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Abstract
We study a fundamental problem in Bayesian learning, where the goal is to select a set of data
sources with minimum cost while achieving a certain learning performance based on the data
streams provided by the selected data sources. First, we show that the data source selection problem
for Bayesian learning is NP-hard. We then show that the data source selection problem can be
transformed into an instance of the submodular set covering problem studied in the literature, and
provide a standard greedy algorithm to solve the data source selection problem with provable
performance guarantees. Next, we propose a fast greedy algorithm that improves the running times
of the standard greedy algorithm, while achieving performance guarantees that are comparable to
those of the standard greedy algorithm. Finally, we validate the results using numerical examples,
and show that the greedy algorithms work well in practice.1

Keywords: Bayesian Learning, Combinatorial Optimization, Approximation Algorithms, Greedy
Algorithms

1. Introduction

The problem of learning the true state of the world based on streams of data has been studied by
researchers from different fields. A classical method to tackle this task is Bayesian learning, where
we start with a prior belief about the true state of the world and update our belief based on the data
streams from the data sources (e.g., Gelman et al. (2013)). In particular, the data streams can come
from a variety of sources, including experiment outcomes (Chaloner and Verdinelli, 1995), medical
tests (Kononenko, 1993), and sensor measurements (Krause et al., 2008), etc. In practice, we need
to pay a cost in order to obtain the data streams from the data sources; for example, conducting
certain experiments or installing a particular sensor incurs some cost that depends on the nature
of the corresponding data source. Thus, a fundamental problem that arises in Bayesian learning is
to select a subset of data sources with the smallest total cost, while ensuring a certain level of the
learning performance based on the data streams provided by the selected data sources.

In this paper, we focus on a standard Bayesian learning rule that updates the belief on the true state
of the world recursively based on the data streams. The learning performance is then characterized by
an error given by the difference between the steady-state belief obtained from the learning rule and
the true state of the world. Moreover, we consider the scenario where the data sources are selected a
priori before running the Bayesian learning rule, and the set of selected data sources is fixed over

1. An extended version of this paper that includes all the omitted proofs can be found on arXiv as Ye et al. (2020).
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time. We then formulate and study the Bayesian Learning Data Source Selection (BLDS) problem,
where the goal is to minimize the cost spent on the selected data sources while ensuring that the error
of the learning process is within a prescribed range.

1.1. Related Work

In Dasgupta (2005) and Golovin et al. (2010), the authors studied the data source selection problem
for Bayesian active learning. They considered the scenario where the data sources are selected in a
sequential manner with a single data source selected at each time step in the learning process. The
goal is then to find a policy on sequentially selecting the data sources with minimum cost, while the
true state of the world can be identified based on the selected data sources. In contrast, we consider
the scenario where a subset of data sources are selected a priori. Moreover, the selected data sources
may not necessarily lead to the learning of the true state of the world. Thus, we characterize the
performance of the learning process via its steady-state error.

The problem studied in this paper is also related but different from the problem of ensuring
sparsity in learning, where the goal is to identify the fewest number of features in order to explain a
given set of data (Palmer et al., 2004; Krause and Cevher, 2010).

Finally, our problem formulation is also related to the sensor placement problem that has been
studied for control systems (e.g., Mo et al. (2011) and Ye et al. (2021)), signal processing (e.g.,
Chepuri and Leus (2014) and Ye and Sundaram (2019)), and machine learning (e.g., Krause et al.
(2008)). In general, the goal of these problems is either to optimize certain (problem-specific)
performance metrics of the estimate associated with the measurements of the placed sensors while
satisfying the sensor placement budget constraint, or to minimize the cost spent on the placed sensors
while ensuring that the estimation performance is within a certain range.

1.2. Contributions

First, we formulate the Bayesian Learning Data Source Selection (BLDS) problem, and show that
the BLDS problem is NP-hard. Next, we show that the BLDS problem can be transformed into an
instance of the submodular set covering problem studied in Wolsey (1982). The BLDS problem
can then be solved using a standard greedy algorithm with approximation guarantees, where the
query complexity of the greedy algorithm is O(n2), with n to be the number of all candidate data
sources. In order to improve the running times of the greedy algorithm, we further propose a fast
greedy algorithm with query complexity O(nε ln n

ε ), where ε ∈ (0, 1). The fast greedy algorithm
achieves comparable performance guarantees to those of the standard greedy algorithm, and can
also be applied to solve the general submodular set covering problem with performance guarantees.
Finally, we provide illustrative examples to interpret the performance bounds obtained for the greedy
algorithms applied to the BLDS problem, and give simulation results.

