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Peak Infection Time for a Networked SIR Epidemic with Opinion Dynamics
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Abstract— We propose an SIR epidemic model coupled with
opinion dynamics to study an epidemic and opinions spreading
in a network of communities. Qur model couples networked
SIR epidemic dynamics and opinions towards the severity of
the epidemic. We develop an epidemic-opinion based threshold
condition to capture the moment when a weighted average of
the epidemic states starts to decrease exponentially fast over the
network, namely the peak infection time. We define an effective
reproduction number to characterize the behavior of the model
through the peak infection time. We use both analytical and
simulation-based results to illustrate that the opinions reflect
the recovered levels within the communities after the epidemic
dies out.

I. INTRODUCTION

The COVID-19 pandemic has caused severe suffering
across the world in both public health and the econ-
omy. These hardships have motivated researchers from var-
ious backgrounds to study the viral pathogenesis, epidemic
spreading models, mitigation strategies [1], [2], etc. Besides
the COVID-19 pandemic, it is relevant to build dynamic
models to study viral spreading processes to predict future
outbreaks and to design control algorithms to mitigate the
epidemic [3]. One of the popular ways to capture viral
spreading processes is by using network-based compartmen-
tal models [4]. In networked epidemic models, the infection
rates, healing rates, and network structures all play important
roles in determining the behaviors of the epidemic spreading
processes. Recently, social factors such as human awareness
[5], opinion interactions [6], etc., are being taken into consid-
eration when modeling epidemic spreading over networks.
In this work, we will consider the classical networked
Susceptible-Infected-Recovered (SIR) model coupled with
opinion dynamics.

In previous works, researchers have studied the networked
SIR models from different perspectives. In [4], the authors
study the dynamical behavior of the networked SIR model,
and analyze the threshold conditions for an epidemic to
increase or decrease. In [7], the authors leverage testing data
to estimate the key parameters of the networked SIR model to
design resource allocation methods to mitigate the epidemic.
Recall that people’s beliefs in the seriousness of the epidemic
is one important social factor that will have an impact on the
spreading process. For example, [8] studies the correlations
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between the awareness-driven behaviors during the COVID-
19 pandemic and the spreading of the COVID-19. Further,
[9] constructs a multiplex network with a networked SEIV
model coupled with opinion dynamics, then explores the
disease-free equilibrium. Inspired by the health-belief model
developed by social scientists [10], where people’s behavior
in the pandemic will be influenced by their beliefs in the se-
riousness of the epidemic, [6] and [11] develop a networked
SIS model with cooperative opinion dynamics, and both
cooperative and antagonistic opinion dynamics, respectively.
The authors in [6] study both the disease-free and non-
disease-free equilibria of the model. Our previous work,
[11], defines an opinion-dependent reproduction number to
explore further the effect of the antagonistic opinions in
SIS epidemic spreading. Based on the health-belief model,
we will develop a networked SIR model coupled with
cooperative opinion dynamics.

The main contributions of this work can be summarized as
follows: we define a networked SIR epidemic model coupled
with opinion dynamics. Then, we develop two concepts: an
effective reproduction number and a peak infection time. We
utilize the effective reproduction number to explore epidemic
spreading by studying the peak infection time. In particular,
different from the previous works [6], [11], where stability
and convergence of the equilibria are the main focuses, this
work emphasizes more on exploring the transient behavior
of the epidemic, characterized by the effective reproduction
number and the peak infection time. Additionally, we further
analyze the opinion states via the behavior of the epidemic.

We organize the paper as follows: In Section II, we
introduce the networked SIR model coupled with opinion
dynamics and formulate the problems of interest. Section
IIT studies the equilibrium of the developed model. Based
on the model, Section III defines the effective reproduction
number and peak infection time. Section III further explores
the epidemic’s dynamical behavior by relating the effective
reproduction number and the peak infection time. Section IV
illustrates the results of the paper through simulations. Sec-
tion V concludes the paper and outlines research directions.
Note that all the proofs are included in [12].

