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Abstract—Disruptions in the air transportation system, perhaps
due to extreme weather, often result in unexpected, or off-
nominal, delays at airports. A resilient air traffic management
system seeks to restore airport delays to their nominal values
quickly after such disruptions. Two primary factors make the
design of efficient recovery algorithms for air transportation
networks challenging: the lack of a high-fidelity model for
predicting and controlling airport delay dynamics, and poor
computational tractability of large-scale flight rescheduling opti-
mization problems. We propose a two-stage hierarchical control
strategy for rescheduling aircraft (i.e., assigning delays) after
network disruptions. Our high-level planner leverages a low-
fidelity approximation of airport delay dynamics to propose a
reference plan based on user preferences. This reference plan
accounts for complex objectives such as ensuring a “smooth”
redistribution of delays across airports (quantified by the total
variation). The low-level controller then solves the multi-airport
ground holding problem (MAGHP), augmented to track the
reference plan. The solution to the augmented MAGHP yields
a revised flight schedule with lower total variation than the
original MAGHP, while still satisfying operational constraints.
We illustrate the benefits of our proposed methodology using six
disruption case studies of the National Airspace System (NAS).

Keywords—flight delays; copula models; hierarchical control;
traffic flow management

I. INTRODUCTION

Air transportation is a critical infrastructure whose safe
and efficient functioning is essential in the modern world.
However, as with any large-scale system, disruptions and
inefficiencies are also a part of the aviation infrastructure.
Disruptions may be triggered by several factors, ranging from
security and maintenance issues, airport equipment outages,
or more commonly, poor weather. These disruptions result
in reduced airport and airspace capacity, leading to demand-
capacity imbalances. Such imbalances necessitate the imple-
mentation of traffic management initiatives (TMIs), resulting
in flight delays, and in extreme cases, cancellations [1].

Flight delays and cancellations carry consequential, quan-
tifiable costs for passengers, airlines, and the environment.
In 2018, more than 2 million flights were delayed in the US
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alone, resulting in more than $30 billion in direct and indirect
costs to passengers and airlines [2]. Swiftly recovering and
restoring nominal performance after a disruption is critical.
One of the key steps in system recovery is allocating limited
airport and airspace sector capacity to the affected flights.
Airport capacity is a critical bottleneck in the US National
Airspace System (NAS), so we focus on airport capacities and
delays in this paper [3]. Since every flight requires multiple
resources in a sequential, coordinated fashion, identifying
revised schedules that maximize resource utilization can be
solved as an optimization problem. In this paper, we focus on
the multi-airport ground holding problem (MAGHP), which is
solved to allocate the limited landing and takeoff capacity at
airports to disrupted flights [4]-[6]. In particular, we propose
an integrated data-driven control framework that augments the
MAGHP with a reference plan determined by a high-level
planner.

A. Motivation

The objective of the standard MAGHP is to minimize the
total delay cost for the system while ensuring that airport
capacity constraints are not violated. However, recent works
suggest that minimizing the total system delays is a necessary,
but not sufficient, criterion for recovery. For example, the
spatial distribution of delays across airports has also been
found to be an important measure of system disruption and
recovery [7]. Unfortunately, incorporating the spatial distribu-
tion of delays into the MAGHP results in a computationally
intractable optimization problem (Section III-B).

In this paper, we aim to develop a computationally scalable
methodology that identifies flight schedules that not only
minimize total system delay costs, but can also achieve
other desirable objectives such as reducing the disparity in
delays at airports, capping delays at specific airports, or
even attempting to redistribute periods of peak delays to
more favorable time slots. Our proposed methodology can
be helpful to airlines in customizing their recovery process
based on operational requirements. For example, an airline
might want to protect its hub airports from high delays
by transferring delays to other non-hub airports, perhaps
with a small penalty in overall efficiency. Real-time decision
support tools that mathematically capture and implement such
preferences can facilitate robust recovery from disruptions.



B. Background and prior works

The MAGHP and its variants have been studied by several
researchers [4]-[6]. Prior works include analyzing solution
sensitivity to delay [8] or sector utilization costs [9], and
factoring in stochastic capacities [10]. Other extensions con-
sider airline scheduling behaviors such as departure and
arrival banks [11], as well as notions of fairness [12]-[14].
These studies primarily consider the magnitude of delays as
a measure of system inefficiency, and seek to minimize it.
Recently, other aspects of system performance (e.g., spatial
impact, fairness) have gained prominence. In [7], the au-
thors examine spatial distributions of airport delays as an
important attribute of the system from a network-wide and
airline-specific perspective. In particular, smooth observations
of airport delay signals, with respect to historical delay
correlations, provide insights into disruption management
and recovery. However, traditional MAGHP formulations are
unable to tractably incorporate metrics that reflect spatial
delay characteristics.