2. The Bayesian Learning Data Source Selection Problem

In this section, we formulate the data source selection problem for Bayesian learning that we will
study in this paper. Let Θ , {θ1, θ2, . . . , θm} be a finite set of possible states of the world, where
m , |Θ|. We consider a set [n] , {1, 2, . . . , n} of data sources that can provide data streams of
the state of the world. At each discrete time step k ∈ Z≥1, the signal (or observation) provided
by source i ∈ [n] is denoted as ωi,k ∈ Si, where Si is the signal space of source i. Conditional
on the state of the world θ ∈ Θ, an observation profile of the n sources at time k, denoted as
ωk , (ω1,k, . . . , ωn,k) ∈ S1 × · · · × Sn, is generated by the likelihood function `(·|θ). Let `i(·|θ)
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denote the i-th marginal of `(·|θ), which is the signal structure of data source i ∈ [n]. We make the
following assumption on the observation model (e.g., see Jadbabaie et al. (2012); Liu et al. (2014);
Lalitha et al. (2014); Nedić et al. (2017)).
Assumption 1 For each source i ∈ [n], the signal space Si is finite, and the likelihood function
`i(·|θ) satisfies li(si|θ) > 0 for all si ∈ Si and for all θ ∈ Θ. Furthermore, for all θ ∈ Θ,
the observations are independent over time, i.e., {ωi,1, ωi,2, . . . } is a sequence of independent
identically distributed (i.i.d.) random variables. The likelihood function is assumed to satisfy
`(·|θ) =

∏n
i=1 `i(·|θ) for all θ ∈ Θ, where `i(·|θ) is the i-th marginal of `(·|θ).

Consider the scenario where there is a (central) designer who needs to select a subset of data
sources in order to learn the true state of the world based on the observations from the selected sources.
Specifically, each data source i ∈ [n] is assumed to have an associated selection cost hi ∈ R>0.
Considering any I , {n1, n2, . . . , nτ} with τ = |I|, we let h(I) denote the sum of the costs of the
selected sources in I , i.e., h(I) ,

∑
ni∈I hni . Let ωI,k , (ωn1,k, . . . , ωnτ ,k) ∈ Sn1 × · · · × Snτ be

the observation profile (conditioned on θ ∈ Θ) generated by the likelihood function `I(·|θ), where
`I(·|θ) =

∏τ
i=1 `ni(·|θ). We assume that the designer knows `i(·|θ) for all θ ∈ Θ and for all i ∈ [n],

and thus knows `I(·|θ) for all I ⊆ [n] and for all θ ∈ Θ. After the data sources are selected, the
designer updates its belief of the state of the world using the following standard Bayes’ rule:

µIk+1(θ) =
µ0(θ)

∏k
j=0 `I(ωI,j+1|θ)∑

θp∈Θ µ0(θp)
∏k
j=0 `I(ωI,j+1|θp)

∀θ ∈ Θ, (1)

where uIk+1(θ) is the belief of the designer that θ is the true state at time step k + 1, and µ0(θ) is
the initial (or prior) belief of the designer that θ is the true state. We take

∑
θ∈Θ µ0(θ) = 1 and

µ0(θ) ∈ R≥0 for all θ ∈ Θ. Note that
∑

θ∈Θ µ
I
k (θ) = 1 for all I ⊆ [n] and for all k ∈ Z≥1, where

0 ≤ µIk (θ) ≤ 1 for all θ ∈ Θ. In other words, µIk (·) is a probability distribution over Θ for all
k ∈ Z≥1 and for all I ⊆ [n]. Rule (1) is also equivalent to the following recursive rule:

µIk+1(θ) =
µIk (θ)`I(ωI,k+1|θ)∑

θp∈Θ µ
I
k (θp)`I(ωI,k+1|θp)