Notation

For any positive integer n, we use [n] to denote the index
set {1,2,...,n}. We view vectors as column vectors and
write 2| to denote the transpose of a column vector x. For
a vector z, we use x; to denote the ¢th entry. For any matrix
M € R™", we use [M];., [M].;, [M];;, to denote its
ith row, jth column, and ijth entry, respectively. We use
M = diag{mi,...,m,} to represent a diagonal matrix

2104



M € R™™ with [M]; = my, Vi € [n]. We use 0,, and
1,, to denote the vectors whose entries all equal O and 1,
respectively, and I,, to denote the n X n identity matrix.

For a real square matrix M, we use p(M) and o(M) to
denote its spectral radius and spectral abscissa (the largest
real part among its eigenvalues), respectively. For any two
vectors v, w € IR™, we write v > w if v; > w;, and v > w if
v; > wj, Vi € [n]. The comparison notations between vectors
are used for matrices as well, for instance, for A, B € R™*",
A > B indicates that A;; > B;j, Vi, j € [n].

Consider a directed graph G = (V, &), with the node
set V = {v1,...,v,} and the edge set &€ C V x V. Let
matrix A € R™", [A];; = ai;, denote the adjacency
matrix of G = (V,€), where a;; € Rsq if (vj,v;) € €
and a;; = 0 otherwise. Graph G does not allow self-loops,
ie, a; = 0, Vi € [n]. Let k; = ZjeNi la;j|, where
N; = {vj| (vj,v;) € £} denotes the neighbor set of v; and
la;j| denotes the absolute value of a;;. The graph Laplacian
of G is defined as L £ K — A, where K £ diag {ky, ..., kn}.

II. MODELING AND PROBLEM FORMULATION

In this section, we introduce the networked SIR model
coupled with opinion dynamics. We also formulate the
problem to be analyzed in this work.

We start by defining a disease transmission network G =
(V,€) as a weighted directed graph with a node set V =
{v1,...,v,} representing n disjoint communities and the
edge set £ C VxV representing disease-transmitting contacts
over V. We denote the weight of each edge (v;,v;) as
Bij. Then, a basic continuous-time networked SIR model on
graph G, which was studied in [4], can be defined as:

Si(t) = —si(t) Y Byya;(8), (1a)
JEN;
Zi(t) = si(t) Z Bijrj (t) — yiws(t), (1b)
JEN;
Fi(t) = viwi(t), (1)

where (s;(t),zi(t),:(t)) € [0,1], Vi € [n] are the states
indicating the proportion of susceptible, infected, and re-
covered population in community ¢ € [n] at time ¢t > to,
respectively. Moreover, (3;; € Rxq is the transmission rate
from community j to %, and v; € R is the recovery rate
of community . Note that (1) satisfies s(t) + x(t) + r(t) =
1Vt >ty € R>q as a result of the assumption that for any
initial condition we have s(ty) + z(t9) + r(tp) = 1, and
S(t) + CC(t) + T(t) =0Vte Rzo.

Similarly, we define the opinion spreading network as a
directed graph G = (V, &), where the edge set £ C V x
V represents the opinion-disseminating interactions over the
same n communities. Each edge in the graph is weighted
by a;; € R indicating the opinion-disseminating influence
from node j to node 4. Let 0,(t) € [0,1], Vi € [n], t >
to, denote the belief of community ¢ on the severity of the
epidemic at time ¢, where o;(t) = 1 indicates community ¢
considers the epidemic to be extremely serious, while o;(t) =
0 implies community 7 believes the epidemic is not serious

at all. We adapt Abelson’s models of opinion dynamics from
[13, Equation (10)], where N; = { v;| (vj,v;) € €}

0i(t) = Y ai;(0;(t) — 0i(t)). 2
JEN;

We assume that the n communities share a homogeneous
minimum incoming transmission rate [, and a homoge-
neous minimum recovery rate iy, where By corresponds
to the strongest belief of a community in the severity of
the epidemic o0;(t) = 1, while 7y, corresponds to the
weakest belief of a community in the severity of the epidemic
0;(t) = 0. To couple the networked SIR model with the
opinion dynamics, we employ the health-belief model, which
is the best known and most widely used theory in health
behavior research [10]. We define a networked SIR model
influenced by the opinion dynamics as:

Si(t) = —si(t) Y (Bij — (Bij — Buin)os(£))a; (1), (3a)
JEN:
i(t) = si(t) > (Bij — (Bij — Bumin)0i(t));(t)
JEN;
— (Ymin + (Vi = Ymin)0i (£))zi ().

