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Abstract— We revisit the covariance steering problem for
discrete-time Gaussian linear systems with a squared Wasser-
stein distance terminal cost and analyze the properties of its
solution in terms of existence and uniqueness. Specifically, we
derive the first and second order conditions for optimality and
provide analytic expressions for the gradient and the Hessian
of the performance index by utilizing specialized tools from
matrix calculus. Subsequently, we prove that the optimization
problem always admits a global minimizer, and finally, we
provide a sufficient condition for the performance index to be
a strictly convex function. In particular, we show that when the
terminal state covariance is lower bounded, with respect to the
Löwner partial order, by the covariance matrix of the desired
terminal normal distribution, then the objective function is
strictly convex.

I. INTRODUCTION

We study the existence and uniqueness of solutions to the

covariance steering problem for discrete-time Gaussian linear

systems with a squared Wasserstein distance terminal cost.

This instance of stochastic optimal control problem seeks for

a feedback control policy that will steer the probability dis-

tribution of the state of the uncertain system, close to a goal

multivariate normal distribution over a finite time horizon,

where the closeness of the two distributions is measured in

terms of the squared Wasserstein distance between them. In

our previous work [1], we have shown that the latter problem

can be reduced into a difference of convex functions program

(DCP) provided that the control policy conforms to the so-

called state feedback control parametrization according to

which the control input can be expressed as an affine function

of the current state and all past states visited by the system.

Whereas the focus in [1] was on the control design problem,

in this work we focus on the analysis of the problem and

in particular, addressing questions about the existence and

uniqueness of solutions and the convexity (or lack thereof)

of the performance index.

Literature review: Early works on covariance control

problems can be attributed to Skelton and his co-authors

who mainly examined infinite-horizon problems in a series

of papers (refer to, for instance, [2]–[4]). Recently, finite-

horizon covariance control problems for Gaussian linear

systems have received significant attention; the reader may

refer to [5]–[7] for the continuous-time case and [8]–[13] for

the discrete-time case. The covariance steering problem for

continuous-time Gaussian linear systems with a Wasserstein
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distance terminal cost was first studied in [14] whereas the

same problem but for the discrete-time case was studied in

[1]. Both of these references present numerical algorithms

(shooting method in [14] and convex-concave procedure in

[1]) for control design but do not address theoretical ques-

tions regarding the existence and uniqueness of solutions, or

investigate convexity properties of the performance index.

Main contributions: First, we establish the existence of

at least one global minimizer to the optimization problem.

Subsequently, we derive first and second order conditions of

optimality, and provide analytic expressions for the gradient

and the Hessian of the performance index by utilizing

specialized tools from matrix calculus (these analytic expres-

sions may also facilitate the implementation of numerical op-

timization algorithms, and thus improve in practice the speed

of convergence). Finally, we present a sufficient condition for

the performance index to be a strictly convex function under

which the optimization problem admits a unique solution. In

particular, we show that when the terminal state covariance

is bounded from above, with respect to the Löwner partial

order over the cone of positive semidefinite matrices, by the

covariance matrix of the goal normal distribution, then the

Hessian of the performance index becomes a strictly positive

definite matrix, which in turn implies that the performance

index is a strictly convex function.

II. PRELIMINARIES

Set and inequality notations: We denote the set of non-

negative integers as N0 := {0, 1, 2, . . .}, and for any positive

integer ν, let N0[ν] := {0, 1, . . . , ν}. We use the inequalities

� and � in the sense of Löwner partial order. Given a square

matrix M , we define sym(M) := (M +MT)/2.

Kronecker product, Kronecker sum, and the vec operator:

The basic properties of Kronecker product will be useful in

the sequel, including

(M1 ⊗M2) (M3 ⊗M4) = (M1M3 ⊗M2M4) , (1)

and that matrix transpose and inverse are distributive w.r.t.

the Kronecker product. The vectorization operator vec(·) and

the Kronecker product are related through

vec (M1M2M3) =
(

MT
3 ⊗M1

)

vec (M2) . (2)

Furthermore,

trace
(

M>
1 M2

)

= vec(M1)
T
vec(M2). (3)

We need the Kronecker sum M1⊕M2 := M1⊗ I+ I⊗M2,
where I is an identity matrix of commensurate dimension.