Air traffic management involves decision-making at mul-
tiple spatial and temporal scales [15]. For example, system
disruptions and recoveries involve strategically planning hours
into the future to allocate limited resources such as airport and
airspace capacity. However, since disruptive events such as
weather are often difficult to predict, these strategic measures
are augmented with tactical actions by traffic flow managers
and air traffic controllers, who assign reroutes or airborne
holding [16]. As part of the Collaborative Decision-Making
(CDM) process, airlines respond to these actions by swapping
slots, aircraft, and crew; the goal is to minimize the impact of
the evolving disruption on airline operations [17], [18]. Con-
trol of the air traffic management system at the sector-level or
flow-level has been considered in previous studies [19]-[22].
Our approach adapts the idea of hierarchical controllers to
incorporate objectives such as “smooth” delay distributions
and customized airport recovery targets into the disruption-
recovery process. We propose a layered control structure: A
high-level layer that provides an unconstrained reference plan
for NAS delays, which is then given to a low-level layer that
constrains the plan to determine a flight schedule.

II. PROBLEM SETUP

Consider a set of flights scheduled to operate between a
set of airports, all with known departure and arrival times.
During disruptions, capacities at a subset of airports decrease,
requiring some of these flights to be rescheduled. In this
paper, we assume a time discretization of 15-minute intervals,
in alignment with common on-time-performance metrics such
as A14 [23]. The reduced capacities induce delays at airports,
and we denote the delay (sum of departure and arrival delays)
at airport ¢ at time ¢ as ;L',Et). The vector of delays across all NV
airports indexed by {1,..., N} at time ¢ is denoted by x(*) =

xgt)7...,x§f,) ! € RYX!. Denote by T = {1,...,T} the
set of time indices, where t € 7. With our hierarchical control
framework, we seek to augment the standard MAGHP such
that it is can provide schedule solutions incorporating goals
such as: (1) Minimize Zi,t P i.e., maximize efficiency;
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(2) Minimize 37,3,  pi; (IE” _ Ié“){ i.e., maximizes de-
lay signal smoothness with respect to network connectivity
weights p;;; (3) Achieve user-defined upper bounds on delays
at targeted airports x() < x{‘....

The notion of controlling airport delays via redistribution
may be counter-intuitive, since delays are accrued quantities
based on differences in scheduled versus actual arrival (or
departure) times. This is in contrast to physical quantities
(e.g., number of bikes at a bikeshare station) where redistri-
bution notions are more natural. To illustrate what we mean
by redistributing airport delays, we provide the following
example of how rescheduling flights can alter the delay vector
x(®) such that delays appear to have shifted from one airport
to another.

Example: Let f4_,c and fp_,c be two flights from airports
A and B to destination airport C, respectively, both with
2-hour flight times. Both fs_,c and fp_,c are scheduled
to depart at 4:00 pm, and arrive at C' at 6:00 pm. Suppose
that airport C' can accept one aircraft at 6:00 pm and another
aircraft at 6:15. This results in two possibilities: We can assign
the 6:00 pm arrival slot to f4_,¢ (allowing it to depart as
planned) and the 6:15 arrival slot to fp_,c, or swap their
orders. Note that both possibilities involve a 15-minute arrival
delay at airport C' (assuming no time is made up en route),
but we have flexibility in determining whether airport A or
B receives a departure delay of 15 minutes. This simple
example depicts how airport delays can be redistributed per
user preferences.

A. Challenges to be addressed

While incorporating efficiency and notions of airport delay
smoothness within the standard MAGHP may seem straight-
forward, the resultant nonlinear optimization problem is com-
putationally intractable at scale. Hence, our solution approach
is to solve the problem in two stages. First, we identify a
candidate reference plan for NAS delays at time ¢, denoted
by xg), that can incorporate a variety of user preferences, but
has no knowledge of—and is unconstrained by—actual flight
schedules. Next, we generate an actual feasible schedule by
solving an augmented MAGHP with an additional objective
term that attempts to track xit) at each time step ¢t. Our
approach tackles two key challenges:

Challenge #1: 1dentifying a reference plan xff) at each time
t that can be realized by a feasible flight schedule requires
a model for the system dynamics, which is often unavailable
in such large-scale, stochastic, interconnected systems.

Challenge #2: ldentifying a flight schedule that achieves
some complex, possibly nonlinear, objectives may not be
feasible through a standard implementation of MAGHP.

B. Solution framework

We present our hierarchical control framework in Fig. 1.
The left-hand side of Fig. 1 provides an overview, wherein
traffic flow management control actions are inputs into the
NAS and result in observable performance metrics such as
flight delays. Such real-time monitoring of the NAS has



become possible with initiatives such as System Wide In-
formation Management (SWIM), the data-sharing backbone
maintained by the FAA [24].