∀θ ∈ Θ, (2)

with µI0 (θ) , µ0(θ) for all I ⊆ [n]. For a given state θ ∈ Θ and a given I ⊆ [n], we define the set
of observationally equivalent states to θ as

Fθ(I) , arg min
θp∈Θ

DKL(`I(·|θp)‖`I(·|θ)),

where DKL(`I(·|θp)‖`I(·|θ)) is the Kullback-Leibler (KL) divergence between the likelihood func-
tions `I(·|θp) and `I(·|θ). Noting that DKL(`I(·|θ)‖`I(·|θ)) = 0 and that the KL divergence is
always nonnegative, we have θ ∈ Fθ(I) for all θ ∈ Θ and for all I ⊆ [n]. Equivalently, we can write

Fθ(I) = {θp ∈ Θ : `I(sI |θp) = `I(sI |θ), ∀sI ∈ SI}, (3)

where SI , Sn1 × · · · × Snτ . Note that Fθ(I) is the set of states that cannot be distinguished
from θ based on the data streams provided by the data sources indicated by I. Moreover, we define
Fθ(∅) , Θ. Noting that `I(·|θ) =

∏τ
i=1 `ni(·|θ) under Assumption 1, we can further obtain from

Eq. (3) the following:
Fθ(I) =

⋂
ni∈I

Fθ(ni), (4)
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for all I ⊆ [n] and for all θ ∈ Θ. Using similar arguments to those for Lemma 1 in Mitra et al.
(2020), one can show the following result.

Lemma 1 Suppose the true state of the world is θ∗, and µ0(θ) > 0 for all θ ∈ Θ. For all I ⊆ [n],
the rule given in (1) ensures: (a) limk→∞ µ

I
k (θp) = 0 almost surely (a.s.) for all θp /∈ Fθ∗(I); and

(b) limk→∞ µ
I
k (θq) =

µ0(θq)∑
θ∈Fθ∗ (I)

µ0(θ) a.s. for all θq ∈ Fθ∗(I), where Fθ∗(I) is given by Eq. (4).

Consider a true state θ∗ ∈ Θ and a set I ⊆ [n] of selected sources. In order to characterize the
(steady-state) learning performance of rule (1), we will use the following error metric (e.g., Jadbabaie
et al. (2013)):

eθ∗(I) ,
1

2
lim
k→∞

‖µIk − 1θ∗‖1, (5)

where µIk ,
[
µIk (θ1) · · · µIk (θm)

]′, and 1θ∗ ∈ Rm is a (column) vector where the element
that corresponds to θ∗ is 1 and all the other elements are zero. Note that 1

2‖µ
I
k − 1θ∗‖1 is also

known as the total variation distance between the two distributions µIk and 1θ∗ (e.g., Brémaud
(2013)). Also note that eθ∗(I) exists (a.s.) due to Lemma 1. We then obtain from Lemma 1 that
eθ∗(I) = 1− µ0(θ∗)∑

θ∈Fθ∗ (I)
µ0(θ) holds almost surely. Since the true state is not known a priori to the

designer, we further define

esθp(I) , 1− µ0(θp)∑
θ∈Fθp (I) µ0(θ)

∀θp ∈ Θ, (6)

which represents the (steady-state) total variation distance between the designer’s belief µIk and 1θp ,
when θp is assumed to be the true state of the world. We then define the Bayesian Learning Data
Source Selection (BLDS) problem as follows.

Problem 1 (BLDS) Consider a set Θ = {θ1, . . . , θm} of possible states of the world; a set [n]
of data sources providing data streams, where the signal space of source i ∈ [n] is Si and the
observation from source i ∈ [n] under state θ ∈ Θ is generated by `i(·|θ); a selection cost hi ∈ R>0

of each source i ∈ [n]; an initial belief µ0(θ) ∈ R>0 for all θ ∈ Θ with
∑

θ∈Θ µ0(θ) = 1; and
prescribed error bounds 0 ≤ Rθp ≤ 1 (Rθp ∈ R) for all θp ∈ Θ. The BLDS problem is to find a set
of selected data sources I ⊆ [n] that solves

min
I⊆[n]

h(I)

s.t. esθp(I) ≤ Rθp ∀θp ∈ Θ,
(7)

where esθp(I) is defined in (6).

