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Abstract
The main contribution of this paper is GoJournal, a verified,
concurrent journaling system that provides atomicity for stor-
age applications, together with Perennial 2.0, a framework
for formally specifying and verifying concurrent crash-safe
systems. GoJournal’s goal is to bring the advantages of jour-
naling for code to specs and proofs. Perennial 2.0 makes
this possible by introducing several techniques to formalize
GoJournal’s specification and to manage the complexity in
the proof of GoJournal’s implementation. Lifting predicates
and crash framing make the specification easy to use for de-
velopers, and logically atomic crash specifications allow for
modular reasoning in GoJournal, making the proof tractable
despite complex concurrency and crash interleavings.

GoJournal is implemented in Go, and Perennial is imple-
mented in the Coq proof assistant. While verifying GoJournal,
we found one serious concurrency bug, even though GoJour-
nal has many unit tests. We built a functional NFSv3 server,
called GoNFS, to use GoJournal. Performance experiments
show that GoNFS provides similar performance (e.g., at least
90% throughput across several benchmarks on an NVMe disk)
to Linux’s NFS server exporting an ext4 file system, suggest-
ing that GoJournal is a competitive journaling system. We
also verified a simple NFS server using GoJournal’s specs,
which confirms that they are helpful for application verifica-
tion: a significant part of the proof doesn’t have to consider
concurrency and crashes.

1 Introduction
Storage systems, such as file systems, need to be carefully
structured to not lose persistent user data, even in the face of
application and whole-system crashes. They often achieve
this crash safety property by delegating writing to storage
to a journaling system, which exposes an API for executing
an operation such that its writes appear on disk atomically.
The journaling system simplifies implementing the storage
system’s logic: to atomically modify a set of objects, the file
system simply writes to them one at a time within a single
journal operation. The result is that each storage operation is
atomic with respect to crashes.

While a journaling system exposes a simple API, its imple-
mentation must address crash safety and also be concurrent for
good performance. Maintaining correctness in the presence of
both concurrency and crashes is challenging. For example, in

pursuit of performance, journaling systems often avoid holding
locks while performing I/O, but reasoning about the correct-
ness of such optimizations requires considering what happens
if one thread’s disk reads interleave with another thread’s disk
writes, and what happens when the system crashes anywhere
during that interleaving.

This paper presents GoJournal, a Go package that provides
the first formally verified concurrent journaling system. To ver-
ify GoJournal, we developed Perennial 2.0, an extension to the
Perennial [6] framework with several features designed to en-
able modular reasoning about concurrent, crash-safe systems.
In this work we set a goal of giving GoJournal a specification
that reflects the simplicity of using a journal for crash atomic-
ity. GoJournal can be used by an application like a file system
or a key-value store. As long as the application follows a lock-
ing discipline for its on-disk state, such as per-file locks for a
file system, proving the correctness and crash-safety of that
implementation on top of GoJournal should involve largely
sequential reasoning, despite the fact that the application has
multiple concurrent threads and can crash at any time.

Realizing this goal raises two challenges: specifying Go-
Journal in a way that makes application reasoning sequential,
and proving GoJournal’s implementation correct. The speci-
fication makes reasoning about an operation sequential with
a lifting interface where the proof has an abstraction of a
“checked out” private fragment of the disk that the operation
appears to synchronously modify. At commit time the private
fragment is “checked in”, at which point it is durable and
can be exposed to other threads. The journal guarantees the
operation is atomic by delaying all writes to commit time,
so the developer should not need to explicitly reason about
crash safety until commit time. Perennial 2.0 supports a new
technique called crash framing to formalize the intuition that
during an operation the developer need not explicitly consider
crash safety.

The second challenge lies in proving GoJournal itself. This
is difficult because we desire modularity to make the system’s
proof tractable, which requires giving suitable specifications
to the internal interfaces of the system. While the user-visible
interface of GoJournal is simple, the internal interfaces of a
high-performance journaling system are hard to specify and fit
together. To address this challenge, Perennial 2.0 contributes
logically atomic crash specifications which enable natural
specifications of system layers in terms of a transition system
with atomic transitions for the public methods. These specifi-
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cations include a crash transition to describe what happens to
the state of a layer during a crash. Such specifications make
it possible to build upper layers of the system on top without
worrying about implementation details of how atomic transi-
tions are achieved. This separation of concerns lines up with
the modularity in the implementation; the proof layers divide
up the reasoning along the same lines that the code divides up
functionality among Go packages.