Our key contribution lies in the hierarchical design of the
traffic flow management planning and control stages, i.e., the
high-level planner and low-level controller blocks in Fig.
1, respectively. Out high-level planner, detailed in Section
II-A), (1) provides a low-fidelity approximate model for
the NAS state, as defined by the airport delays; and (2)
allows for a wide range of user preferences in determining
the NAS state evolution. In particular, the high-level planner
can incorporate non-linear objectives (e.g., control the spatial
distribution of delays or conditionally control delays at a
subset of airports) and provide a reference plan for the NAS
state in a computationally tractable manner. This addresses
the first challenge we identified.

Our high-level planner incorporates some knowledge and
assumptions regarding NAS delay dynamics (e.g., airport
delays should be ‘“continuous” across time), but it ignores
the actual flight schedules and demands. While this enables
computational tractability and application of customized user
preferences, the high-level planner may provide a reference
plan that is impossible for the low-level controller to exactly
adhere to. Thus, to ensure that we generate a feasible sched-
ule, we provide the high-level reference plan as a “weak”
guidance to augment a low-level MAGHP controller. This
approach is described in greater detail in Section III-B,
and addresses the second challenge we identified. This hi-
erarchical relationship between the high-level planner (more
expressive, but potentially unrealistic) and low-level controller
(more restrictive, but provides an actual adjusted schedule)
forms the crux of our solution framework.

III. METHODOLOGY
A. High-level planner

Recall that our goal is to design a high-level planner that
uses an approximate model for NAS delay states, combined
with a design strategy, in order to propose a reference
plan to be given to the low-level controller, the augmented
MAGHP. Hence, we require realistic network delay state
observations from some underlying probability distribution
that describes the delay at each airport within the network.
Two factors complicate this task: the marginal delay distribu-
tions at each airport may differ, and there could be a variety
of dependencies between the delays at different airports.
The former encapsulates the fact that different airports have
significantly different operating characteristics (e.g., runway
capacity, airspace structure, typical weather patterns), whereas
the latter is the result of the networked nature of the system
(e.g., tail-propagated delays, shared airspace constraints, traf-
fic management initiatives).

To overcome both of these complicating factors, we
use a statistical construct called a copula. A copula re-
parameterizes multivariate probability distributions, separat-
ing the tasks of estimating marginal distributions and estimat-
ing dependence structures [25]. Formally, an N-dimensional
copula C : [0,1]Y — [0,1] is any valid cumulative distribu-
tion function C'(u) = C (uy,...,uy) with standard uniform

random variables as its marginal distributions. The depen-
dence between marginal distributions is completely captured
by the functional form of C, whereas individual marginal dis-
tributions are represented by standard univariates u1, ... uy,
after they are estimated and transformed via a probability
integral transform. The advantage of using a copula lies in
the fact that any continuous multivariate distribution can be
uniquely represented by a copula. This fact is made precise
by the following theorem:

Theorem 1 (Sklar’s Theorem [26]). Consider a N-
dimensional cumulative distribution function Fx with
marginals Fx,, ..., Fx,. Then, there exists a copula C such
that Fx(x1,...,zn) = C (Fx,(21),...,Fxy(xnN)) for all
z; € Rand i =1,..., N. Furthermore, if Fx, is continuous
forallv=1,... N, then the copula C is unique.

We can now estimate individual marginal airport delay dis-
tributions from data, and subsequently compute the copula
C with a maximum likelihood estimator [27]. Finally, we
note that a copula contains no temporal information, whereas
airport delay distributions can be highly non-stationary [28].
While there are refinements such as time-varying copula
processes [29], we capture the time-varying airport delay
dynamics using 24 different copula model corresponding to
each hour of the day.

Along with the copula-based approach for approximating
NAS delay states, we use an approximate projection-based
network control framework to construct the reference plan to
be given to the low-level controller. In this paper, due to space
limitations, we will only give an overview of this construction;
for technical details, we refer the readers to [27]. To begin,
we denote by x() € R]>VO the vector of airport delays at time
t. There are unknown system dynamics through which the
airport delays evolve from time ¢ to ¢+ 1. These dynamics are
highly complex and unknown, necessitating the approximate
and low-dimensional characteristics of this high-level planner.

Suppose we observe x(*) and now would like to construct a
reference plan for how airport delays should evolve at a high-
level. Recall that the low-level controller (i.e., augmented
MAGHP) is responsible for ensuring that a feasible schedule
is produced; hence, in lieu of planning individual flights, we
project x) to a two-dimensional subspace of performance
metrics, parameterized by the total delay and the fotal vari-
ation (TV) of the delays. Intuitively, the former measures
the magnitude of delays, whereas the latter measures the
spatial variance [7]. We can now set performance targets in
the performance metrics subspace and construct a reference
plan from candidate states within the approximate NAS delay
distribution copula model.