Note that the constraints in (7) also capture the fact that the true state of the world is unknown
to the designer a priori. In other words, for any set I ⊆ [n] and for any θp ∈ Θ, the constraint
esθp(I) ≤ Rθp requires the (steady-state) learning error esθp(I) to be upper bounded by Rθp when
the true state of the world is assumed to be θp. Moreover, the interpretation of Rθp for θp ∈ Θ is
as follows. When Rθp = 0, we see from (6) and the constraint esθp(I) ≤ Rθp that Fθp(I) = {θp}.
In other words, the constraint esθp(I) ≤ 0 requires that any θq ∈ Θ \ {θp} is not observationally
equivalent to θp, based on the observations from the data sources indicated by I ⊆ [n]. Next, when
Rθp = 1, we know from (6) that the constraint esθp(I) ≤ 1 is satisfied for all I ⊆ [n]. Finally, when
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0 < Rθp < 1 and µ0(θ) = 1
m for all θ ∈ Θ, where m = |Θ|, we see from (6) that the constraint

esθp(I) ≤ Rθp is equivalent to |Fθp(I)| ≤ 1
1−Rθp

, i.e., the number of states that are observationally

equivalent to θp should be less than or equal to 1
1−Rθp

, based on the observations from the data source

indicated by I ⊆ [n]. In summary, the value of Rθp in the constraints represents the requirements of
the designer on distinguishing state θp from other states in Θ; a smaller value of Rθp would imply
that the designer wants to distinguish θp from more states in Θ and vice versa.

Remark 2 The above problem formulation can be extended to distributed non-Bayesian learning
(e.g., Nedić et al. (2017)). See the Appendix in Ye et al. (2020) for details about this extension.

Next, we show that the BLDS problem is NP-hard via a reduction from the set cover problem,
which is known to be NP-hard (e.g., Garey and Johnson (1979), Feige (1998)).

Theorem 3 The BLDS problem is NP-hard even when all the data sources have the same cost.

3. Greedy Algorithms for the BLDS Problem

In this section, we first show that the BLDS problem can be transformed into an instance of the
submodular set covering problem studied in Wolsey (1982). We then consider two greedy algorithms
for the BLDS problem and study their performance guarantees when applied to the problem. We
start with the following definition.

Definition 4 (Nemhauser et al. (1978)) A set function f : 2[n] → R is submodular if for all
X ⊆ Y ⊆ [n] and for all j ∈ [n] \ Y , f(X ∪ {j})− f(X) ≥ f(Y ∪ {j})− f(Y ).

To proceed, note that the constraint corresponding to θp in Problem 1 (i.e., (7)) is satisfied for all
I ⊆ [n] if Rθp = 1. Since µ0(θ) > 0 for all θ ∈ Θ, we can equivalently write the constraints as∑

θ∈Fθp (I)

µ0(θ) ≤ µ0(θp)

1−Rθp
, ∀θp ∈ Θ with Rθp < 1. (8)

Define F cθp(I) , Θ \ Fθp(I) for all θp ∈ Θ and for all I ⊆ [n], where Fθp(I) is given by Eq. (4).
Note that F cθp(I) is the set of states that can be distinguished from θp, given the data sources indicated
by I. Using the fact

∑
θ∈Θ µ0(θ) = 1, (8) can be equivalently written as∑

θ∈F cθp (I)

µ0(θ) ≥ 1− µ0(θp)

1−Rθp
, ∀θp ∈ Θ with Rθp < 1. (9)

Moreover, we note that the constraint corresponding to θp in (9) is satisfied for all I ⊆ [n] if
1− µ0(θp)

1−Rθp
≤ 0, i.e., Rθp ≥ 1− µ0(θp). Hence, we can equivalently write (9) as

∑
θ∈F cθp (I)

µ0(θ) ≥ 1− µ0(θp)

1−Rθp
, ∀θp ∈ Θ̄,

where Θ̄ , {θp ∈ Θ : 0 ≤ Rθp < 1− µ0(θp)}. For all I ⊆ [n], let us define

fθp(I) ,
∑

θ∈F cθp (I)

µ0(θ), ∀θp ∈ Θ̄. (10)
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Noting that Fθp(∅) = Θ, i.e., F cθp(∅) = ∅, we let fθp(∅) = 0. It then follows directly from (10) that
fθp : 2[n] → R≥0 is a monotone nondecreasing set function.2

Remark 5 Note that in order to ensure that there exists I ⊆ [n] that satisfies the constraints in (9),
we assume that fθp([n]) ≥ 1− µ0(θp)

1−Rθp
for all θp ∈ Θ̄, since fθp(·) is nondecreasing for all θp ∈ Θ̄.