To test the performance and completeness of GoJournal,
we built GoNFS, a functional (but unverified) NFSv3 server
that can be mounted through the Linux NFS client. GoNFS
imports GoJournal and uses it to achieve crash consistency
for NFS operations. We focus on NFSv3 because it is widely
used in practice, its performance matters for applications, and
it has a crash-safety and correctness specification in the form
of RFC 1813 [3]. The crash-safety properties are advanced;
for example, the protocol supports unstable writes which let
the implementation delay flushing them to disk.

On a combination of microbenchmarks and a software-
development workload, GoNFS achieves at least 90% of the
throughput of Linux’s in-kernel NFS server exporting ext4
running on either a RAM disk or fast NVMe storage. On
slower SSD storage without using unstable writes GoNFS
gets 20% of Linux’s throughput due to inefficient I/O. GoJour-
nal’s concurrency is crucial to performance: the throughput
of GoNFS scales with the number of clients, but if GoJournal
is modified to execute sequentially (as in previous verified
storage systems), even with 20 clients GoNFS achieves only
double the throughput of a single client.

To demonstrate that GoJournal’s specifications enable ef-
fective verification of client applications, we implemented and
verified a simplified NFS server, which we call SimpleNFS,
covering the core operations, such as READ, WRITE, GETATTR,
and SETATTR (which can shrink and grow a file). By using
GoJournal’s specifications, the proof for SimpleNFS largely
involves crash-free reasoning (only 44 lines of code, out of a
total of 462, require explicit reasoning about crashes). This
translates into a lower proof overhead: SimpleNFS requires
3,749 lines of proof for 462 lines of Go code. GoJournal itself
requires 25,797 lines of proof for 1,345 lines of Go code.

The contributions of this paper are (1) GoJournal, a con-
current journaling system with a machine-checked proof of
correctness and crash-safety; (2) the Perennial 2.0 framework,
with extensions to the original Perennial framework that en-
able modularity and crash-free reasoning on top of GoJournal;
and (3) SimpleNFS, a verified core of an NFSv3 file server
built on top of GoJournal.

Although GoJournal is advanced enough to support a high-
performance NFS server, it has some limitations. GoJournal’s
internals (code and proof) support deferred durability, but
for simplicity, GoJournal’s top-level specification requires
applications to immediately flush committed journal opera-
tions, which is sufficient to prove SimpleNFS. GoJournal is
also less general than JBD2 (e.g., GoJournal does not sup-

port floating commit blocks), and less general than database
transaction systems (e.g., GoJournal does not support undoing
journaled operations). While GoJournal provides atomic up-
dates for crash consistency, it does not implement automatic
concurrency control. Objects accessed by a journal operation
cannot be concurrently accessed by another thread. GoJour-
nal provides a verified library for locking objects tracked by
the journal, which clients can use to implement concurrency
control.

2 Related work
To the best of our knowledge, GoJournal is the first verified
concurrent, crash-safe journaling system. The verification
of GoJournal builds on a large body of previous work, as
described in the rest of this section.

2.1 Perennial 2.0 vs Perennial 1.0
The verification approach we take is based on a new version of
our earlier Perennial [6] framework, so we draw a contrast be-
tween the two here. The new implementation is conceptually
similar in that it supports reasoning about concurrency and
crash-safety, it is implemented on top of the Iris [18, 19] con-
currency verification system, and it uses Goose [7] to enable
verification of Go programs by translating them into a model
in Perennial 2.0. However, to make verification of GoJournal
feasible, we had to re-write many core parts of the framework.
To clarify which framework is being referenced we will write
Perennial 1.0 for the original framework and Perennial 2.0
for the new one in this section, in order to highlight the new
features Perennial 2.0 supports. The rest of the paper generally
refers only to Perennial 2.0.

Some of Perennial 2.0’s features are needed to support the
GoJournal top-level specification and enable verification on
top of this interface. The reason this problem is complicated
is because the journal does not make operations automatically
atomic but requires the caller to correctly manage ownership,
and Perennial 1.0’s refinement specifications do not give a
good way to talk about ownership. The top-level specification
of GoJournal relies on crash framing (§5.5) and crash-aware
locks (§5.4) to enable application proofs that reason about
ownership of durable data.