For matrices M,L of appropriate size and L non-singular,

we have

(L⊗ L)(M ⊕M)(L−1 ⊗ L−1)=LML−1 ⊕ LML−1 (4)

which is easy to verify using the definition of Kronecker sum

and (1), and will be useful later.

Commutation matrix: The commutation matrix K0 is the

unique symmetric permutation matrix such that vec (M) =
K0 vec

(

MT
)

, see e.g., [15]. Being orthogonal, K0 satisfies

K−1
0 = KT

0 = K0. Therefore, K0 is idempotent of order

two. Two useful properties of K0 are

K0 vec (I) = vec (I) , K0 (M1 ⊗M2) = (M2 ⊗M1)K0.

Notice that K0 being symmetric orthogonal, its eigenvalues

are ±1. Consequently, the matrix I + K0, which is also

symmetric idempotent, has eigenvalues 0 and 2.

Another observation that will be useful is that I + K0

commutes with “self Kronecker product or sum”, i.e., for

any square matrix M , we have

(I +K0) (M ⊗M) = (M ⊗M) (I +K0) , (5a)

(I +K0) (M ⊕M) = (M ⊕M) (I +K0) , (5b)

which follows from the property of K0 mentioned before.
We also have

(I +K0) (M ⊕M)−1 = (M ⊕M)−1 (I +K0) . (6)

To see (6), notice that K0 (M ⊕M)
−1

equals

(
(M ⊕M)K−1

0

)−1
=((M ⊕M)K0)

−1=(K0 (M ⊕M))−1

= (M ⊕M)−1
K

−1
0 =(M ⊕M)−1

K0.

Matrix differential and Jacobian: The matrix differential

d(·) and the vectorization vec(·) are linear operators that

commute with each other. We will frequently use the Jaco-

bian identification rule [16, Ch. 9, Sec. 5], which for a given

matrix function F (X), is

d vec (F (X)) = DF (X) d vecX, (7)

where DF (X) is the Jacobian of F evaluated at X . In case

F is independent of X , the Jacobain DF is a zero matrix.

Some Jacobians of our interest are collected in the Appendix.

Matrix geometric mean: Given two symmetric positive

definite matrices A and B, their geometric mean (see, for

example, [17]) is the symmetric positive definite matrix

A#B := A1/2
(

A−1/2BA−1/2
)1/2

A1/2. (8)

It satisfies intuitive properties such as A#A = A, A#B =
B#A, (A#B)

−1
= A−1#B−1.

Function composition and normal distribution: We use

the symbol ◦ to denote function composition. We write

z ∼ N (µ,Σ) to denote that the random vector z has normal

distribution with mean vector µ and covariance matrix Σ.

Preparatory lemmas (proofs omitted):

Lemma 1. Let F (X) := AXB. Then DF (X) = BT ⊗A.

Lemma 2. Let F (X) := XXT. Then DF (X) = (I +
K0) (X ⊗ I).

Lemma 3. Let F (X) := XS̃XT where S̃ is a given

symmetric positive definite matrix. Then DF (X) = (I +

K0)
(

XS̃ ⊗ I
)

.

Lemma 4. For X nonsingular, let F (X) := X−1. Then

DF (X) = −
(

X−T ⊗X−1
)

.

Lemma 5. Let A ∈ R
n×n and B = BT ∈ R

n×n. If

sym(A) � 0 and B � 0 then both sym(AB) � 0,

sym(BA) � 0 hold.