Lemma 6 The set function fθp : 2[n] → R≥0 defined in (10) is submodular for all θp ∈ Θ̄.

Moreover, considering any I ⊆ [n], we define

f ′θp(I) , min{fθp(I), 1− µ0(θp)

1−Rθp
} ∀θp ∈ Θ̄, (11)

where fθp(I) is defined in (10). Since fθp(·) is submodular and nondecreasing with fθp(∅) = 0

and fθp([n]) ≥ 1 − µ0(θp)
1−Rθp

, one can show that f ′θp(·) is also submodular and nondecreasing with

f ′θp(∅) = 0 and f ′θp([n]) = 1− µ0(θp)
1−Rθp

. Since the sum of submodular functions remains submodular,∑
θp∈Θ̄ f

′
θp

(·) is submodular and nondecreasing. We also have the following result.

Lemma 7 Consider any I ⊆ [n]. The constraint
∑

θ∈F cθp (I) µ0(θ) ≥ 1 − µ0(θp)
1−Rθp

holds for all

θp ∈ Θ̄ if and only if
∑

θp∈Θ̄ f
′
θp

(I) =
∑

θp∈Θ̄ f
′
θp

([n]), where f ′θp(·) is defined in (11).

Based on the above arguments, for all I ⊆ [n], we further define

z(I) ,
∑
θp∈Θ̄

f ′θp(I) =
∑
θp∈Θ̄

min{fθp(I), 1− µ0(θp)

1−Rθp
}, (12)

where fθp(I) is defined in (10). We then see from Lemma 7 that (7) in Problem 1 can be equivalently
written as

min
I⊆[n]

h(I)

s.t. z(I) = z([n]),
(13)

where one can show that z(·) defined in Eq. (12) is a nondecreasing and submodular set function
with z(∅) = 0. Now, considering an instance of the BLDS problem, for any I ⊆ [n] and for any
θ ∈ Θ, one can obtain Fθ(I) (and F cθ (I)) in O(S|I||Θ|) time, where S , maxni∈I |Si| with Si to
be the signal space of source ni ∈ I . Therefore, we see from (10) and (12) that for any I ⊆ [n], one
can compute the value of z(I) in O(Sn|Θ|2) time.

Problem (13) can then be viewed as the submodular set covering problem studied in Wolsey
(1982), where the submodular set covering problem is solved using a greedy algorithm with perfor-
mance guarantees. Specifically, we consider the greedy algorithm defined in Algorithm 1 for the
BLDS problem. The algorithm maintains a sequence of sets I0

g , I1
g , . . . , ITg containing the selected

elements from [n], where T ∈ Z≥1. Note that Algorithm 1 requires O(n2) evaluations of function
z(·), where z(I) can be computed in O(Sn|Θ|2) time for any I ⊆ [n] as argued above. In other
words, the query complexity of Algorithm 1 is O(n2). We then have the following result from
the arguments above (i.e., Lemmas 6-7) and Theorem 1 in Wolsey (1982), which characterizes the
performance guarantees for the greedy algorithm (Algorithm 1) when applied to the BLDS problem.

2. A set function f : 2[n] → R is monotone nondecreasing if f(X) ≤ f(Y ) for all X ⊆ Y ⊆ [n].

6
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Algorithm 1 Greedy Algorithm for BLDS

Input: [n], z : 2[n] → R≥0, hi ∀i ∈ [n]
Output: Ig

1: t← 0, I0
g ← ∅

2: while z(Itg) < z([n]) do

3: jt ∈ arg maxi∈[n]\Itg
z(Itg∪{i})−z(Itg)

hi

4: It+1
g ← Itg ∪ {jt}, t← t+ 1

5: T ← t, Ig ← ITg
6: return Ig

Theorem 8 Let I∗ be an optimal solution to the BLDS problem. Algorithm 1 returns a solution
Ig to the BLDS problem (i.e., (13)) that satisfies the following, where I1

g , . . . , IT−1
g are specified in

Algorithm 1, and [T − 1] , {1, 2, . . . , T − 1}.