Perennial 2.0 also scales to a larger system than the mail
server verified in Perennial 1.0. One of the challenges with the
larger system is that it has many internal layers that need their
own specifications, so that the proof can be carried out modu-
larly. Normally a separation logic or refinement-based specifi-
cation would be sufficient, but we need internal specifications
that capture the crash and concurrent behavior of each internal
library. To that end Perennial 2.0 incorporates a new specifica-
tion style which adds crash atomicity to the logically atomic
specification styles developed in earlier work [11, 16, 28].
Modularity in the proof was necessary to scale verification to
all of GoJournal’s performance optimizations and concurrency.
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Method Description Spec

func Begin() *Op Start operation §5.2
func (*Op) ReadBuf(addr Addr, sz uint64) *Buf Read a buffer §5.3
func (*Buf) SetDirty() Mark a buffer as modified §5.3
func (*Op) OverWrite(a Addr, sz uint64, data []byte) Write without reading §5.3
func (*Op) Commit(wait bool) bool Commit by appending to in-memory log. §5.6

If wait=true, also wait until changes are on disk.
func Flush() bool Flush in-memory log

func (*Lockmap) Acquire(i uint64) Acquire ith lock §5.4
func (*Lockmap) Release(i uint64) Release ith lock §5.4

Figure 1: GoJournal interface and API for lockmap. Not shown are auxiliary interfaces for initialization; checking operation size; etc.

At the same time, GoJournal’s specification allows the proof
of SimpleNFS to mostly avoid reasoning about crashes.

2.2 Related verification frameworks
Crash-safe systems. Any crash-safe system must reason
about the possible states after a crash, and several prior works
have formalized this in different ways for sequential crash-safe
systems. FSCQ [8, 9] uses Crash Hoare Logic (CHL) to spec-
ify crash behavior through a crash condition, which describes
the state of a system if a crash happens during execution of
a function. Alternatively, a number of systems verify crash
safety using refinement reasoning [5, 13, 15, 27], but none
support the combination of concurrency and crash-safety.

Although they are not concurrent, some of these systems ad-
dress other aspects of performant storage systems that are not
found in GoJournal. DFSCQ [8] verifies a high-performance
file system built on top of a logging system with asynchronous
disks and log-bypass writes, which are challenging optimiza-
tions that GoJournal does not support. VeriBetrKV [15] veri-
fies a key-value store based on Bε trees, a data structure that
also underlies BetrFS [17]. GoJournal and SimpleNFS use
simple data structures; the challenge lies in accounting for
concurrent accesses.

Concurrent systems. In addition to specifying behavior at
intermediate crash points, Perennial 2.0’s specifications de-
scribe the atomic commit points of concurrent operations. A
range of verification techniques have been used to address this
kind of challenge in concurrent systems. AtomFS [30] uses
a framework called CRL-H (concurrent relational logic with
helpers) to verify a concurrent in-memory file system imple-
mented in C. Refinement-based systems such as CSPEC [4],
Armada [24], and Concurrent CertiKOS [14] typically prove
that a function implements an atomic operation at a more
abstract layer. However, in GoJournal, many internal APIs
provide operations that are only atomic if the caller owns some
data. This kind of conditional atomicity is easy to express in
Perennial 2.0 using separation logic, but hard to express as a
precondition in a transition system.

Concurrent, crash-safe reasoning. Program logics other
than Perennial have been developed for formal reasoning about

concurrent, crash-safe systems. Fault-Tolerant Concurrent
Separation Logic (FTCSL) [25] extends the Views [12] con-
currency logic to incorporate crash-safety. POG [26] is a
program logic for reasoning about the interaction of x86-TSO
weak-memory consistency and non-volatile memory. Neither
logic has a mechanism for modular proofs of layers, which
we found essential to scale verification to a system of GoJour-
nal’s complexity. Both are restricted to pen-and-paper proofs,
whereas both Perennial 1.0 and 2.0 have machine-checked
proofs.