III. PROBLEM SET UP

We consider a discrete-time stochastic linear system

xk+1 = Akxk +Bkuk +Gkwk, k ∈ N0, (9)

where xk ∈ R
nx , uk ∈ R

nu , and wk ∈ R
nw denote the

state, control input, and disturbance vectors at time t = k,

respectively. It is assumed that the initial state is a normal

vector and in particular, x0 ∼ N (µ0, S0), where µ0 ∈ R
n

and S0 � 0, and in addition, the disturbance process is a

sequence of independent and identically distributed random

vectors wk ∼ N (0, Sw) for all k ∈ N0 and Sw � 0. We

suppose that x0 and wk are mutually independent for all k ∈
N0, from which it follows that E[x0w

T
k ] = 0 for all k ∈ N0,

where E [·] denotes the expectation functional. We assume

that the matrices Gk are full rank for all k ∈ N0[N − 1].
For N ∈ N0, let x := [xT

0 , x
T
1 , . . . , x

T
N ]T ∈

R
(N+1)nx , u := [uT

0 , u
T
1 , . . . , u

T
N−1]

T ∈ R
Nnu and w :=

[wT
0 , w

T
1 , . . . , w

T
N−1]

T ∈ R
Nnw . Then, we can write

x = Γx0 +Huu+Hww, (10)

where the block (column) vector

Γ := [ITnx

ΦT(1, 0) ΦT(2, 0) . . . ΦT(N, 0)]T, (11)

and for all k, n ∈ N0 with k ≥ n, the matrices Φ(k, n) :=
Ak−1 . . . An, and Φ(n, n) := I (note that Φ(n+1, n) = An).

Furthermore,

Hu :=









0 0 . . . 0

B0 0 . . . 0

Φ(2, 1)B0 B1 . . . 0

...
...

...
...

Φ(N, 1)B0 Φ(N, 2)B1 . . . BN−1









, (12)

and Hw is defined likewise by replacing the matrices

{Bk}
N−1
k=0 in (12) with the matrices {Gk}

N−1
k=0 .

The problem of interest is to perform minimum energy

feedback control synthesis for (9) over a time horizon of

length N , such that the distribution of the terminal state

xN goes close to desired distribution N (µd, Sd) where

µd ∈ R
n, Sd � 0 are given. The mismatch between the

desired distribution and the distribution of the actual terminal

state xN is penalized as a terminal cost quantified using

the squared 2-Wasserstein distance W 2
2 (·, ·) between those

two distributions. We refer the readers to [1, Sec. II] for the

details on problem formulation.



To recover the statistics of the terminal state xN from the

concatenated state x, the following relation will be useful:

xN = Fx, where F := [0, . . . ,0, Inx
].

It was shown in [1] that the problem of discrete time

covariance steering with Wasserstein terminal cost subject

to (9) (or equivalently (10)), can be reduced to a difference

of convex functions program, provided the control policy is

parameterized as

uk = uff,k +

k
∑

t=0

K(k,t)(xt − x̄t) (13)

where x̄t := E [xt], and the parameters of the control policy
are uff,k ∈ R

nx , K(k,t) ∈ R
nu×nx for all {(k, t) ∈ N0 |

k ≥ t}. The concatenated control input u can be written as

u := uff +K(x− x̄) where x̄ := E[x], K :=
[

K̃ 0

]

, and

K̃ :=







K(0,0) 0 . . . 0

K(1,0) K(1,1) . . . 0

...
...

. . .
...

K(N−1,0) K(N−1,1) . . . K(N−1,N−1)






. (14)

The controller synthesis thus amounts to computing the

optimal feedforward control and feedback gain pair (uff ,K).
In [1], the authors proposed a bijective mapping K 7→ Θ

and back, given by

Θ := K(I −HuK)−1, K := Θ(I +HuΘ)−1.