Finally, we note that there may be multiple candidate
states which satisfy our performance target. In order to select
an optimal candidate state, we formulate the Conservative
Selective Redistribution Problem (CSRP) in (1), an essential
component of the high-level planner block in Fig. 1. In
the CSRP formulation (1), X C R" denotes the copula-
generated space of NAS delay states from which we find

. . A L.
an optimal candidate x(*t) 2 x® that minimizes a three-
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Figure 1: Representation of our hierarchical control framework.

term objective, subject to a delay conservation constraint. We
denote by A € [0, 1] the redistribution workload parameter;
c a N x 1 vector whose entry ¢; = 0 for nton:;targeted
airports, and c¢; = 1 for targeted airports; {xg) the set
of baseline MAGHP airport delays; § > 0 a smail_(t)olerance
factor, and 1y the N x 1 vector where each entry is 1.
The norms are standard ¢,-norms, i.e., ||x|| ., = max; |z;]
and x|, = Zi\; |;|. Formally, in the context of (1), the
resultant reference plan from the high-level planner is the

t=T
sequence xg) U {Xit)} .
t=1
-
xM = argmin{Hx(t) - Xit_l)H + AT
x(eX o
Hx(t) . Xg)H +(1- )\)CT (X(t) _ xg))}
vt [, - ], <

XErO):X(BP)ﬂ )\6[0,1], vt:laﬂT

ey
The first term in the objective assesses a base penalty
that enforces smooth transitions (i.e., delays are not “discon-
tinuous”) from the previous optimal candidate ng_l). The
second term elucidates why we refer to A as a redistribution
workload parameter: It interpolates between adherence to the
baseline MAGHP solution (given by the second term) versus
redistributing delays away from target airports (given by the
third term). Note that since A € [0,1], we must ensure that
the second and third term are of comparable scales, so we
introduce the normalizing constant 13c/N. This constant
accounts for the fact that the third term is only evaluated
over certain airports, whereas the second term is evaluated
over every airport. Finally, the delay conservation constraint
requires that all optimal state candidates have total delays that
lie within a small §-band of baseline MAGHP solution. For
the case study results in Section V, we pick a d-tolerance such
that the CSRP remains feasible (i.e., there is a non-empty set
of candidate states) while ensuring that the delay conservation
constraints are enforced in practice.

B. Low-level controller

We consider an adapted version of the MAGHP. The
mathematical notations used in the formulation are shown
below.

A : set of all airports, indexed by ¢

F . set of all flights, indexed by f

T :  set of all time periods, indexed by ¢

Fep : set of flights that depart in design day
but arrive the next day

F,. : set of flights that depart before the

design day but arrive in design day

Frun set of flights where we model the
departure and arrival

Fy :  set of flights where we model the
departure

F, . set of flights where we model the arrival

dest ¢ destination of flight f

origys :origin of flight f

ds :  scheduled departure time of flight f

Tf :  scheduled arrival time of flight f

Tiep :  feasible departure times for flight f

Torr . feasible arrival times for flight f

D(i,t) departure capacity at airport ¢ at time ¢

A(i,t) :  arrival capacity at airport 4 at time ¢

ore . 1if flight f departs at time ¢, O otherwise

Wy : 1 if flight f arrives at time ¢, O otherwise

We have a set of flights F' with scheduled and feasible
departure or arrival times in 7 into airports .A. There are three
main overlapping sets of flights that we use. Iy = Fyep UF
contains all flights where we model the departure. Likewise,
Fy = Fopr U Fryy contains all flights where we model the
arrival. F'y,y; contains flights that depart and arrive within 7.
Since demand exceeds airport capacity, we need to assign
revised departure and arrival times to each flight, which
are modeled with binary decision variables vy, and wyy,
respectively. The following constraints must be satisfied:
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Constraints (2a) and (2b) ensure that departure and arrival
capacities are not exceeded across all airports and time
periods. Constraints (2¢) and (2d) require that all flights depart
and land at some point within their feasible departure and
arrival times. Finally, constraint (2e) ensures that the flight
time for all flights is equal to their minimum travel time.

We now discuss the three models we use within the low-

level controller. Note that constraints (2a)-(2e) apply across
all models.

Baseline MAGHP: In the baseline MAGHP, the objective is
to minimize total delay cost (TDC), which is a weighted sum
of airborne delay and ground delay. The cost of one minute
of airborne delay is c,, which we assume to be 3, and the
cost of one minute of ground delay is ¢y, which we assume
to be 1. The objective is formulated as follows:

TDC = ¢, Z Z wp(t—ry)
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MAGHP with Redistribution (R-MAGHP): Suppose we
have a set of target airports .4, C A that we want to
redistribute delay away from in time periods 7;"¢%s! C T,
where i € A,.. To encode this into the MAGHP, one option
is to set maximum airport delay constraints for target airports
at times of interest. But since such a formulation may be
infeasible, this requires fine-tuning the maximum allowable
delay at target airports. Instead, we formulate R-MAGHP by
adding an additional penalty ct'"g “ to delay incurred at target
airport ¢ € A,. across t € 77€d“t. For our case studies, we
set ¢/4"9°" = 1 for all airports a and times ¢. The objective of
R-MAGHP is to minimize TDC and the target airport delay
penalty (TADP).