(a) h(Ig) ≤
(

1 + ln max
i∈[n],ζ∈[T−1]

{ z(i)− z(∅)
z(Iζg ∪ {i})− z(Iζg )

: z(Iζg ∪ {i})− z(Iζg ) > 0
})

h(I∗),

(b) h(Ig) ≤
(

1 + ln
hjT (z(j1)−z(∅))

hj1 (z(IT−1
g ∪{jT })−z(IT−1

g ))

)
h(I∗),

(c) h(Ig) ≤
(

1 + ln z([n])−z(∅)
z([n])−z(IT−1

g )

)
h(I∗),

(d) if z(I) ∈ Z≥0 for all I ⊆ [n], h(Ig) ≤
(∑M

i=i
1
i

)
h(I∗) ≤ (1 + lnM)h(I∗), where M ,

maxj∈[n] z(j).

Note that the bounds in Theorem 8(a)-(c) depend on Itg from the greedy algorithm. We can
compute the bounds in Theorem 8(a)-(c) in parallel with the greedy algorithm, in order to provide a
performance guarantee on the output of the algorithm. The bound in Theorem 8(d) does not depend
on Itg, and can be computed using O(n) evaluations of function z(·).

3.1. Fast greedy algorithm

We now give an algorithm (Algorithm 2) for BLDS that achieves O(nε ln n
ε ) query complexity for

any ε ∈ (0, 1), which is significantly smaller than O(n2) as n scales large. In line 3 of Algorithm 2,
hmax , maxj∈[n] hj and hmin , minj∈[n] hj . While achieving faster running times, we will show
that the solution returned by Algorithm 2 has slightly worse performance bounds compared to those
of Algorithm 1 provided in Theorem 8, and potentially slightly violates the constraint of the BLDS
problem given in (13). Specifically, a larger value of ε in Algorithm 2 leads to faster running times
of Algorithm 2, but yields worse performance guarantees. Moreover, note that Algorithm 1 adds
a single element to Ig in each iteration of the while loop in lines 2-4. In contrast, Algorithm 2
considers multiple candidate elements in each iteration of the for loop in lines 3-9, and adds elements
that satisfy the threshold condition given in line 5, which leads to the faster running times. Formally,
we have the following result.

Theorem 9 Suppose hmax
hmin

≤ nH holds in the BLDS instances, where hmax = maxj∈[n] hj , hmin =
minj∈[n] hj , and H ∈ R≥1 is a fixed constant. Let I∗ be an optimal solution to the BLDS problem.
For any ε ∈ (0, 1), Algorithm 2 returns a solution If to the BLDS problem (i.e., (13)) in query
complexity O(nε ln n

ε ) that satisfies z(If ) ≥ (1 − ε)z([n]), and has the following performance
bounds, where IT−1

f is given in Algorithm 2.

7



NEAR-OPTIMAL DATA SOURCE SELECTION FOR BAYESIAN LEARNING

(a) h(If ) ≤ 1
1−ε

(
1 + ln z([n])

z([n])−z(IT−1
f )

)
h(I∗),

(b) if z(I) ∈ Z≥0 for all I ⊆ [n], h(If ) ≤ 1
1−ε
(
1 + ln z([n])

)
h(I∗).