With the new feedback gain parameterization Θ, it was

deduced in [1] that the optimal pair (uff ,Θ) minimizes the

objective J : RNnu × R
Nnu×(N+1)nx 7→ R≥0, given by

J(uff ,Θ) = J cost-to-go(uff ,Θ) + λW 2
2 (uff ,Θ), (16)

where λ > 0 is given, and

J cost-to-go(uff ,Θ) = trace
(

ΘS̃ΘT
)

+ ‖uff‖
2
2, (17)

W 2
2 (uff ,Θ) = ‖µd − (Γµ0 +Huuff)‖

2
2

+ tr
(

F (I +HuΘ)S̃(I +HuΘ)TFT + Sd

)

− 2tr
(

(
√

SdF (I +HuΘ)S̃(I +HuΘ)TFT
√

Sd)
1/2

)

,

where S̃ := ΓS0Γ
T + HwWH

T
w

and the block diagonal

matrix W := blkdiag(Sw, . . . , Sw).

Proposition 1. S̃ := ΓS0Γ
T +HwWHw � 0.

Proof. It is clear that S̃ � 0. Suppose for the sake of

contradiction, that S̃ is singular. Then there exists (N +
1)nx × 1 vector v 6= 0 such that vTS̃v = vT(ΓS0Γ

T +
HwWH

T
w
)v = 0, which in turn, is possible iff ΓTv = 0

and H
T
w
v = 0, since S0 � 0, Sw � 0.

Now let v :=
[

vT0 , v
T
1 , . . . , v

T
N

]T
where the sub-vector

vi ∈ R
nx for all i ∈ N0[N ]. From H

T
w
v = 0, we get v1 =

v2 = . . . = vN = 0 since the matrices {Gk}
N−1
k=0 are full

rank per our assumption. In ΓTv = 0, substituting v1 = v2 =
. . . = vN = 0, yields v0 = 0. Thus, v = 0 which contradicts

our hypothesis. Therefore, the positive semidefinite matrix S̃
is nonsingular, i.e., S̃ � 0. �

Remark 1. An important consideration is that in order
to ensure causality of the control policy, the matrix Θ ∈

R
Nnu×(N+1)nx should be constrained to be block lower

triangular of the form

Θ :=







θ0,0 0 . . . 0 0

θ1,0 θ1,1 . . . 0 0

...
...

...
...

...
θN−1,0 θN−1,1 . . . θN−1,N−1 0







(18)

where θi,j ∈ R
nu×nx for all index pairs (i, j).

The block lower triangular condition on Θ in Remark 1

can be equivalently expressed as θi,j = 0 ∀ (i, j) ∈ N0[N −
1]× N0[N ] s.t. j > i. We transcribe this constraint in terms

of the decision variable Θ as

Eu,iΘET
x,j = 0 ∀(i, j) ∈ H (19)

where H = {(i, j)|(i, j) ∈ N0[N − 1] × N0[N ] and j > i}
Eu,i ∈ R

nu×nuN and Ex,i ∈ R
nx×nx(N+1) are defined as

block vectors whose (i+1)th and (j +1)th blocks are equal

to the identity matrices of suitable dimensions; all the other

blocks are equal to the zero matrix.

It is clear that (17) is a convex quadratic function in its

arguments. The squared Wasserstein distance is a difference

of convex functions in (uff ,Θ). Thus, the objective J in

(16) is a difference of convex functions in the decision

variables, and as such, it is unclear when it might in fact

be convex. In [1], we used the convex-concave procedure

[18] to numerically compute the optimal solution. In our

numerical experiments, we observed multiple local minima

which motivates investigating the conditions of optimality for

(16). This is what we pursue in Sections IV and V. Before

doing so, we show that the objective J in (16) is not convex

in general but there exists a global minimizer.

Proposition 2. The problem of minimizing the objective

J in (16) subject to the constraints (19), admits a global

minimizing pair (uff ,Θ).

Proof. The objective J in (16) is continuous and coercive

(i.e., lim‖uff‖2→∞,‖Θ‖2→∞ J = ∞) in its arguments.