A specification called the Push/Pull model of transac-
tions [20] is similar to the lifting technique in the journal
system’s specification (§5.2) — the core problem addressed
is that a journal operation atomically modifies a small num-
ber of objects, but other objects can change between the start
of the operation and when it commits. The Push/Pull model
also discusses reasoning on top of the specification, using
Lipton’s reduction [23] rather than separation-logic ownership
to handle concurrency. However that work is about on-paper
specifications and proofs, while we also prove an implementa-
tion meets our specification and proved SimpleNFS on top.

3 System design
The verified artifact of this paper is GoJournal, a Go pack-
age that gives clients an abstraction of a disk with crash-safe
writes. This section aims to convey what the journal is, why
its implementation deserves verification, and how systems can
be built using it. First, §3.1 explains how a developer uses
GoJournal to write a concurrent storage system, informally
laying out what the package’s requirements and guarantees
are. Then, §3.2 explains how the journal is implemented.

3.1 Programming with GoJournal
Developers use the journal to turn several storage operations
into an atomic journal operation that commits to disk using the
GoJournal interface listed in Figure 1. Begin starts a journal
operation, returning a *Op object, which keeps track of the
objects read or written in the operation. An object is addressed
by the Addr struct, which names a block address and bit offset
within the block. SimpleNFS has objects for on-disk blocks
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1 func NFS3_WRITE(args WRITE3args) WRITE3res {
2 inum := fh2ino(args.File)
3 if !validInum(inum) {
4 return WRITE3res{Status: NFS3ERR_INVAL}
5 }
6 inode_locks.Acquire(inum)
7 reply := NFS3_WRITE_locked(args, inum)
8 inode_locks.Release(inum)
9 return reply

10 }
11

12 func NFS3_WRITE_locked(args WRITE3args,
13 inum Inum) (reply WRITE3res) {
14 op := Begin()
15 if !NFS3_WRITE_op(op, args, inum, &reply) {
16 return
17 }
18 if txn.Commit(true) {
19 reply.Status = NFS3_OK
20 } else {
21 reply.Status = NFS3ERR_SERVERFAULT
22 }
23 return
24 }

Figure 2: RPC handler for NFS WRITE showing locking and committing a
journal operation.

and on-disk inodes, while the complete NFS server also uses
objects for individual allocator bits.
ReadBuf reads an object into an in-memory *Buf struct,

returning the latest value of the object within this journal op-
eration. If the operation hasn’t read the object yet, it reads
the latest value from disk (or from a recently committed op-
eration). A journal operation can modify the returned buffer
in place and then mark the buffer as dirty with SetDirty. To
overwrite an object without reading it the application can call
OverWrite. When the operation is fully prepared, the appli-
cation commits it atomically using Commit; setting wait=true
additionally forces the journal to flush the results to disk. In
either case the writes in the operation appear together on disk
or not at all even if the system crashes. The application can
also call Flush to make the journal persist several committed
but unstable operations to disk.

While GoJournal provides crash-safe atomic updates to
disk with this interface, it is the developer’s job to provide
concurrency control to prevent concurrent operations from
manipulating the same on-disk objects. In a file system a
common strategy for concurrency control is to use a per-file
lock that protects both the file metadata and any data blocks
associated with the file, and this strategy is the one used by
GoNFS and SimpleNFS. To make it easier for a file system to
maintain these locks, GoJournal includes a lockmap library
that behaves as if it were a large array of locks but with a
more memory-efficient implementation; the Guava Striped
documentation describes the idea well [2].

Figure 2 and Figure 3 show how SimpleNFS uses the Go-

1 func NFS3_WRITE_op(op *Op, args WRITE3args,
2 inum Inum, reply *WRITE3res) bool {
3 ip := ReadInode(op, inum)
4 count, ok := ip.Write(op, args.Offset,
5 args.Count, args.Data)
6 ... // set count and status
7 }
8

9 func (ip *Inode) Write(op *Op, off uint64,
10 count uint64, data []byte) (uint64, bool) {
11 if count != uint64(len(data)) ||
12 util.SumOverflows(off, count) ||
13 off+count > disk.BlockSize ||
14 off > ip.Size {
15 return 0, false
16 }
17

18 buf := op.ReadBuf(block2addr(ip.Data),
19 NBITBLOCK)
20 copy(buf.Data[off:], data)
21 buf.SetDirty()
22 if off+count > ip.Size {
23 ip.Size = off + count
24 ip.WriteInode(op)
25 }
26 return count, true
27 }
28

29 func (ip *Inode) WriteInode(op *Op) {
30 op.OverWrite(inum2Addr(ip.Inum),
31 INODESZ*8, ip.Encode())
32 }

Figure 3: NFS3_WRITE_op prepares a journal operation op for the WRITE RPC.