In (3), the transmission rate of community ¢, is obtained
through the linear interpolation between 3;; and 3, scaled
by the level of community ¢’s belief in the seriousness
of the epidemic, o;(t). A higher o;(t) will lead to lower
transmission rates for community ¢. A similar interpretation
can apply to the healing rates.

Notice that (1 — s;(t)) = x;(t) + ri(t), t > to, Vi €
[n], captures the proportion of the population that are in-
fected/have been infected with the epidemic. Hence, (1 —
si(t)) captures the total infection level within community 4.
By modifying the opinion dynamics in (3) via cooperating
the infection level:

Gi(t) = (1= s5i(t) —0i(t)) + > _ (0;(t) —0i(t)), (4
JEN;
where a higher proportion of the infected plus recovered
population within community ¢ will lead to a stronger belief
in the seriousness of the epidemic, and vice versa.

We have presented the epidemic-opinion model in (3)-(4),
then we can state the problem of interest in this work. We
are interested in exploring the mutual influence between the
epidemic spreading over the graph G of n communities in (3),
and the opinions of the » communities about the epidemic
captured by graph G in (4). In this paper, we will:

(3b)

1) analyze the equilibria of the system in (3)-(4). In par-
ticular, we connect the opinion states at the equilibrium
to the infection level of the communities;

2) define an effective reproduction number to characterize
the spreading of the disease. In particular, we explore
the transient behavior of the epidemic-opinion model
by leveraging peak infection time;

3) illustrate the results through simulations.

The analysis presented in this work can provide insights for
decision-makers who aim to analyze disease spreading and
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its coupling with the public’s opinion towards the epidemic.

IIT. MAIN RESULTS

This section examines the mutual influence between the
epidemic dynamics in (3), and the opinion dynamics in (4).
Particularly, we construct the compact form of the incor-
porated system to define an effective reproduction number
to explore the peak infection time of the model. We also
analyze the evolution of the epidemic by using the effective
reproduction number and peak infection time.

We write (3) and (4) in a compact form as follows:

$(t) = —(S(t)(B = O(t)(B — Bmin)))x(t),  (5a)
i(t) = (S(t)(B — O(t)(B — Buin)))x(t)

— (Grain + (G = Grain)O(t))x(t),  (5b)
o(t) = (1, — s(t)) — (L + I,,)o(t), (5¢)

where S(t) = diag(s(t)), O(t) = diag(o(t)), Gmin and G
are diagonal matrices, with [Gmin;; = Ymin, and [G]i; = i,
Vi € [n]. Note that L is the Laplacian matrix of the opinion
spreading graph G. By defining B(o(t)) = (B — O(t)(B —
Bmin)), G(0(t)) = (Gmin + (G — Guin)O(1)),

5(t) = —(S()B(o(1))x(1),
i(t) = S(t)B(o(t))a(t) — G(o(t))z(t).

For the epidemic spreading process, we assume that commu-
nity ¢ can pass the virus to community j through at least one
directed path in the network G, Vi, j € [n], i # j. For the
opinion spreading process, we assume that community ¢ can
affect community j’s opinion through at least one directed
path in G. Therefore, we have the following assumption for
the epidemic and opinion spreading over the communities:

(6a)
(6b)

Assumption 1. Suppose Vi € [n], ,(0), z;(0),0;(0) € [0,1],
87,(0)4-.731(0)4-7"1(0) =1 Vi = Ymin >0, and 61']' > Bmin >
0, Vj € N;. Further, both G and G are strongly connected.