That J is continuous in (uff ,Θ) is immediate. To establish

coercivity, following [1, see equation (26)], we write

J (uff ,Θ) = J1 (uff) + J2 (Θ) + J3 (Θ)− J4 (Θ) , (20)

J1 (uff) := ‖uff‖22 + λ‖F (Γµ0 +Huuff)− µd‖22, (21a)

J2 (Θ) := trace
(

ΘS̃Θ
T
)

, (21b)

J3 (Θ) := λ tr
(

F (I +HuΘ) S̃ (I +HuΘ)T F
T

+Sd) , (21c)

J4 (Θ) := 2λ tr
((

S
1/2
d F (I +HuΘ) S̃ (I +HuΘ)T

F
T
S

1/2
d

)1/2
)

. (21d)

Since J1(uff) in (21a) is strictly convex quadratic in uff ,

it is clear that J1(uff) → ∞ as ‖uff‖2 → ∞.

We note that J2(Θ) equals trace
(

Θ
T
ΘS̃

)

due to invari-

ance of the trace operator under cyclic permutation. Using

(2) and (3), we then write

J2(Θ) = vec(Θ)
T
(S̃ ⊗ I)vec(Θ). (22)





where we used the identity: (I +K0) vec (I) = 2 vec (I),
and (29) follows from (2).

From (29), we identify Y3 = 2HT
u
F

T
FHuΘS̃, which

together with (26), yields

∂J3
∂Θ

=2λHT
u
F

T
F (I +HuΘ) S̃. (30)

Next, let

J41 (Θ) :=
(√

SdΘ

√
Sd

)1/2
,

J42 (Θ) := ΘΘ
T
, J43 (Θ) := F (I +HuΘ) S̃1/2

,

Y4 :=
∂

∂Θ
trace (J41 ◦ J42 ◦ J43(Θ)) ,

and notice that
∂J4
∂Θ

= 2λY4. Therefore, writing

d trace (J41 ◦ J42 ◦ J43(Θ))

= (vec (I))T DJ41 (J42 (J43(Θ)))DJ42(J43 (Θ))

DJ43 (Θ) d vec(Θ)

= (vec(Y4))
T d vec(Θ),

we obtain

vec (Y4) = (DJ43(Θ))
T
(DJ42 (J43(Θ)))

T

(DJ41 (J42 (J43(Θ))))
T
vec (I) . (31)

To proceed further, we utilize the following results:

DJ43(Θ)=D
(

F S̃
1/2 + FHuΘS̃

1/2
)

= S̃
1/2 ⊗ FHu, (32a)

DJ42(Θ)=(I +K0) (Θ⊗ I) , (32b)

DJ41(Θ)=

((

S
1/2
d ΘS

1/2
d

)1/2

⊕
(

S
1/2
d ΘS

1/2
d

)1/2
)−1

×
(

S
1/2
d ⊗ S

1/2
d

)

. (32c)

The result (32a) follows from Lemma 1 while (32b) follows

from Lemma 2, and (32c) follows from [14, equation (30)].
Let Ω(Θ) := F (I +HuΘ) , which is a linear function

of Θ. Substituting (32) in (31), and then using (1), (5a), (6),
and recalling (I +K0) vec(I) = 2 vec(I), we obtain

vec (Y4) = 2
(

S̃ΩT
F

T
S

1/2
d ⊗H

T
u
F

T
S

1/2
d

)

(

M
1/2 ⊕M

1/2
)−1

vec(I). (33)

where M := S
1/2
d ΩS̃ΩTS

1/2
d . Therefore, following similar

steps as in [14, Appendix B, equations (32)-(35)], we arrive

at1 Y4 = H
T
u
F

T(Sd#(ΩS̃ΩT)−1)ΩS̃, where # denotes the
matrix geometric mean as in (8). Hence

∂J4

∂Θ
= 2λY4 = 2λHT

u
F

T

(

Sd #
(

ΩS̃ΩT
)−1

)

ΩS̃. (34)

Combining (24), (25), (30) and (34), with
∂L

∂Θ

∣

∣

∣

∣

(u?

ff
,Θ?)

=

0, we arrive at a nonlinear matrix equation in Θ
? given by

(35). Thus, the primal feasibility (19) and the Lagrangian

gradient (35) together give the first order optimality condi-

tions for Θ?.
1The matrix ΩS̃ΩT is the right bottom corner block of size nx × nx

from the (N + 1)nx × (N + 1)nx symmetric positive definite matrix

(I +HuΘ)S̃(I +HuΘ)T, and is thus symmetric positive definite.