TADP =Y ) > At top(t—dy)
€A, fEFg feT({
OT"LngZ 7‘:(‘;)7 st
dy €T

“4)

+ Z Z Z C;jtedistwft(t _ Tf)

€A, feF, tETf

destf:i 67—7‘21{7,575

Augmented MAGHP (A-MAGHP): In addition to delay
mitigation at target airports, suppose we would also like to
control more complex delay behaviors such as its smoothness
across a network of airports. The metric we use as a proxy
for smoothness is TV, introduced in Section II. We first need
the following equation for a:l(t), i.e., the delay at airport ¢ at
time ¢.

) = > > gt —dy)

feFqlorigg=i,dp=t teT}iep

+ > > wp(t—ry)

fEF, \destf:i,'rfzt tET}”‘T

(&)

We define p;; as the network connectivity weight between
airports ¢ and j. The intuition for TV is that minimizing TV
encourages equalizing delay across airports with high network
connectivity. Recall that the equation for TV from Section II

2
isgiven by TV =37, ©.0i ij D et (xl(t) — xg-t)> . We can

set our objective to be the sum of TDC and TV: Although
we implemented and solved this for the MAGHP with up to
600 flights, it is difficult to solve for larger problems (e.g.,
9,000+ flights) due to its non-linearity. Thus, we augment the
MAGHP with a reference plan from the high-level planner.
Denote by 1'( ) the delay at airport ¢ at time ¢ in the reference
plan. Our new objectlve is to minimize TDC and the absolute
deviation from the reference plan. Let zft) denote the absolute
deviation in total delay at airport ¢ at time ¢ relative to the
reference plan. We ensure that zl(t) can be encoded in a
linear program, i.e., without using absolute values, with the
following constraints: zit) > a:ﬁ” ( ) and z(t) > x(t) (-t).
The A-MAGHP objective is now to minimize TDC and
the deviation from the reference plan (“reference deviation
penalty”, or RDP). The deviation penalty, i.e., the tracking
weight, is denoted by 6 > 0.

RDP=>" > ¢z" (6)

1€A, te'Tiredist

IV. DATA SOURCES AND MODEL TRAINING
A. Airport capacities and schedule demand inputs

To compute the nominal and reduced arrival and departure
airport capacities, we refer to the 2014 FAA Airport Capacity
Profiles [30]. We illustrate our process of extracting 15-minute
arrival or departure airport capacities using Hartsfield-Jackson
Atlanta International Airport (ATL) as an example. From
[30], the arrival and departure capacity ranges between 168
to 226 aircraft per hour, dependent on weather conditions



and configuration priorities, with an average capacity of
202 aircraft per hour. For ATL, the 15-minute nominal and
reduced capacities are [202/4| = 50 and [168/4] = 42
aircraft, respectively. For the arrival capacities used in the
MAGHP, we multiply the 15-minute capacities by a traffic
fraction n € [0,1] and an arrival fraction o € [0,1]. Note
that for departures, we perform the same calculation, except
with a departure fraction 1 — «. Since our case study setups
in Section V consider only the traffic between FAA Core
30 airports (i.e., origin and destination of all flights is an
FAA Core 30 airport), the traffic fraction captures this fact
by reducing the capacities in [30] accordingly. We also do
not assume arrival or departure priorities, so we have that
a=1—a=0.5.

We construct the input flight schedule for our design
day, i.e., the demand-side inputs of the MAGHP, based on
origin-destination (OD) hourly traffic counts on August 5,
2019, retrieved from the Bureau of Transportation Statistics
[31]. We map from hourly counts to a scheduled departure
time by randomly assigning flights uniformly within four
possible 15-minute windows for each hour. To account for
the impact of overnight “red-eye” flights, our generated flights
fall under three categories: (1) Flights with scheduled arrival
and departure times within the 24-hour period (our design
day); (2) flights departing prior to, and arriving within the
design day; and (3) flights departing within, and arriving after
the end of the design day. For scheduled arrival times, we
sample from historical OD-specific normal distributions of
flight times, retrieved from FAA ASPM [32]. The resultant
flight schedule contains 9,838 flights, while the actual number
of operated commercial flights in the FAA Core 30 airports
on August 5, 2019 was around 13,600. The ratio between
these two figures provides the aforementioned traffic fraction
n=0.72.

