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The literature on heterogeneous treatment effect estimation has been extremely active
over the past few years, and the paper by Hahn, Murray, and Carvalho [2020] is a major
addition to it. Hahn et al. [2020] show how to design priors for heterogeneous treatment
effects that are robust to what the authors call “regularization-induced confounding” and
“targeted selection” and, as such, open the door to considerably more robust and reliable
Bayesian inference of treatment heterogeneity under unconfoundedness. The authors con-
vincingly show that their innovations add considerable value over a simpler Bayesian forest
approach following, e.g., early work from Hill [2011].

The publication of this paper provides a nice opportunity to reflect on just how fast this
area has developed over the past years. When Hahn et al. [2020] released the first draft
of their manuscript on arXiv in 2017, there were still major questions about how best to
approach the problem of heterogeneous treatment effect estimation as evidenced by, e.g.,
discussions at that year’s Atlantic Causal Inference Conference. By now, in contrast, there
appears to be fairly widespread consensus on conceptual ideas that underpin good estimators
of treatment heterogeneity. This comment offers one take on 3 ideas which, I believe, have
played a major role in pushing the field forward. Of course, these ideas manifest themselves
differently depending on methodological context (e.g., frequentist vs. Bayesian methods,
trees vs. lasso), but overall they seem to have broad applicability.

Dedicated regularization for treatment effects Following notation from Hahn et al.
[2020], we want to estimate the effect of a binary treatment Zi ∈ {0, 1} on an outcome Yi ∈ R

as a function of covariates Xi ∈ X . Following the Neyman–Rubin causal model [Imbens and
Rubin, 2015], we posit potential outcomes {Yi(0), Yi(1)} such that Yi = Yi(Zi), and seek to
estimate the conditional average treatment effect function τ(x) = E

[

Yi(1)− Yi(0)
∣

∣Xi = x
]

.
For purposes of identification, we assume unconfoundedness [Rosenbaum and Rubin, 1983],
i.e., that treatment is as good as random conditionally on Xi: {Yi(0), Yi(1)} ⊥⊥ Zi

∣

∣Xi.
One can readily check that, under unconfoundedness, we have τ(x) = µ(x; 1)− µ(x; 0)

with µ(x; z) = E
[

Yi

∣

∣Xi = x, Zi = z
]

. This suggests a simple strategy for non-parametric
estimation of the conditional average treatment effect function τ(x): First learn µ̂(x; 0) and
µ̂(x; 1) by fitting separate predictive models to the control and treated samples respectively,
and then set τ̂(x) = µ̂(x; 1) − µ̂(x; 0). This may, however, lead to problems. In general,
modern machine learning methods operate via some type of representation learning; and, if
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we use different representations to express µ̂(x; 0) and µ̂(x; 1), then τ̂(x) may be excessively
noisy or biased. As a simple example, consider the case where µ̂(x; 0) and µ̂(x; 1) are both
decision trees—but with different splits. In this case, τ̂(x) = µ̂(x; 1) − µ̂(x; 0) would be
quite unstable, and in particular would have a more complicated shape than either µ̂(x; 0)
or µ̂(x; 1) on its own. Künzel, Sekhon, Bickel, and Yu [2019] provide further examples of
this issue.

A first major advance in the literature on treatment heterogeneity was the realization
that, in a high-dimensional or non-parametric setting, it’s important to use dedicated reg-
ularizers that directly push τ̂(x) to have a simple form. A simple application of this idea
arises in the case of the lasso [Hastie, Tibshirani, and Wainwright, 2015]. Assume that
µ(x; z) = x · β(z) for some high-dimensional vector z, so that τ(x) = x · (β(1) − β(0)). A
näıve analysis might fit separate lasso regressions on the treated and control units, but such
an approach may learn different sparsity patterns for β(0) and β(1), thus resulting in an
unstable τ(x) estimate. A better approach is to reparametrize µ(x; z) = x · b+(2z−1)x · δ,
where b = (β(0)+β(1))/2 and δ = β(1)−β(0); then, we can apply separate sparsity penalties
on b and δ. This is a simple idea but, by directly pushing the treatment effect parameter δ
towards sparsity, it often improves performance considerably.

Hahn et al. [2020] show how to adapt it to Bayesian prior design, while Athey and Imbens
[2016] discuss a modification of regression trees that directly target τ(x). More subtle ideas
for algorithmically regularizing the treatment effect function include the X-learner of Künzel,
Sekhon, Bickel, and Yu [2019], and refitting predictions from a first step analysis as in the
Virtual Twins method of Foster, Taylor, and Ruberg [2011].

The propensity score as a covariate Once we’ve dealt with egregious instability of
τ̂(x) by using appropriate regularizers, a next concern is whether confounding effects may
bleed into treatment effect estimates due to finite sample effects. As is well explained in
the section on “targeted selection” in Hahn et al. [2020], this concern arises whenever the
propensity score π(x) = P

[

Zi = 1
∣

∣Xi = x
]

is associated with the baseline effect µ(x; 0).
If µ(x; 0) takes on a complicated non-parametric specification that cannot be perfectly
captured in finite samples and we use a method that underfits the baseline function such
that µ(x; 0)− µ̂(x; 0) is positively (or negatively) correlated with π(x), then we may easily
have this baseline error push us to over- (or under-) estimate τ(x).