Journal API and the lockmap. The server runs each NFS
request in a separate Go thread running a single journal op-
eration. Figure 2 shows the RPC handler for an NFS WRITE
RPC, in particular acquiring a per-inode lock (lines 6 and 8)
and preparing an operation starting at line 14.

The handler is split into several nested functions for ease
of verification. Figure 3 shows how the WRITE RPC’s journal
operation of type *Op is prepared. For example, lines 18–21
read and modify the block data, while line 30 modifies the
inode. The combination of per-file locking and using the
journal for disk access frees the developer from thinking about
either concurrency or crashes during the entire NFS3_WRITE_op
code, which we will show is also the case in the proof using
Perennial’s specification techniques in §5.

For ease of explanation, SimpleNFS has the limitation that
each file consists of only one block, but note that WRITE
modifies two on-disk objects: the inode and the block owned
by the file; the two together must be written atomically, which
the proof shows using the GoJournal specification. Also note
that there is no explicit locking of blocks; ownership of the
data block is implicit because a block can belong to only one
file.
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Layer Description

JRNL In-memory object operations
OBJ Journaling sub-block writes
WAL Whole-block write-ahead logging
CIRCULAR Circular log structure

Figure 4: GoJournal layers.

3.2 GoJournal implementation
The journal is structured into several layers, as shown in Fig-
ure 4. At a high level, the system is split into two halves. The
low-level half is a write-ahead log that behaves like a disk
with an atomic multiwrite operation, which appears to update
multiple disk blocks simultaneously even if the system crashes.
The upper half, called the object system, allows callers to per-
form read and write operations on objects smaller than a block
(“sub-block” objects). Writes are buffered in memory until
the caller chooses to commit, at which point a multiwrite to
the write-ahead log commits the writes to disk.

The write-ahead log is implemented by organizing the disk
into a small, fixed-size circular buffer and a remaining data
region. Data is first atomically logged to the circular buffer
and then eventually installed to the data region, to free space
in the circular buffer. Reads first go through the circular buffer
(which is cached for efficiency) and then access the data re-
gion.

The object system maintains a list of buffers of data read
or written by each journal operation. Reads first check the
write-ahead log’s cache since they must observe committed
operations. To commit, the object layer gathers all the dirty
buffers and submits them as a multiwrite to the write-ahead
log. To allow reading and writing objects that are smaller than
a block, the object layer assembles these into block writes by
doing a read-modify-write sequence.

Because disk writes are slow, for good performance the
journal executes many tasks in parallel. Committing new jour-
nal operations in memory, logging operations from memory
to disk, waiting for operations to be made durable, and in-
stalling logged writes all happen concurrently. Concurrency
ensures that in-memory operations need not wait for any in-
flight disk reads or writes, and that many disk reads and writes
can happen at the same time. Finally, to reduce the number of
disk writes, the write-ahead log implements two optimizations.
Multiwrites are combined and written together (“group com-
mit”), and if they update the same disk block multiple times,
only the most recent update of that disk block is written to the
log (“absorption”). Concurrency makes these optimizations
useful even for synchronous operations, which can be commit-
ted together and absorbed if they are issued concurrently.

Concurrency in the write-ahead log complicates not just its
internals but also reasoning about the multiwrite abstraction
built on top. One difficulty is that reading requires checking
the log’s in-memory cache and then falling back to the disk, but
the disk read happens without a lock. If a multiwrite commits

Iris + Coq
Perennial 2.0Go

GoJournal

GoNFS SimpleNFS

Toy Client

GoJournal Spec

SimpleNFS Spec

Example Spec

Proof

Proof

Proof

a.out

go build

Goose

OK?

Figure 5: Overview of Perennial, GoJournal, SimpleNFS, and GoNFS.

after the read misses in the cache, then the disk read will not
observe the latest value. The write-ahead log specification
specifies that reading the installed value might return an old
view of the disk, and the object layer can handle this weak
specification with an invariant that guarantees the object being
read has not been modified since that old view.