V. SECOND ORDER CONDITIONS

We start by noting that:

Hess (J) = Hess (J2) + Hess (J3)−Hess (J4) . (36)

The following derives closed form expression of the Hessian.

Theorem 1. (Hessian of J)
Consider Ω = Ω(Θ). Let M :=
(

S
−1/2
d (ΩS̃ΩT)−1S

−1/2
d

)1/2

, and M̃ := S
1/2
d MS

1/2
d =

Sd#(ΩS̃ΩT)−1. Then, the Hessian of J in (16) is given by

Hess(J) = 2
(

S̃ ⊗ I
)

+ 2λ
(

S̃ ⊗H
T
u
F

T
FHu

)

+ 2λ
(

ΩS̃ ⊗ FHu

)T (

S
1/2
d MS

−1/2
d ⊕ S

1/2
d MS

−1/2
d

)

((

ΩS̃ΩT
)−1

⊗
(

ΩS̃ΩT
)−1

)

(I +K0)
(

ΩS̃ ⊗ FHu

)

− 2λ
(

S̃ ⊗H
T
u
F

T
M̃FHu

)

. (37)

Proof. Combining (36), (7) with Lemma 1, we get

Hess(J) = 2
(

S̃ ⊗ I
)

+ 2λ
(

S̃ ⊗H
T
u
F

T
FHu

)

− 2λ
(

S̃ ⊗H
T
u
F

T
)

DP (Ω(Θ))DΩ(Θ). (38)

From the definition of Ω(Θ) and Lemma 1, we have
DΩ(Θ) = I ⊗ FHu. Using (7) along with Lemma 3 and
Lemma 4, we also have:

DP (Ω)
(4)
= −

(

ΩT ⊗ I
)(

S
1/2
d MS

−1/2
d ⊕ S

1/2
d MS

−1/2
d

)

((

ΩS̃ΩT
)−1

⊗
(

ΩS̃ΩT
)−1

)

(I +K0)(ΩS̃ ⊗ I) + (I ⊗ M̃).

In (38), substituting the above for DP (Ω) and DΩ(Θ), and

then substituting Ω, yields (37) as claimed. �

With the formula (37) in hand, Hess(J) � 0 (strictly

positive definite) is a sufficient condition for the unique so-

lution for Θ? (since constraints (19) are linear). In Theorem

2 below, we deduce a simpler sufficient condition involving

the terminal covariance (i.e., covariance of the random vector

x(N)) that guarantees Hess(J) � 0. It was shown in [1, Sec.

III] that the covariance of x(N) equals ΩS̃ΩT.

Lemma 6. Let M = (S−1/2
AS

−1/2)1/2, S � 0, A � 0.

Then, sym
((

S
1/2

MS
−1/2 ⊕ S

1/2
MS

−1/2
)

(I +K0)
)

� 0

where K0 is the commutation matrix with suitable size.

Proof. A � 0 implies that S−1/2
AS

−1/2 � 0 (congruence

transformation by S
−1/2 which is non-singular). Therefore,

M � 0 as the square root of a (symmetric) positive definite

matrix. Due to similarity transform S
−1/2

MS
1/2 = M̄,

sym(M̄) � 0 and therefore sym(M̄ ⊕ M̄) � 0 by the

properties of the Kronecker sum.
Let T = (M̄ ⊕ M̄)(I +K0), so T

T = (I +K0)
T(M̄ ⊕

M̄)T = (M̄T ⊕ M̄
T)(I + K0) from (5b) and the identity

K0 = KT
0 . Thus, T + T

T = 2 sym(T) = ((M̄T + M̄) ⊕
(M̄T+M̄))(I+K0). Note that I+K0 � 0 and M̄

T+M̄ �
0. Using Lemma 5, 2 sym(sym(T)) = 2 sym(T) � 0. �

Theorem 2. If the terminal covariance ΩS̃ΩT � Sd, then

Hess(J) � 0.

