E,.08 ) (23)
(4,J)ET
where W, ; is the Lagrange multiplier matrix associated with
the (i,7)™ linear equality constraint (19) for all (i,j) € Z,
and (-, ) denotes the Frobenius inner product. Let us denote
the optimal pair as (uf, ®*). The first order necessary
conditions for optimality are

oL oL

=0, =0, &,,0%¢,,;=0.

Outl(uer)  9Olwer)

We next compute the gradients of £ w.r.t. the vector variable
ug and the matrix variable ®, respectively, and use them to
determine the pair (uf, ©*).

A. The optimal feedforward control

The optimal feedforward control input wuf; solves
OL/Oug = 0, which results in a linear matrix-vector
equation with unique solution

uy = (I + \HYFTFH,) ' NHTFT (13 — FTpup) .

The uniqueness is a consequence of the
(I + \HIFTFH,,) being non-singular.

term

B. The optimal feedback gain
From (20), (21) and (23), we have

0L 0Jy 0Js 0Jy 9 S
0-90 90 90 "2 g (E;¥ifui®)
(4,)€T

oJ: oJ. oJ.
- O—Gi * {)—@3 B a_(; + Z EuT,i‘I’i,jgx,f (24)
(i,J)€T
Notice that
% = %trace (@5’@T>:2@§7 (25)

which follows from the invariance of trace under cyclic
permutation, and from the use of Jacobian identification
rule (7). Furthermore, let J3,(0) = O@OT, J35(0) :=

FH,©5'2 Y3 := %trace(ng 0 J32(@®)), and notice

that
%:A(QHEFTFS n Y3) (26)
From the chain rule of Jacobians, we have
d trace (Ja1 0 J32(®)) = (vec(Y3))" dvec(®),  (27)
wherein using Lemma 1 and 2, we get
DJs(®) = 52 ® FH,, (28a)
DJ31(®)= [+ Ko)(O®1I). (28b)

Combining (27) and (28), we obtain
vec (¥z) = (DJs2(©))" (DJa1 (J32(©))) " vec ()
= (SI/Q ® HEFT) (51/2@TH3FT ® 1) (I + Ko)vec (I)

= 2 vec (HE FTFHu®§> , (29)



where we used the identity: (I + Ko) vec (I) = 2 vec (1),
and (29) follows from (2). ~
From (29), we identify Y3 = 2H, F*FH,©S, which
together with (26), yields
0Js

— S _o\H'FTF(I + H,®)S.
56 A\H, (I+H,©)S

Next, let

(30)

Ju1 (©) == (\/gd(")\/gd)l/27
Jiz (©):= 007, J;5(®):=F (I +H,0)5"?

itrace (Ja1 0 Jaz 0 Ju3(©)),

Yi= 50

and notice that % = 2)\Y}. Therefore, writing

d trace (Ja1 0 Jaa 0 J13(@®))

= (vec (I))" DJa1 (Jaz (J13(©))) DJas(Jus (©))
DJ43 (©) dvec(©)
= (vec(Y1))" d vec(®),

we obtain
(DJ13(©))" (DJaz (Ju3(©))) "
(DJa1 (Jaz (Juz(©))) T vee (1)

To proceed further, we utilize the following results:

vec (Yy) =
(€29)

DJ43(®):D(FS’1/2 + FHu®§1/2) = 5?9 FH,, (32a)
DJ12(©) = (I + Ko) (@@ 1), (32b)

DJ41(9)—((S;/Z955/2)1/269(%/2@5;/2)1/2)1
x (51/2 ® 51/2) .(32¢)

The result (32a) follows from Lemma 1 while (32b) follows
from Lemma 2, and (32c) follows from [14, equation (30)].
Let Q(®) := F (I + H,©®), which is a linear function
of ®. Substituting (32) in (31), and then using (1), (52), (6),
and recalling (I + Ky) vec(I) = 2 vec(I), we obtain

vec (Vi) = 2 (éQTFTsl/2 ® HTFTS;/Q)

( 1/2@1\/11/2) vee(I). (33)

where M := S;/ QQSQTS;/ ?. Therefore, following similar
steps as in [14, Appendix B, equations (32)-(35)], we arrive
at' Yy = HIFT(S;#(QSQT)1)QS, where # denotes the
matrix geometric mean as in (8). Hence

0Jy

S5 = 2\Yi = 20H[F" (Sd # (QSQT)71> Q5. (34

ur, 0
0, we arrive at a nonlinear matrix equation in (--)‘E gffiven) by
(35). Thus, the primal feasibility (19) and the Lagrangian
gradient (35) together give the first order optimality condi-
tions for @*.

IThe matrix QSQT is the right bottom corner block of size ngy X ng
from the (N + 1)nz X (N + 1)n, symmetric positive definite matrix
I+ Hu®)S(I + H,,©)7T, and is thus symmetric positive definite.

Combining (24), (25), (30) and (34), with g—c

V. SECOND ORDER CONDITIONS
We start by noting that:

Hess (J) = Hess (J2) + Hess (J3) — Hess (Jy).  (36)

The following derives closed form expression of the Hessian.