The object layer implements sub-block access on top of the
write-ahead log’s block-level multiwrites. Objects accessed
by an operation must be locked, so supporting fine-grained
access is necessary to allow operations to run concurrently
even if they happen to access the same disk block. For exam-
ple, a file system might pack inodes into a block, and locking
an inode should not prevent concurrent operations for other
inodes in the same block. The object-layer implementation is
able to execute reads and writes during an operation without
any additional locks, but something more is needed to commit.
Imagine a situation where between reading some disk block
and writing it an unrelated object was modified in the same
block; committing the modified block would overwrite the con-
current modification, losing data. The code addresses this with
a global commit lock that prevents concurrent modifications
while reading the blocks to be written.

4 Verification overview
Figure 5 gives an overview of how GoJournal and systems
building on it are verified using Perennial. On the left of the
figure is the executable code, which is written in Go. On top of
GoJournal, we have implemented two NFS servers to evaluate
GoJournal along different dimensions. GoNFS is a functional
NFS server that is sufficient to run real applications, which
we use to assess GoJournal’s scalability and performance.
Meanwhile, SimpleNFS is a verified, core subset of GoNFS’s
functionality, which evaluates the usability of GoJournal’s
specs for building verified systems on top of it.

On the right side of the figure is the verification stack. The
verification builds on the Perennial 2.0 framework, which is
itself implemented in the Iris framework in the Coq proof as-
sistant. To reason about executable code, a tool called Goose
translates a Go implementation into a model that we can prove
specifications about in Perennial. Perennial provides a model
of execution for Go code that incorporates crash-safety and
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concurrency, which includes a model of the disk (with atomic,
synchronous reads and writes of 4KB sectors) as well as a
model of crashes and recovery (crashes at arbitrary points dur-
ing execution, and jumping to specific boot code for recovery
after a crash).

GoJournal’s top-level specification describes its API in
terms of an extension of concurrent separation logic, with
pre-, post-, and crash conditions. These specifications capture
the behavior of individual Go functions: if the function is
run in a state satisfying its precondition, then the final state
will satisfy the postcondition, and if the system crashes the
state will satisfy the crash condition. The specification for the
journaling API is described in detail in §5. We demonstrate
the usefulness of this specification by proving correctness of
the SimpleNFS server using logically atomic crash specifi-
cations (§6.2). The top-level theorem for SimpleNFS states
that its RPCs atomically follow transitions of a state machine
formalizing the NFSv3 protocol (based on RFC 1813 [3]).

As described in FSCQ and Argosy [5, 9], crash conditions
can be used to reason about recovery procedures, even crashes
during recovery. A recovery procedure can safely be re-run af-
ter a crash if its specification is idempotent: its crash condition
should imply its precondition. As an end-to-end check of the
crash specs in SimpleNFS and GoJournal, showing they sup-
port recovery correctly, we prove an idempotent specification
for a toy example client on top of SimpleNFS, establishing
that it can successfully execute even if SimpleNFS crashes
and recovers an arbitrary number of times.

The proof of GoJournal’s specification depends on a number
of assumptions. We assume that the disk writes 4KB blocks
atomically, even on crash, and assume that the code executes
according to the Perennial model generated by Goose. The
specification relies on the caller to provide concurrency con-
trol; the proof of SimpleNFS checks that locking is performed
correctly, but GoNFS is unverified and we trust that its con-
currency control is correct in order to make operations atomic
(though this does not say they correctly implement the NFS
specification).

5 Specifying GoJournal
The goal of GoJournal’s specification is to support convenient
reasoning about atomic operations, like the NFS WRITE im-
plementation in Figure 2 and Figure 3. In this section we
walk through how the specification guarantees atomicity for
the caller without forcing the caller to do much application-
specific reasoning about concurrency or crashes.