A. Equilibrium
First we show the model in (5) is well-defined.

Lemma 1. For the epidemic-opinion model in (5), if
(5:(0),2:(0), 0;(0)) € [0,1], and s;(0) + z;(0) + r;(0) = 1,
then (s;(t),x;(t),0:(t)) € [0,1], ¥t > 0, Vi € [n].

Lemma 2. If s;(0),2;(0),0,(0) € [0,1], Vi € [n], the
susceptible states, s;(t), are monotonically decreasing.

After considering the monotonicity of the susceptible
population, we next study the equilibria of the epidemic-
opinion model.

Lemma 3. The equilibria of the epidemic-opinion model in
(5) take the form (s¢, 0p, (L+1,,) "' (1, —5.)), where [s.]; €
[0,1] and [(L + I,,)" (1, — s.))]; € [0,1], Vi € [n].

Lemma 3 shows that there are infinite equilibria for the
epidemic-opinion model captured by (5). In particular, the
lemma indicates that the opinion states of the communities

at the equilibrium can be uniquely evaluated as a function of
the steady-state susceptible population in the communities.
The following lemma further characterizes the condition that
the communities reach a consensus on their opinions, i.e., the
opinion states are the same when the epidemic disappears.

Lemma 4. The communities will reach consensus on their
opinions if and only if all the communities have the same pro-
portion of infections, captured by the equilibria (se, 0y, 1, —
Se), where [se]; = [se]; Vi # .

Lemma 3 and Lemma 4 summarize the equilibria of the
epidemic-opinion model in (5). In particular, the lemmas
show that the communities’ beliefs in the seriousness of the
epidemic can reflect the infection level. More importantly,
the communities will reach consensus on the seriousness of
the epidemic if and only if the epidemic caused the same
proportion of infected population in all communities. Under
this situation, the belief on the seriousness of the epidemic
is proportional to the proportion of the recovered population
in all communities, characterized by o, = 1,, — Se.

Remark 1. The communities can rarely reach a consensus
of their opinions on the epidemic’s severity since it will be
implied by Lemma 4 that every community has the same
infection level, which is unusual. However, one exception is
when every community is fully infected, then all communities
will agree that the epidemic is utterly severe (0, = 1,).

B. Effective Reproduction Number

The effective reproduction number of the model charac-
terizes the dynamical behavior of the system. We introduce
the following lemmas before formally defining this notion.

Definition 1. [Effective Reproduction Number R,(t)] Let
R,(t) = p(G=Yo(t))S(t)B(o(t))), ¥t > to, denote the
effective reproduction number, where G(o(t)), S(t), and
B(o(t)) are defined in (5b).

Note that the effective reproduction number R, (t) depends
not only on the proportion of the susceptible population s(¢),
but also on the evolving of the opinion states o(t).

Proposition 1. The effective reproduction number R,(t) has
the following properties:

D If
G~ (o(t2))S(t2) B(o(t2)) = G~ (0(t1))S(t1) B(o(t1)),
then Ro(tg) > Ro(tl);

2) R,(t) is strictly monotonically decreasing with respect
to s(t), Yt > to;
3) IfO(tl) < O(tg), Vi1 < to, then Ro(tz) < Ro(tl).

The effective reproduction number is influenced by both
the opinion states and the proportion of the susceptible
population. In particular, when the opinions are fixed, the
susceptible proportion will always ensure that the effective
reproduction number decreases, since the recovered popula-
tion will not be infected again. The opinion states will also
have an influence on the change of the effective reproduction
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number in both directions: higher opinion states will lead
to a lower effective reproduction number, and vice versa.
As we mentioned in Section II, communities with stronger
beliefs in the seriousness of the epidemic will take actions
to avoid infections, leading to a lower effective reproduction
number, and vice versa. Further, when all communities think
the epidemic is extremely serious, o(t) = Opax = 1, Vt >
to. When all communities think the epidemic is not worth
treating at all during the pandemic, o(t) = Omin = On,
Vt > to. Under the two extreme situations, the effective
reproduction number satisfies the following result.