Algorithm 2 Fast Greedy Algorithm for DSSL

Input: [n], z : 2[n] → R≥0, hi ∀i ∈ [n], ε ∈ (0, 1)
Output: If

1: t← 0, I0
f ← ∅

2: d← maxi∈[n]
z(i)−z(∅)

hi

3: for (τ = d; τ ≥ εhmin
nhmax

d; τ ← τ(1− ε)) do
4: for j ∈ [n] do
5: if

z(Itf∪{j})−z(I
t
f )

hj
≥ τ then

6: It+1
f ← Itf ∪ {j}, t← t+ 1

7: if z(Itf ) = z([n]) then
8: T ← t, If ← ITf
9: return If

10: T ← t, If ← ITf
11: return If

Remark 10 The threshold-based greedy algorithm has also been proposed for the problem of
maximizing a monotone nondecreasing submodular function subject to a cardinality constraint (e.g.,
Badanidiyuru and Vondrák (2014)). The threshold-based greedy algorithm proposed in Badanidiyuru
and Vondrák (2014) improves the running times of the standard greedy algorithm proposed in
Nemhauser et al. (1978), and achieves a comparable performance guarantee to that of the standard
greedy algorithm in Nemhauser et al. (1978). Here, we propose a threshold-based greedy algorithm
(Algorithm 2) to solve the submodular set covering problem, which improves the running times of the
standard greedy algorithm for the submodular set covering problem proposed in Wolsey (1982) (i.e.,
Algorithm 2), and achieves comparable performances guarantees as we showed in Theorem 9.

3.2. Interpretation of Performance Bounds

Here, we give an illustrative example to interpret the performance bounds of Algorithm 1 and
Algorithm 2 given in Theorem 8 and Theorem 9, respectively. In particular, we focus on the bounds
given in Theorem 8(d) and Theorem 9(b). Consider an instance of the BLDS problem, where we
set µ0(θp) = 1

m for all θp ∈ Θ with m = |Θ|. In other words, there is a uniform prior belief over
the states in Θ = {θ1, . . . , θm}. Moreover, we set the error bounds Rθp = R

m for all θp ∈ Θ, where
R ∈ Z≥0 and R < m − 1. Recalling that Θ̄ = {θp ∈ Θ : 0 ≤ Rθp < 1 − µ0(θp)} and noting the
definition of z(·) in Eq. (12), for all I ⊆ [n], we define

z′(I) , m(m−R)z(I) = m(m−R)
∑
θp∈Θ

f ′θp(I). (14)

One can check that z′(I) ∈ Z≥0 for all I ⊆ [n], and that (13) can be equivalently written as

min
I⊆[n]

h(I)

s.t. z′(I) = z′([n]).
(15)
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Noting that M ′ , maxj∈[n] z
′(j) ≤ m2(m − R) from (14), we then see from Theorem 8(d) that

applying Algorithm 1 to (15) yields the following performance bound:

h(Ig) ≤
( M ′∑
i=i

1

i

)
h(I∗) ≤

(
1 + lnM ′)h(I∗) ≤ (1 + 2 lnm+ ln(m−R)

)
h(I∗). (16)

Similarly, since z′([n]) ≤ m2(m−R) also holds, Theorem 9(b) implies the following performance
bound for Algorithm 2 when applied to (15):

h(If ) ≤ 1

1− ε
(
1 + ln z′([n])

)
h(I∗) ≤ 1

1− ε
(1 + 2 lnm+ ln(m−R)

)
h(I∗), (17)

where ε ∈ (0, 1). Again, we note from Theorem 9 that a smaller value of ε yields a tighter
performance bound for Algorithm 2 (according to (17)) at the cost of slower running times. Thus,
supposing m and ε are fixed, we see from (16) and (17) that the performance bounds of Algorithm 1
and Algorithm 2 become tighter as R increases, i.e., as the error bound Rθp increases. On the
other hand, supposing R and ε are fixed, we see from (16) and (17) that the performance bounds of
Algorithm 1 and Algorithm 2 become tighter as m decreases, i.e., as the number of possible states of
the world decreases.

Finally, we note that the performance bounds given in Theorem 8 are worst-case performance
bounds for Algorithm 1. Thus, in practice the ratio between a solution returned by the algorithm
and an optimal solution can be smaller than the ratio predicted by Theorem 8. Nevertheless, there
may also exist instances of the BLDS problem that let Algorithm 1 return a solution that meets the
worst-case performance bound. Moreover, instances with tighter performance bounds (given by
Theorem 8) potentially imply better performance of the algorithm when applied to those instances,
as we can see from the above discussions and the numerical examples that will be provided in the
next section. Therefore, the performance bounds given in Theorem 8 also provide insights into how
different problem parameters of BLDS influence the actual performance of Algorithm 1. Similar
arguments also hold for Algorithm 2 and the corresponding performance bounds given in Theorem 9.

