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Abstract

Optimal power flow (OPF) is an important tool for Independent System Operators (ISOs) to deal with the power
generation management. With the increasing penetration of renewable energy into power grids, challenges arise in
tackling the OPF problem due to the intermittent nature of renewable energy output. To address these challenges, we
develop a multi-stage distributionally robust approach for the direct-current optimal power flow (DC-OPF) problem to
minimize total generation cost under renewable energy uncertainty. In our model, we assume the renewable energy
output follows an ambiguous distribution that can be characterized by a confidence set. By utilizing the revealed data
sequentially, the proposed approach can provide a reliable and robust optimal OPF decision without restricting the
renewable energy output distribution to any particular distribution class. The computational results also verify the
effectiveness of our approach to reduce the conservativeness and meanwhile maintain the reliability.
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1 Introduction

Optimal power flow (OPF), as an essential component of power system operations and management, is aimed at
controlling the power flow without violating any operational restriction. As the penetration of renewable energy output
has been increasing dramatically, how to efficiently and securely address the OPF problem remains challenging due to
the intermittency and uncertainty that the renewable energy brings to the power system operations.

The most common approach to formulate the OPF problem with renewable energy uncertainties is stochastic OPF (see,
e.g., [1, 2, 3], among others), in which the uncertain renewable energy output is characterized by a finite number of
scenarios or assumed to follow a particular probability distribution. Another traditional approach to address the OPF
problem with renewable energy uncertainties is the robust optimization approach (see, e.g., [4, 5, 6], among others),
which constructs a solution that is optimal for the worst-case realization of renewable energy output in a predefined
uncertainty set. However, both the stochastic OPF models and the robust OPF models have disadvantages in practice.
For the stochastic approach, the obtained solution can be sub-optimal or biased if the assumption of distribution is in-
accurate. For the robust approach, since the optimal solution is based on the worst-case scenario, which happens rarely,
the optimal objective and solution are usually over conservative and cost ineffective. In addition, robust optimization
cannot fully utilize data information, since it only requires minimal information (such as lower/upper bounds of the
uncertain parameter) to generate the uncertainty set.

In order to bridge the gap between the stochastic optimization approach and the robust optimization approach, and to
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utilize data information as much as possible, in this paper, we explore distributionally robust optimization (DRO) ap-
proaches to solve the OPF problem. Instead of considering a pre-assumed distribution like stochastic OPF or the worst
case scenario like robust OPF, we assume that the distribution is unknown but can be characterized by a confidence set
constructed by learning from the historical data. The objective of distributionally robust OPF problem is to minimize
the total cost under the worst-case probability distribution of renewable energy output within a predefined confidence
set. DRO-based approaches have recently received attention from power system specialists for various problems such
as unit commitment [7], transmission expansion planning and hardening [8], and reserve scheduling [9]. To the best
of our knowledge, DRO is only used in [10] to address the multi-stage OPF problem. However, [10] adopts a strong
assumption: it assumes that the power balance constraints are linear functions of the ambiguous distribution, which
is not practical for real OPF problems. In this paper, we do not pre-assume any relationship between the OPF control
policy and the random renewable energy output.

The rest of this paper is organized as follows. In Section 2, we develop a distributionally robust dynamic direct-
current optimal power flow model under the renewable energy output uncertainty. Then, in Section 3, we reformulate
the problem as a tractable second order cone problem (SOCP), and propose the corresponding algorithm to solve the
reformulated SOCP. In Section 4, we conduct experiments on a 20-bus system to show the effectiveness of the proposed
model. In Section 5, we conclude our work.

2 Model Formulation

We first describe the detailed formulation of the multi-stage distributionally robust direct-current optimal power flow
problem. We use 7, N, G, &, M, K to represent sets of time periods, buses, generators, transmission lines, renewable
energy output scenarios, and interpolation points of generation amount respectively. The parameters of each generator i
include minimal power output an ;n» Maximal power output P! ... ramp-up limit R and ramp-down limit lei. For each
transmission line (m, n) € &, X,,,, represents the reactance and L,,,, represents the transmission capacity. For each bus
n, 0y .. and 0y, . represent the minimal and maximal values of the phase angle respectively. For generator i at bus n in
period ¢, D, represents the demand, &,; represents the renewable generation, C; (-) represents the fuel cost function,
and P} and P;, represent the unit penalty cost for load shedding and renewable energy curtailment respectively. The
decision variables include generation level (x;') of generator i in period 7, power flow (p?,,,) on transmission line (m, n)
in period 7, load shedding (¢};,) at bus n in period ¢, renewable energy curtailment (g;,,) at bus 7 in period ¢, phase
angle (6,,;) at bus n in period ¢, and generator i’s ramping amount (Ax!) at period ¢. In addition, 8, (re f) represents the