B. High-level planner model training

Recall from Section III-A that the high-level planner at-

tempts to solve (1) at each time step t = 1,...,7 in
t=T
order to construct the reference plan xg) U {x(*t)} R
t=1

t=T
where {Xit)} are states residing within the copula-

generated space of NAS delays X. The high-level planner
needs to be trained first on historical observations of NAS
delays, so that X provides an adequate representation of
NAS delays. We generate M = 5419 training samples

(24) =M .. .
y containing delays at 30 air-

{xgl),...,xgh),...,x
ports across 24 hours, and ugg %he subset of samples hour & to
fit the multivariate Gaussian copula for hour h. For brevity, we
direct the interested reader to [27] for the copula estimation
procedure and other technical details.

Fixing the flight schedule generation procedure as de-
scribed in Section IV-A, we generate the M training samples
by solving a standard MAGHP, producing NAS delay vectors

{xgl), . ,xgh), . ,x224)} for the /™ training sample. Since

we want X to be as representative as possible in terms of NAS
airport delays, we utilize a randomization-based heuristic

(Algorithm 1) to explore and capture a wide range of possible
airport delay conditions.

Algorithm 1 Randomization heuristic to perturb MAGHP

airport capacity inputs.

Input: Flight schedule D; Airports {1,...,N}; Maximum, average, and
minimum 15-minute capacities { 2%, V8, umin for each airport
¢ =1,..., N; Maximum number of impacted airports nmax < N;
Low airport capacity tolerance v > 1; Arrival fraction « € [0, 1]

Output: A training sample {x(1), ... x(29}

n < U {0, nmax }

Adisrupt < n airports uniformly at random from {1,..., N}
for Airporti € {1,...,N} do

if i € -Adisrupt then

iid . . . M{nil]+N5‘lVg
‘ Draw sample ¢ ~ U (u?‘m,mm {vuf““, ———

else

) . iid ave ulinaxi’u;nin
Draw sample ¢ ~ N (Ni y Tt

end
A, t) « ac,Vt € T; D(i,t) + (1 — a)e,Vt €T

end
{xM),.. x(H} « MAGHP (D, {A(i,t), D(i, t)}i{")

We note that the maximum, average, and minimum 15-minute
capacities { ", pV8, "} for each airport i = 1,..., N
are retrieved in accordance with Section IV-A. For our case
studies, we set nyax = 5 airports and v = 1.2. We denote
a discrete uniform distribution between a and b by U{a, b},
and its continuous analogue by U(a,b). The overall training
procedure does not change for a real implementation of our
framework: The MAGHP input would reflect all NAS flights
(in lieu of flights only between FAA Core 30 airport), and
accordingly, the training samples would simply be historical
NAS delay observations (in lieu of multiple runs of MAGHP
with perturbed capacities via Algorithm 1).

V. CASE STUDY RESULTS AND DISCUSSION
A. Disruption scenarios

We set up six different NAS disruption scenarios in order
to test our hierarchical control strategy summarized in Section
II-B. The first three disruption scenarios reflect reduced arrival
and departure capacities at the top five hub airports by OAG
connectivity index [33] for American Airlines (AA), Delta
Airlines (DL), or United Air Lines (UA). The second set
of three disruption scenarios detail reduced airport capacities
within a specific geographic region. We list these disruption
scenarios, along with the impacted airports, in Table 1.

Airports with

Scenario Reduced Capacities

AA Hubs CLT, DFW, LAX, PHL, PHX

DL Hubs ATL, DTW, LGA, MSP, SLC

UA Hubs DEN, EWR, IAD, IAH, ORD

Chicago MDW, ORD

East Coast BOS, BWI, DCA, EWR, IAD
JFK, LGA, PHL

NYC EWR, JFK, LGA

TABLE I. The six disruption scenarios and associated im-
pacted airports.

The airports in Table I have capacities set at p®, in
contrast to the randomization heuristic in Algorithm 1 used



to generate capacities at impacted airports. We remark that
it is easy to replace these deterministic, constant capacities
with time-varying capacities, if such forecasts are available.
We define user preferences to be the reduction of delays
at farget airports. For each scenario in Table I, we choose
the five airports with the highest 15-minute delay in the
baseline MAGHP solution as the target airports. We list
these target airports in Table II. Note that the capacity-
constrained airports in Table I are not necessarily the airports
with the highest 15-minute delays. This is due to demand-side
differences and varying severity of capacity reductions with
respect to nominal capacities for different airports. Relating
this back to the CSRP in (1), these preferences dictate that we
prioritize delay mitigation at target airports within the high-
level planner by setting A = 0, such that the third penalty

term (1 — \)c' (x(t) - X?) dominates.

High-Level Planner

Scenario Target Airports

AA Hubs SFO, SEA, LAX, EWR, SAN
DL Hubs BOS, IAD, SAN, SEA, SFO
UA Hubs SFO, BOS, EWR, SEA, SAN
Chicago SFO, SEA, SAN, ATL, BOS
East Coast BOS, EWR, LGA, SAN, SFO
NYC SFO, SEA, SAN, EWR, LGA

TABLE II. List of target airports for delay mitigation within
the high-level planner.