Theorem 1. (Hessian of J)
Consider ) = Q(0). Let M =

(s:12@80m) 18,2 V2 and N = SY2MSY? —
Sa#(QSQT) 1. Then, the Hessian of J in (16) is given by
Hess(J) = 2 (S ® I) +2) (S ® HEFTFHH)
+2) (QS ® FHu)T (5;/21\45*;1/2 ® S;/QMS;I/Q)
((QS‘QT)AQZ) (QSQT)A) (I + Ko) (QS‘ ® FHu)
—2) (S ® HY FTMFHu) . 37)
Proof. Combining (36), (7) with Lemma 1, we get
Hess(J) = 2 (é ® I) +2) (é ® HEFTFHH)
—2) (S ® HEFT) DP (2(©))DQO).  (38)

From the definition of Q(®) and Lemma 1, we have
DQ(®) = I ® FH,,. Using (7) along with Lemma 3 and
Lemma 4, we also have:

DP(Q) ) (QT ® I) (S;/QMS(;I/Q ® S;/QMS;”?)
((QSQT)A@@ (QS‘QTyl) (I+Ko)(QS & 1) + (I M).

In (38), substituting the above for DP(2) and DQ(®), and
then substituting €2, yields (37) as claimed. ]

With the formula (37) in hand, Hess(J) > 0 (strictly
positive definite) is a sufficient condition for the unique so-
Iution for ®* (since constraints (19) are linear). In Theorem
2 below, we deduce a simpler sufficient condition involving
the terminal covariance (i.e., covariance of the random vector
x(N)) that guarantees Hess(.J) >~ 0. It was shown in [1, Sec.
II] that the covariance of z(IN) equals QSQT.

Lemma 6. Let M = (S™'/2AS8-1/2)1/2/ § » 0, A »~
Then, sym ((Sl/2MS_1/2 D Sl/QMS_l/Q) (I+ Ko)) -
where K is the commutation matrix with suitable size.

Proof. A > 0 implies that S~'/2AS~1/2 = 0 (congruence
transformation by S~1/2 which is non-singular). Therefore,
M > 0 as the square root of a (symmetric) positive definite
matrix. Due to similarity transform S—1/2MSY?2 = M,
sym(M) > O and therefore sym(M @ M) = 0 by the
properties of the Kronecker sum.

Let T= (M@ M)(I + Ko), so TT = (I + Ko)T(M @
M)T (MT @ MT)(I + K;) from (5b) and the identity
Ko = K. Thus, T + TT = 2sym(T) = (M* + M) &
(MT+M))(I+Kjp). Note that I+ Ky = 0 and MT +M ~
0. Using Lemma 5, 2sym(sym(T)) = 2sym(T) = 0. N

Theorem 2. If the terminal covariance QSQT = Sy, then
Hess(J) > 0.

0.
0

Proof. Let us view the right-hand-side of (37) as linear
combination of four terms. We refer to 2(S ® I) as term 1,



B _ B 1 1/2
205 + 2\HIF"F (I + H,©*) S — 2AHIF"5'/* <S;1/2 (F (I + H,0")§ (1 n @*THE) FT) Sd_l/2>

xSy PF(I+ Hy®) S+ &5, 6, ; =0. (35)
(4,§)€T

the quantity 2\ (S ® HLFTFH,,) as term 2, and 2\ (S ®
HEFTMFHu) as term 4. The remaining term in (37) is
referred to as term 3.

We now make use of two instances of the Lowner—Heinz
theorem [19]-[21]; Specifically, since X — X —1is operator
decreasing, we have

~ ~ —1
Q50" = Sy = (QSQT) < S7!
~ —1
= 5,17 (@807) s =8% 69)
where the last line follows from the congruence transform

by S;l/ % Since X +» X'/2 is operator increasing, (39)
gives

. —1 1/2
(3;1/2 (QSQT> S;”Q) <8 = SYPMsY? <1,
—_———

=M (defined in Thm. 1)

(40)

=M (defined in Thm. 1)

where the last inequality is due to congruence transform by
S;/Q. Since S > 0, it follows from (40) that

SQH.FTMFH, <S® H.F'FH,,

and multiplying both sides of the above by —2\ < 0, we
get — term 4 = —term 2. Since S > 0 (see Proposition 1),
we have term 1 > O.

On the other hand, since M > 0, the similarity
transform with S;/ ® implies that sym(S;/ M Sd_l/ %) -
0, and therefore, sym(S;/QMS;1/2 & Sé/2MS;1/2) >
0. Furthermore, since (QSSTF)_1 >~ 0, we have
N = QSO © (QSQT)"! = 0. Also, we
have N(I + Ky) = (I + Ky)N, from (5a). Using
lemma 6 and the fact that I + Ky > 0, we show
that sym ((S3/°MS;? @ S/ MS; )T+ Ko)) =
sym(7T) = 0. Since N > 0, we show that sym(7TN) > 0
by Lemma 5. Also, it is clear that term 1, term 2 and term 4
are symmetric which implies that term 3 is also symmetric
since Hess(J) is symmetric. This shows that TN = (TN)T
because term3 is the congruence transform of TIN with
OS® FH,. Thus, TN > 0 = term3 > 0.

From (37), Hess(J) = term 1 +term 2 +term 3 — term 4 >
term 1 + term 3 > 0, completing the proof. |

VI. CONCLUSIONS

In this paper, we showed that the covariance steering
problem for discrete-time Gaussian linear systems with a
squared Wasserstein distance terminal is in general non-
convex, and may admit more than one local or global
minimizers. We also derived the analytical expressions of the
Jacobian and the Hessian of the objective function based on
specialized tools from matrix calculus, and obtained the first-
order and second-order conditions for optimality. Finally, we
presented a sufficient condition for the strict convexity of the

performance index, thereby guaranteeing the uniqueness of
the solution under the same condition.
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