phase angle of the reference bus. The detailed formulation is shown as follows:

min >N ClD + Y > (Prdh, +Prdn) (1)

teT ieG teT neN
st DX D Phn= D Pl — G

i€EGn meé&(.,n) me&(n,.)
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In the above formulation, the objective function is to minimize the total cost which includes the fuel costs and the
penalty costs; constraint (2) represents the energy balance constraint; constraint (3) specifies generation capacity limits
for each generator. The ramp-up and ramp-down restrictions are described in (4) and (5), and constraint (6) fixes the
phase angle of the reference bus to zero. The restrictions of phase angle and transmission capacity are described in
constraints (7) and (8), and constraint (9) describes the relationship between the power flow and the phase angle for
each transmission line. Note here we just assume that the renewable energy is uncertain, but this proposed framework
can be used to incorporate both demand and renewable uncertainties. In this case, we can define the random parameter
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¢ as the net load, which is the load demand minus the renewable energy output.

Since the OPF problem is inherently sequential, which means the information of the uncertain renewable output £ is
constantly revealed as the time progresses, and dispatch decisions at each period are made after knowing the realization
of uncertain parameters up to that period, we use a stochastic dynamic programming framework to solve the DC-OPF
problem. In addition, we assume that the distribution of renewable output is unknown but lies within the confidence
set ¥ defined as follows:

Yi={p: ZPJ-:L Z(Pj_CIj)Z/PjS')’}- (10)

JEM JEM

Here we assume that there are a total number of | M| scenarios of the renewable energy output. And for each scenario
J>weuse p; and g; to represent the true probability and the reference probability learned from data respectively. The
confidence set W is constructed by using y? divergence but the framework also works with a general distribution metric.
v is the tolerance level of the distance between the reference distribution and the true distribution, and it can be used
to control the robustness of this framework: the larger y value is, the higher level of robustness the system has.

In this paper, we propose a distributionally robust dynamic OPF (DRD-OPF) framework by considering the worst-case
distribution within the confidence set ¥, and minimizing the total cost under the worst-case distribution. The Bellman
equation can be expressed as follows:

fi(xe &) :pz,GTAi)IclzeD Z G (xt) + Z P + Prdny) +max Z P1ft+1(x,+1, t+1) (11)
neN jeM
s.t. D, = {Constralnts (2) — (9) for time period ¢}. (12)

In the above formulation, the objective function in (11) is to minimize the total cost from time period ¢ to T with
terminate condition fr4(.) = 0. The generation amount x is considered as the decision-dependent (endogenous) state
variable, and the renewable energy output ¢ is considered as the decision-independent (exogenous) state variable. The
ramping amount, the power flow and the phase angle are considered as action variables.

3 Solution Approach
To solve the above formulation, we employ the method proposed by Hanasusanto and Kuhn [11]. We first reformulate
the DRD-OPF into a second order conic program by dualizing the second-stage maximization problem in (11):

fi(xs, &) = mlneD Z Cl(xh) + Z Piqt, +Pq,)+By—0c-2q"y+28 (13)
Dt 0, Ax; t i neN

(Dual) s.t. ,/4y§ +(zj+0)2<2B-z;—0, VjeM, (14)

fer (L EL) <z VieM, (15)

Zj+o <, VjieM, (16)

oc€eR, BeR,, z,ye RM (17)

where 8 and o are dual variables for constraints in the confidence set W.