Corollary 1. For all t > to, the effective reproduction
number R,(t) satisfies Ruyin(t) < Ro(t) < Rpmax(t), where

Rumin(t) = P(G71 (Omax)g(t)B(OmaX))v

Rax(t) = p(G71 (Omin)g(t)B(Omin))-

Corollary 1 indicates that, given any time ¢, if the propor-
tion of the susceptible population of each community are the
same, the effective reproduction number is determined by the
opinion states, where stronger beliefs in the seriousness of
the epidemic lead to a lower effective reproduction number,
and vice versa. Compared to the classical SIR model [14],
where the effective reproduction number is monotonically
decreasing with respect to the decreasement of the proportion
of the susceptible population, under the influence of the
opinions, R,(t) defined in this work may not monotonically
decrease. Therefore, R,(t) can lead to more diverse behav-
iors in the epidemic spreading process. In order to analyze
the dynamical behavior of the epidemic-opinion model, we
define a concept called peak infection time to characterize
the influence of the effective reproduction number R,(¢) in
determining the behavior of the epidemic.

C. Peak Infection Time

To connect the effective reproduction number R, (t) to the
behavior of the epidemic-opinion model, we denote

a(t) = o(S(t)B(o(t)) — G(o(t))), ()
as the spectral abscissa of (S(t)B(o(t)) — G (o(t))) and p(t)
as the corresponding normalized left eigenvector Vi > tg.
From Assumption 1 and [15, Sec. 2.1 and Lemma 2.3],
(S(t)B(o(t)) — G(o(t))) is an irreducible Metzler matrix,
thus o(t), Vt > to, is a positive real eigenvalue. Additionally,
the normalized left eigenvector p(t) satisfies p(t) > 0,, and
p" (t)1,, = 1, Vt > to. Then, we define a weighted average
of the epidemic states, for a given t; € [tg,ta], p' (t1)z(t)
as a metric to reflect the trend of the epidemic over the time
interval [tg, t2]. Based on the properties of o(¢) and p(t), we
have p' (t1)z(t) > 0, Vt > to and p' (t1)x(t) = 0 if and
only if z(t) = 0,,. Therefore, p ' (t1)z(t) reflects the overall
trend of the epidemic spreading over the time interval [¢o, t2],
and p' (¢1)x(t) = 0 if and only if the epidemic has died out.

Definition 2. [Peak Infection Time t,] A peak infection time
t, is defined as a turning point in [to, 1], where p' (t,)x(t)

is increasing for all t € [to,t,) and p" (t,)z(t) is decreasing
for all t € (ty,t1], for sufficiently small time intervals (t, —
to) > 0 and (tl — tp) > 0.

The peak infection time describes a point where the weighted
average of the infected proportions p' (t,)x(t) over the
communities reaches a local peak value over [tg, t1].

Theorem 1. Given a peak infection time t, we have
R,(ty) = 1, Ry(t) > 1, for t € [to,tp) and R,(t) < 1,
for t € (tp,t1), for t, —to > 0 and t1 —t, > 0 sufficiently
small.

Note that R,(t) = 1 is a necessary condition for the peak
infection time, thus the condition does not guarantee that ¢ is
the peak infection time. From Proposition 1, R,(¢) is not a
monotonic function with respect to ¢. Consider the case that
R,(t1) = 1,if, fore > 0, R,(t1 —€) < 1 and R,(t1+¢€) > 1,
the time ¢; is not the peak infection time. Additionally, from
Lemma [15, Sec. 2.1 and Lemma 2.3], p(,) is unique for a
peak infection time ¢,,.