Proof. Let us view the right-hand-side of (37) as linear

combination of four terms. We refer to 2
(

S̃ ⊗ I
)

as term 1,



2Θ?
S̃ + 2λHT

u
F

T
F (I +HuΘ

?) S̃ − 2λHT
u
F

T
S

1/2
d

(

S
−1/2
d

(

F (I +HuΘ
?) S̃

(

I +Θ
?T

H
T
u

)

F
T
)−1

S
−1/2
d

)1/2

×S
1/2
d F (I +HuΘ

?) S̃ +
∑

(i,j)∈I

ET
u,iΨi,jEx,j = 0. (35)

the quantity 2λ
(

S̃ ⊗H
T
u
F

T
FHu

)

as term 2, and 2λ
(

S̃ ⊗
H

T
u
F

TM̃FHu

)

as term 4. The remaining term in (37) is

referred to as term 3.
We now make use of two instances of the Löwner–Heinz

theorem [19]–[21]; Specifically, since X 7→ X−1 is operator
decreasing, we have

ΩS̃ΩT � Sd ⇒
(

ΩS̃ΩT
)−1

� S
−1
d

⇒ S
−1/2
d

(

ΩS̃ΩT
)−1

S
−1/2
d �S

−2
d , (39)

where the last line follows from the congruence transform

by S
−1/2
d . Since X 7→ X1/2 is operator increasing, (39)

gives

(

S
−1/2
d

(

ΩS̃ΩT
)−1

S
−1/2
d

)1/2

︸ ︷︷ ︸

=M (defined in Thm. 1)

� S
−1
d ⇒ S

1/2
d MS

1/2
d

︸ ︷︷ ︸

=M̃ (defined in Thm. 1)

� I,

(40)

where the last inequality is due to congruence transform by

S
1/2
d . Since S̃ � 0, it follows from (40) that

S̃ ⊗H
T
u
F

T
M̃FHu � S̃ ⊗H

T
u
F

T
FHu,

and multiplying both sides of the above by −2λ < 0, we

get − term 4 � −term 2. Since S̃ � 0 (see Proposition 1),

we have term 1 � 0.

On the other hand, since M � 0, the similarity

transform with S
1/2
d implies that sym(S

1/2
d MS

−1/2
d ) �

0, and therefore, sym(S
1/2
d MS

−1/2
d ⊕ S

1/2
d MS

−1/2
d ) �

0. Furthermore, since (ΩS̃ΩT)−1 � 0, we have

N := (ΩS̃ΩT)−1 ⊗ (ΩS̃ΩT)−1 � 0. Also, we

have N(I + K0) = (I + K0)N, from (5a). Using

lemma 6 and the fact that I + K0 � 0, we show

that sym
(

(S
1/2
d MS

−1/2
d ⊕ S

1/2
d MS

−1/2
d )(I +K0)

)

=

sym(T ) � 0. Since N � 0, we show that sym(TN) � 0

by Lemma 5. Also, it is clear that term 1, term 2 and term 4

are symmetric which implies that term 3 is also symmetric

since Hess(J) is symmetric. This shows that TN = (TN)T

because term 3 is the congruence transform of TN with

ΩS ⊗ FHu. Thus, TN � 0 ⇒ term3 � 0.

From (37), Hess(J) = term 1+ term 2+ term 3− term 4 �
term 1 + term 3 � 0, completing the proof. �

VI. CONCLUSIONS

In this paper, we showed that the covariance steering

problem for discrete-time Gaussian linear systems with a

squared Wasserstein distance terminal is in general non-

convex, and may admit more than one local or global

minimizers. We also derived the analytical expressions of the

Jacobian and the Hessian of the objective function based on

specialized tools from matrix calculus, and obtained the first-

order and second-order conditions for optimality. Finally, we

presented a sufficient condition for the strict convexity of the

performance index, thereby guaranteeing the uniqueness of

the solution under the same condition.
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