Considerations of this type have attracted considerable attention in the causal inference
community for several decades [Robins and Ritov, 1997], and play a key role in discussions
of how best to do variable selection when estimating global causal parameters [e.g., Belloni,
Chernozhukov, and Hansen, 2014]. The general message is that, in order to be robust
to associations between π(x) and µ(x; 0), one needs to fit the propensity score π̂(x) and
adjust for it in the final modeling step. Hahn et al. [2020] propose the simple idea of using a
propensity estimate as a feature when estimating the baseline effect, i.e., they fit the baseline
as µ̂(x, π̂(x); 0), and find this to work well empirically.

Treatment-focused loss functions A final idea that unlocks a general suite of tools for
heterogeneous treatment effect estimation is the use of loss functions that directly isolate
the treatment effect function τ(x). The idea of using target-specific loss functions has a
long history in causal inference, going back at least to van der Laan and Dudoit [2003].
In the context heterogeneous treatment effect estimation, a simple instance of this idea is
the “transformed outcome” method, which starts from the following observation. Under
unconfoundedness, we can check that E

[

∆i

∣

∣Xi = x
]

= τ(x), where ∆i = ZiYi/π(Xi) −
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(1 − Zi)Yi/(1 − π(Xi)). Thus, in a randomized trial where propensity scores π(x) are
known a-priori, we can estimate τ(x) by first forming the modified outcomes ∆i and then
running a non-parametric regression of ∆i on Xi [Tian, Alizadeh, Gentles, and Tibshirani,
2014]. Baseline effects µ(x; 0) never even appear in this specification, which largely obviates
concerns related to regularizing or under-fitting of this term.

One limitation of the transformed outcome method is that it is not robust to errors
in estimating the propensity score when π(x) is not known a-priori, and several “robust”
loss functions for treatment effect estimation that remedy this issue have recently been pro-
posed. The R-learner [Nie and Wager, 2020] builds on the partially linear model estimator
of Robinson [1988] to develop a loss function that is first-order robust to errors in estimating
π(x) and baseline effects; see also Athey, Tibshirani, and Wager [2019] and Zhao, Small, and
Ertefaie [2017] for variants of this idea applied to random forests and the lasso specifically.
Meanwhile, the DR-learner [Fan, Hsu, Lieli, and Zhang, 2019, Kennedy, 2020, Zimmert
and Lechner, 2019] estimates τ(x) by regressing the augmented inverse-propensity weighted
scores of Robins, Rotnitzky, and Zhao [1994] against Xi. Overall, the promise of such ro-
bust loss functions is that they enable accurate estimation of τ(x) even when when π(x)
and µ(x; 0) may be difficult to estimate, thus generalizing well known results on semipara-
metric inference for “global” targets like the average treatment effect; see Chernozhukov,
Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins [2018], and references therein.

Closing thoughts Recent advances in methods for treatment heterogeneity have enabled
a large toolkit of practical methods available to applied researchers. As a community, we
now appear to be at a point where we can quickly remix these ideas to develop new methods
for treatment heterogeneity that can address different application-specific challenges, and
have a formal understanding of how dedicated methods are able to accurately target τ(x).
Several open questions remain, however. In particular, while reading the paper of Hahn,
Murray, and Carvalho [2020], I was left wondering about the following two:

• When using treatment-focused loss functions, it’s possible to show that (under appro-
priate conditions), the accuracy with which we can estimate τ(x) is insensitive to our
rate of convergence on the nuisance components π(x) and µ(x; z), even when π̂(x) and
µ̂(x; z) may converge an order of magnitude slower than τ̂(x) [Kennedy, 2020, Nie and
Wager, 2020]. Do analogous results hold for the approach of Hahn et al. [2020], where
π̂(x) is used as a covariate when fitting µ̂(·)? In the context of estimating an average
treatment effect, Hirano, Imbens, and Ridder [2003] showed that using an estimated
propensity score for weighting could sometimes be enough to achieve efficiency. Does
any intuition of this type carry over to the problem heterogeneous treatment effect
estimation?

• In Hahn et al. [2020], the propensity score is only used as a covariate to make us
robust to potential confounding effects. In some applications, however, there may
also be interest in the propensity score as an effect modifier. For example, when
studying the returns to college education, Brand and Xie [2010] argue that students
who are least likely to attend college a-priori may be the ones who benefit the most
from attendance; and, in applications like these, it may be of interest to allow τ(x)
explicitly depend on π(x). Of particular interest here would be to understand how
τ(x) varies with the true propensity score π(x), and not just the estimate π̂(x).

Finally, I want to thank Hahn, Murray, and Carvalho [2020] for preparing this very nice
paper, and look forward to seeing how the community builds on their results in the future.
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