3.3. Numerical examples

In this section, we focus on validating Algorithm 1 and the performance bounds provided in Theo-
rem 8 using numerical examples. Numerical results for Algorithm 2 and Theorem 9 can be found in
the extended version (Ye et al., 2020). First, the total number of data sources is set to be 10, and the
selection cost hi is drawn uniformly from {1, 2, . . . , 10} for all i ∈ [n]. The cost structure is then
fixed in the sequel. Similarly to Section 3.2, we consider BLDS instances where µ0(θp) = 1

m for all
θp ∈ Θ with m = |Θ|, and Rθp = R

m for all θp ∈ Θ with R ∈ Z>0 and R < m − 1. Specifically,
we set m = 15 and range R from 0 to 13. For each R ∈ {0, 1, . . . , 13}, we further consider 500
corresponding randomly generated instances of the BLDS problem, where for each BLDS instance
we randomly generate the set F cθp(i) (i.e., the set of states that can be distinguished from θp given data
source i) for all i ∈ [n] and for all θp ∈ Θ.3 In Fig. 1, we plot histograms of the ratio h(Ig)/h(I∗)

3. Note that in the BLDS problem (Problem 1), the signal structure of each data source i ∈ [n] is specified by the
likelihood functions `i(·|θp) for all θp ∈ Θ. As we discussed in previous sections, (7) in Problem 1 can be equivalently
written as (13), where one can further note that the function z(·) does not directly depend on any likelihood function
`i(·|θp), and can be (fully) specified given F cθp(i) for all i ∈ [n] and for all θp ∈ Θ. Thus, when constructing the
BLDS instances in this section, we directly construct F cθp(i) for all i ∈ [n] and for all θp ∈ Θ in a random manner.

9
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forR = 1, R = 5 andR = 10, where Ig is the solution returned by Algorithm 1 and I∗ is an optimal
solution to BLDS. We see from Fig. 1 that Algorithm 1 works well on the randomly generated
BLDS instances, as the values of h(Ig)/h(I∗) are close to 1. Moreover, we see from Fig. 1 that as
R increases, Algorithm 1 yields better overall performance for the 500 randomly generated BLDS
instances. Now, from the way we set µ0(θp) and Rθp in the BLDS instances constructed above,
we see from the arguments in Section 3.2 that the performance bound for Algorithm 1 given by
Theorem 8(d) can be written as h(Ig) ≤

(
1 + lnM ′)h(I∗), where M ′ = maxj∈[n] z

′(j) and z′(·)
is defined in (14). Thus, in Fig. 2, we plot the performance bound of Algorithm 1, i.e., 1 + lnM ′, for
R ranging from 0 to 13. Also note that for each R ∈ {0, 1, . . . , 13}, we obtain the averaged value of
1 + lnM ′ over 500 random BLDS instances as we constructed above. We then see from Fig. 2 that
the value of the performance bound of Algorithm 1 decreases, i.e., the performance bound becomes
tighter, as R increases from 0 to 13. The behavior of the performance bound aligns with the actual
performance of Algorithm 1 as we presented in Fig. 1, i.e., a tighter performance bound implies a
better overall performance of the algorithm on the 500 random BLDS instances.

(a) R = 1. (b) R = 5. (c) R = 10.

Figure 1: Histograms of the ratio h(Ig)/h(I∗).

Figure 2: Performance bound for Algorithm 1 given by Theorem 8(d).

4. Conclusion

In this work, we considered the problem of data source selection for Bayesian learning. We first
proved that the data source selection problem for Bayesian learning is NP-hard. Next, we showed that
the data source selection problem can be transformed into an instance of the submodular set covering
problem, and can then be solved using a standard greedy algorithm with provable performance
guarantees. We also proposed a fast greedy algorithm that improves the running times of the
standard greedy algorithm, while achieving comparable performance guarantees. We showed that the
performance bounds provide insights into the actual performances of the algorithms under different
instances of the data source selection problem. Finally, we validated our theoretical analysis using
numerical examples, and showed that the greedy algorithms work well in practice.

10
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