For Vt € [t1,ts], from Lemma 2 and (6b), we have

(S(t1)B(0min) — G(omin)) > (S()B(o(t)) — G(o(t)). (8)

Based on Corollary 1, Ruyin < Ro(t) < Rmax(t), Vt >
to, we define oyax(t) = o(S(t)B(omin) — G~ (0min)),
corresponding to Ruax(t). Since (S(t)B(o(t)) — G~ (o(t))
is a Metzler matrix V¢, from [16, Sec. 1, Lemma 2], we
have Opax(t1) > Omax(t) > o(t), V& > t;. Then, we
define pmax(t1) corresponding to omax(t1), and multiplying
Pmax(t1), on both sides of (6b),

%(p?nax(tl)w(t)) = Pmax(t1) (S(1) B(o(t)) — G(o(1)))x(1)).-

Then, based on (8),

D (0)2(0)) < s (1) (B(12) Blomin) — Glomin)2(0)

= Umax(tl)p;ax(tl)x(t)7 (9)

which leads to

Panasc(11)2(1) < P (t1)(t1)eme= ()T

for any ¢ > t;. The inequality listed above indicates that,
when . (t1) < 0, the weighted average p/ . (t1)z(t) will
decrease exponentially fast to zero, V¢ > t;, implying that
x(t) will decrease exponentially fast to zero. From [17, Prop.
1] and Corollary 1, opax(t1) < 0 leads to Rpax(t1) < 1,
which guarantees R,(t) < 1, V¢t > t;. Hence, we have the
following corollary, where we define ¢; as ;.

Corollary 2. If Ryax(ty) < 1, there will exist no peak
infection time in (ty,00), and pl . (tp)z(t) Vt > t; will
monotonically decrease to zero exponentially fast, indicating
that the epidemic will die out exponentially fast.

Corollary 2 connects R,(t) to the behavior of the epidemic
process. In particular, for ¢y = 0, at the beginning stages
of the epidemic, even with every community ignoring the
epidemic, we still have Rp,.x(0) < 1 which means that the
epidemic is serious, and will disappear quickly.
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Fig. 1: The graph topology G of the simulated epidemic and
opinion interactions

Theorem 1 also implies that, if the effective reproduction
number Ry, (t) at the beginning stages of the epidemic is
greater than 1, before disappearing, there must exist at least
one peak infection time. This phenomenon is captured by
the following corollary.

Corollary 3. If Ruin(0) > 1, then

1) there will be at least one peak infection time tp;
2) pl. (to)x(t) will increase exponentially fast before
reaching a peak infection time tp,.

By combining Corollaries 2 and 3 with Theorem 1, we
can connect the behavior of the system in (5) to the peak
infection time of the system in the following theorem.

Theorem 2. For the epidemic-opinion model in (5), the sys-
tem will converge to an equilibrium (s¢, 0y, (L+1,)" (1, —
Se)), and the convergence is exponentially fast.

Combined with Theorem 1, Corollaries 2, and 3, Theorem
2 implies that the epidemic will die out eventually, but the
effective reproduction number R, () will determine whether
there will be an outbreak or the epidemic will die out directly.

IV. SIMULATION

In the section, we will illustrate the main results developed
in this work via simulations. Consider the epidemic coupled
with opinions spreading over ten communities. The epidemic
and opinion spreading network satisfies Assumption 1, and
share the same graph topology G as shown in Fig. 1.

We set the initial condition x(0) = 0.01 x 1,, s(0) =
0.99 x 1,, and 0(0) = 0,. We also set the parameters
Bmin = 0.2, Ymin = 0.07, and each 8;; is uniformly sampled
from [0.2,1]. Similarly, each ~; is uniformly sampled from
[0.07,0.1]. We apply only unit edge weights to the opinion
graph in all simulations.