Note that in the above formulation, the left hand side in constraint (15) represents the total optimal cost from period
t+1to T. To approximate the cost function f, we follow the idea in [11] to use a quadratic function x” Ax +2B7 x + C,
which minimizes the total square error between f and the quadratic function at a series of interpolation points of
generation amount xt ,for k € K and ¢t € 7. The formulation is shown as follows:

DG Ajxf + 2B xf + € - ) (18)
kekK
(QAP) s.t. A;esl9 A, >0, B; eRl9!, C; eR, VjeM. (19)

We solve the dual problem (Dual) backwardly from time period ¢t = T. When ¢ = T, we can obtain the optimal solution
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AT”k based on the input x§ and g—‘;, for j € M,k € K. In this period, constraint (15) can be simplified as z; > 0
for j € M, based on the initialization of the algorithm. Then, we can obtain the optimal value of (Dual) for every
generation amount xf for each scenario j at time period ¢ = T. Then we solve the semidefinite program (QAP) to obtain
the parameters A, B; and C;. Once the semidefinite program is computed for all j € M, we update the constraint
(15) using the quadratic function x” A x + ZB]T.x + C;. The algorithm proceeds iteratively until period r = 1.

4 Case Study

In this section, we perform a case study on a 20-bus system to show the system performance of the proposed DRD-OPF
model. The 20-bus system contains 6 thermal generators, 20 loads and 45 transmission lines. All the experiments are
implemented in C++ with CPLEX 12.7 and Python with MOSEK. The time interval for all experiments is 1 hour and
the time horizon is 24 hours.

We set the penalty cost for load-shedding and renewable energy curtailment as $1,500/MW. In addition, we partition the
range of generation amount for each generation into 3 pieces and set the central point of each piece as the interpolation
point. Therefore we consider 3% = 729 interpolation points in total. In order to show the system performance under
different system robustness levels, we test five cases of robustness parameter y: 0, 1, 3, 5, and 10, and report the total
costs in Table 1. From Table 1, we can observe that the total cost increases as the robust parameter y increases, as the
algorithm becomes more conservative and cost effectiveness is sacrificed to maintain a higher level of robustness. Note
here when y equals to 0, the model becomes a traditional multi-stage stochastic program (MSSP), and the proposed
model is more conservative compared with the MSSP as it yields more costs.

Table 1: Total Cost vs. Robustness Level

y 0 1 3 5 10
Total Cost ($) | 253995 | 262028 | 263883 | 264781 | 269748

We further compare the performance of our proposed model with the traditional MSSP (i.e., y = 0) via simulation. First,
we generate 500 samples of renewable energy output and obtain the reference distribution as the histogram of the 500
data samples. Then, we obtain optimal generation scheduling solutions for both the proposed approach and the MSSP
with the reference distribution. Then we fix the optimal generation scheduling for each approach, and simulate another
1,000 samples to obtain the simulated total costs under the previously fixed generation scheduling for each approach.
We report the mean value, the standard deviation and the 90th percentile value of the results for each approach in Table 2.

Table 2: Comparison with Traditional MSSP

Mean | Std. Dev. | 90th percentile
259864.5| 1261.9 261478.3
260748.1| 1208.7 262197.6
261041.3| 970.64 261504.5
259072 | 7442 260403.2
10(257433.3| 544.7 259982.6

N W = O

From Table 2, we can observe that, if the robustness level of the system is high, i.e., y = 5 and 10, the proposed
approach outperforms the MSSP approach since it provides a more robust and reliable solution. However, when
the robustness level is low, which means we have relatively accurate information of renewable energy output, the
MSSP approach is better since it is a risk-neutral approach and is not too conservative as compared with the proposed
DRD-OPF approach.

S Conclusion
In this paper, we develop a distributionally robust dynamic programming approach for the direct-current optimal
power flow problem under renewable energy uncertainty. Our proposed approach does not require any assumptions
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of the probability distribution of renewable energy output, as the traditional stochastic optimization approach does.
Instead, we construct a confidence set of distribution based on historical data information, and consider the worst
case distribution within the set. The advantage of our model is that we can guarantee the robustness of the model
without ignoring the stochastic nature of uncertain renewable energy, and we can utilize the revealed data sequentially
and efficiently. Meanwhile, the conservativeness of our proposed approach is adjustable based on system operator’s
preference. Furthermore, this proposed distributionally robust dynamic programming framework not only helps solve
the OPF problem, but also helps solve other power system problems such as generation investment, transmission
planning and contingency analysis.
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