B. AA Hubs scenario detailed results

We provide a deep dive into our hierarchical control
framework applied to the “AA Hubs” disruption scenario.
We compare three models: (1) a standard baseline MAGHP
(Baseline), (2) MAGHP with redistribution (R-MAGHP), and
(3) MAGHP augmented with a reference plan (A-MAGHP)
given by a high-level planner focused on mitigating delay at
target airports (see Table II). We highlight the various features
of A-MAGHP and R-MAGHP for this disruption scenario.
Throughout this subsection, we will also refer to the “AA
Hubs” row of Table III for summary statistics of interest. We
will discuss the remainder of the scenarios together in Section
V-A, but only at the aggregate level of Table III.

Fig. 2 shows the projected hourly airport delays with
the Baseline model for the “AA hubs” scenario. We first
compare the total delay across the three models, shown in
Fig. 3. Notice that the total delay of A-MAGHP tracks very
closely with the Baseline, whereas R-MAGHP shows a sharp
increase around 14:00 EDT, with somewhat lower delays in
the following hours. R-MAGHP has the same total delay
as the Baseline model, while A-MAGHP increases delay
by a marginal 15 min. Both A-MAGHP and R-MAGHP
successfully reduce delays at target airports: -13.2% and -
18.1% with respect to the Baseline model, respectively. R-
MAGHP provides larger delay reductions, at the price of
more variability in airport delays, particularly around hours
14:00-16:00 EDT. The schedule from the R-MAGHP model
may be more desirable if it is critical to mitigate delays at
target airports, even at the cost of potentially large increases
in delays at other airports, deviating significantly from the
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Figure 2: Airport delay time series corresponding to the
solution of the Baseline model for the AA Hubs scenario.

Baseline model. On the other hand, the A-MAGHP model
schedule may be preferable to produce a “smoother” delay
redistribution: one that prioritizes mitigation of delays at
target airports, but also does not over-penalize non-target
airports. This difference between delay impacts at target
versus non-target airports can be visualized in Fig. 4, wherein
we plot aggregate delays at target and non-target airports,
across both R-MAGHP and A-MAGHP solutions. R-MAGHP
results in a sharp spike in delay relative to Baseline for non-
target airports at 14:00-15:00 EDT. This temporary spike
contrasts with the more modest delay reduction relative to
baseline at target airports. In contrast, with A-MAGHP the
reductions in target airport delay more closely mirror the
increases in non-target airport delay.
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Figure 3: Total delay time series for the three models under
the AA Hubs scenario. Early, low-delay hours are omitted for
clarity.

We also plot in Fig. 5 individual OD pairs where the
departure (or arrival) times of flights were perturbed between
the Baseline schedule and the schedule from the A-MAGHP
model. We see that the OD pairs with higher percentages of
perturbed flights tend to involve one of the target airports



shown in blue, with an overall 13.2% reduction in delay at
these target airports for A-MAGHP relative to baseline. Note
that it is possible for the same OD pair to appear in both
increasing and decreasing categories: suppose an OD pair
had 10 flights, with 3 flights incurring increased delays in
the A-MAGHP schedule compared to Baseline, and 4 flights
incurring decreased delays. This would provide two different
percentage increase (or decrease) values for this OD pair, as
well as different average increase (or decrease) values.
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Figure 4: Change in delay between the Baseline model versus
R-MAGHP and A-MAGHP, aggregated by target or non-
target airports, for the AA Hubs scenario.
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Figure 5: OD pairs plotted according to percentage of flights
on that OD pair with decreased (or increased) delays, and
the average delay decrease (or increase) in minutes, in the
A-MAGHP model compared to Baseline. Target airports for
delay mitigation for the AA Hubs scenario marked in blue.

In terms of providing a revised schedule that minimizes
TV, A-MAGHP outperforms R-MAGHP for the AA Hubs

scenario, achieving -5.4% and -0.5% reductions compared
to the Baseline, respectively. Fig. 6 shows the time series
of TV across the three models. Recall from Section III-B
that solving the MAGHP with explicit TV objectives is an
intractable non-linear problem for our schedule containing
9,838 flights. The hierarchical structure of A-MAGHP allows
for the incorporation of these complex objectives by way of
tracking some reference plan from the high-level controller.
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Figure 6: TV time series for the three models under the AA
Hubs scenario. Early, low-delay hours are omitted for clarity.