Fig. 2(a) shows that the proportion of the susceptible
population in all communities decreases monotonically as
claimed in Lemma 2, and Fig. 2(b) shows the evolution of
the epidemic states, with the weighted average state x,,(t) =
p'(tp)z(t) Vt > to being captured by the dashed line. Note
that we use p' (t,) for the entire time interval. Furthermore,
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Fig. 3: States convergence with wide-spread initial opinions

the trend of the weighted average of the epidemic states
follows the changes of the effective reproduction number
R,(t) in Fig. 2(d): @, (t) = p' (t,)z(t) is increasing when
R,(t) > 1; 2, (t) = p' (t,)x(t) is decreasing when R, (t) <
1. Then, ., (t) = p'(t,)=(t) reaches a local peak when
R,(t) = 1. Fig. 2 (a)-(d) illustrate the behavior of the
system in (5) based on the effective reproduction number
R,(t) and the peak infection time t¢,, as we proved in
Theorem 1, Corollaries 2, and 3. Additionally, Fig. 2(c)
shows that, at the beginning stages of the epidemic, when
no community considers the epidemic as a threat, the beliefs
in the seriousness of the epidemic will increase with the
decreasement of the susceptible population. Meanwhile, as
the susceptible population decreases and the opinion states
increase, the effective reproduction number R, () decreases,
which aligns with Proposition 1. As stated in Theorem 2, the
states of the system converge to zero exponentially fast.
Next, we will show the special case where the opinions
reach consensus. As mentioned in Lemma 4, the opinion
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states will reach consensus at the equilibrium if and only
if all the communities have the same infection level. We set
Bmin = 0.1 and ymin = 0.14, while §;; and +y; are uniformly
sampled from [0.1, 0.6] and [0.14, 0.30], respectively to gen-
erate plots in Fig. 3. In Fig. 3(a) and (c), the initial conditions
of the epidemic states are uniformly sampled from [0, 1].
In Fig. 3(b) we randomly sample the initial opinion states
from [0, 1], and In Fig. 3(d) we set the initial opinion states
as 0(0) = 1,,. Both Fig. 3(a) and (c) capture the extreme
case where everyone in the population becomes infected, i.e.,
where the susceptible states converge to s, = 0,,. Therefore,
based on Lemma 4, the opinion states at the equilibrium
will take the form o, = 1,, — s, = 1,,, captured by Fig. 3(b)
and (d). The simulations demonstrate that, when reaching
agreement after the epidemic dies out, the evaluations on the
seriousness of the epidemic can reflect the infection level.

Fig. 4 aims to show that the effective reproduction number
R,(t) may not decrease monotonically, unlike the classical
SIR model, as stated before. We set Bnin = 0.01 and
Ymin = 0.05, while §;; and ~y; are uniformly sampled from
[0.01,0.4] and [0.05,0.1], respectively. We assume initial
opinions 0(0) = 1,, as shown in Fig. 4(c), and we sample the
initial infected proportion for each community from [0.3, 0.6]
randomly. In Fig. 4(d), since Rmin(0) < 1, the weighted
average p' (t,)z(t) decreases at the beginning stages of
the outbreak. However, the communities soon realize the
epidemic is not as severe as they have evaluated as captured
in Fig. 4(c). As the opinion states decrease, R,(t) increases,
causing the weighted average p' (¢,)z(t) to increase again,
captured by Fig. 4(b)-(d). In Fig. 4(d), we observe that there
are two peak candidates where R,(t) = 1; we rule out the
first by Theorem 1, which states that peak infection time
must satisfy R,(t) > 1, for t € [tg,t,) and R,(t) < 1, for
t € (tp,t1], for t, —to > 0 and t; — ¢, > O sufficiently
small. However, the second point where R,(t) = 1 is a peak
infection time, consistent with Fig. 4(b) and (d). Unlike the
classical SIR model [14], Fig. 4(d) illustrates that R,(t) is
not monotonically decreasing.

V. CONCLUSION

In this work, we develop a networked SIR model cou-
pled with opinion dynamics to study epidemic spreading
processes over multiple communities. We define the effective
reproduction number and peak infection time to characterize
the transient behavior of the epidemic. We also study the
convergence time to the equilibria. Additionally, we discover
that the opinion states at the equilibria can reflect the infec-
tion level of each community to some degree. The current
work can be further extended to study the influence of the
structures of the opinion spreading networks on the behavior
of the system. Another potential future research direction is
to design control algorithms that influence the opinions to
change the behavior of the epidemic.
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