We conclude our detailed analysis of the Baseline, R-
MAGHP, and A-MAGHP results for the AA Hubs scenario
by examining the impact of the tracking weight 6 on the A-
MAGHP schedule. In particular, we sample tracking weight
values 6 € {0.1,0.2,...,1.2}, then plot in Fig. 7 the total de-
lay and TV of each resultant schedule from A-MAGHP with
different 6 weights. We note that for this disruption scenario,
the A-MAGHP outperforms Baseline and R-MAGHP in terms
of TV with any of the sampled 6 weights, but excessively
large values of 0, i.e., § = 1.2 may result in higher delays with
no additional TV improvements. Similarly, although picking
smaller values of 6 ensures that delays do not deviate from
the Baseline model (in fact, A-MAGHP is equivalent to the
Baseline for # = 0), benefits in terms of TV reductions may
be lost. This provides a trade-off that can be explored by
varying 6 in the A-MAGHP formulation.

C. Summary of other scenarios

Table III provides a summary of the results of the Baseline,
A-MAGHP, and R-MAGHP models across all six disruption
scenarios. For A-MAGHP, the 6 tracking weight is shown,
which was chosen to minimize TV without a large increase
in total delay. In terms of total delay, we see that R-MAGHP
always resulted in delays identical to Baseline. Similarly,
delays for A-MAGHP closely adhered to Baseline. For two
disruption scenarios (AA Hubs and Chicago), A-MAGHP
incurred no more than an additional 30 minutes of delay,
across 30 airports and the 24-hour design day; for the other
four disruption scenarios, A-MAGHP incurred no additional
delay compared to Baseline. R-MAGHP, compared to A-
MAGHP, results in a greater reduction in delay at target
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Figure 7: Effect of the tracking weight 6 in the A-MAGHP
model for the AA Hubs scenario.

airports at the price of a greater increase in delay at non-target
airports. Across all scenarios, A-MAGHP and R-MAGHP
result in around 5-6% of flights experiencing a delay increase
relative to Baseline and a similar percentage experiencing a
delay decrease. The average increase (or decrease) in delays
on a per-flight basis relative to Baseline is around 45-50 min.

In five of the six scenarios, A-MAGHP reduced TV signif-
icantly more (ranging from -5.4% to -9.3%) than R-MAGHP
(ranging from -0.5% to -6.5%). The one exception is the
East Coast scenario in which seven geographically-correlated
airports had reduced capacity. We note that our training data
had at most five airports with reduced capacity, so it is
possible that with more representative training of the high-
level planner, the A-MAGHP’s performance would improve.
In a full-scale deployment of A-MAGHP, we would train
using historical NAS airport delay observations, which would
be more representative than the randomization heuristic in Al-
gorithm 1. In addition, for the East Coast scenario, R-MAGHP
is unable to significantly decrease TV. We hypothesize that
it is inherently difficult to decrease TV in this scenario, with
seven geographically-clustered airports being simultaneously
disrupted.

D. Potential feedback implementation

Thus far, we focused on how to generate a revised schedule

for time horizon t = 1,...,7T via the MAGHP augmented
® ="

with a reference plan {x* . A real-time implementation

with actual NAS metrics éﬁc]l system state would incor-
porate feedback in the form of updated airport capacities
(e.g., airport updated weather forecasts) as well as updated
schedules (e.g., some flights may have arrived or departed in
conformance with the original schedule, but other flights may

have been delayed). Suppose that at time ¢t = 0, a sch%dule is
t=

produced by the MAGHP augmented with xit) . NAS
operations begin according to this schedule, and theta:cltual de-
lay state X(1) is observed at t = 1. Let ¥ : (X(1), xil) — K
be some feedback mechanism that examines the actual delay
state X(1) and the delay state projected by the reference

plan xil), then produces some feedback K Tthat informs the
O\

generation of a new reference plan {x* to augment the
MAGHP from time ¢ = 2 through the end of the time horizon.
The specific form of the feedback K is flexible: Examples
include (1) modifying the the vector of target airports c in
the CSRP; (2) adjusting the redistribution workload parameter
A in the CSRP; and (3) adjusting the tracking weight 6 in
the augmented MAGHP. Future work could involve designing
such a feedback controller, using either real-time NAS data
or a flight-level NAS simulator.

VI. CONCLUDING REMARKS

Motivated by the increasing ability to gather real-time
NAS performance metrics and the question of designing
new recovery pathways for NAS disruptions, we propose
a hierarchical feedback control framework that incorporates
a high-level planner (the CSRP) and a low-level controller
(the MAGHP). The advantage of the high-level planner is
its computational tractability and flexibility: users can input
a wide range of preferences to the high-level planner, which
then proposes a reference plan for NAS delays. This reference
plan is then constrained by the low-level controller, the
augmented MAGHP, which then produces a feasible flight
schedule. We demonstrate the utility of this hierarchical
framework using six NAS disruption scenarios. This control
paradigm opens up a range of future work, from low-level
controller refinements, such as adding flight connections or
sector capacities, and incorporating other performance metrics
such as flight cancellations.
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