The key to this specification is tracking resources, like the
disk blocks making up a file, as they flow through the steps of
the proof. We start by reviewing how separation logics like
Perennial represent these resources, and how specifications
in the logic track logical ownership of resources (§5.1). The
specification for GoJournal introduces resources that distin-
guish between a journal operation’s local view of an object
and the durable, on-disk representation; obtaining either re-

source requires the caller to use correct synchronization, as
required by the journal’s implementation. Lifting provides a
way to translate a locked object from its on-disk view to a
local view within the operation (§5.2). While preparing a jour-
nal operation, reads and writes modify the local view (§5.3).
Finally, committing an operation writes its updates to disk, so
the specification asserts that the local view becomes a view
over durable state.

To take full advantage of the durable and operation-local
views of journal objects, the proof of WRITE uses two new
techniques introduced by Perennial 2.0: crash-aware lock-
ing (§5.4) and crash framing (§5.5). With these techniques, the
proof of NFS3_WRITE_op uses entirely sequential reasoning for
preparing the journal operation, even though concurrent opera-
tions might write to disk and its disk writes are buffered rather
than synchronous. Finally, §5.7 summarizes how the proof
techniques combine to prove correctness and crash-safety for
the NFS WRITE example.

5.1 File representation
First, in both designing the code and writing the proof, the
NFS server must establish a disk layout to arrange its data in
terms of disk objects. The disk layout is expressed using a
separation-logic representation invariant, a predicate which
connects the logical (specification-level) contents of files to
the objects (inodes and blocks) that encode those files.

Representation invariants over the state of the journal use
a “points-to predicate” a ↦→ o, which serves two purposes: it
asserts that the address a (of type Addr) contains an object
o (which is represented by the *Buf type in the API), and it
represents exclusive ownership over the address a. When a
thread has a ↦→ o in its precondition, ownership allows the
proof to assume that the value at address a does not change
until the thread gives up ownership, and that it will not be
read by other threads. Locks help threads transfer ownership
so a thread only retains exclusive ownership during a critical
section.

The SimpleNFS proof connects each file to its representa-
tion with the following representation invariant:

file_rep(i,data)≜ ∃meta,∃blk,

i ↦→ meta∗meta.blkno ↦→ blk∧
meta.size= length(data)∧prefix(data,blk)

Informally the representation invariant says the file i with
logical contents data is represented by some metadata meta
stored at the inode number i and a data block at meta.blkno. It
then says the file’s bytes are a meta.size-length prefix of the
data block.

This definition uses the separating conjunction P∗Q (pro-
nounced “P and separately Q”), which says that two predicates
hold over disjoint state. For example, this asserts the inode and
its data block are stored separately. To initialize the system the
caller must prove that the file_rep predicates hold separately
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for each file, that is, file_rep(1,data1)∗file_rep(2,data2)∗
· · · . Here the separating conjunction asserts files are repre-
sented disjointly, so that when a thread modifies one file it is
guaranteed not to affect data in other files.

5.2 Lifting
The key idea of GoJournal’s specification is to consider two
view of the disk: a conceptual in-memory view that a buffered
journal operation observes, as well as an on-disk view that re-
flects what would be on disk after a crash. Parts of both views
are constantly changing as other threads commit operations
concurrently, so we use separation logic to define a local view
that contains only objects locked by and involved in a journal
operation. Because the journal operation logically owns these
objects, the caller can use sequential reasoning—disk objects
have the same value throughout—and can commit all of the
objects written in the operation at the end without fear of inter-
fering with concurrent journal operations. The specification
makes this informal reasoning concrete using lifting, which
we use to refer to this strategy of transferring ownership to
and from the on-going operation.

To do anything with the journal, a thread must first Begin
an atomic operation:

{True}
Begin()

{ret op, is_op(op)∗durable_pred(op,True)}

The specification above is a Hoare triple for the Begin()
function. It says that executing Begin() starting with its pre-
condition (in this case True) will run without errors and if
it terminates it will return op along with the postcondition,
namely is_op(op)∗durable_pred(op,True). The is_op part
of the post-condition simply says that op is a valid *Op object.
The durable_pred(op,True) clause is what tracks the on-disk
data “underneath” a journal operation, which would be left
behind if the operation aborted; since the operation starts out
with an empty local view, it starts out with no on-disk footprint,
written as True.

The different views of a journal operation are tracked using
ghost state in Iris. Ghost state is separate from the physical
state of the program—the contents of memory and disk—and
is only manipulated by the proof. The journaling system’s
proof introduces ghost state for durable state of the system,
including an a ↦→d o predicate for ownership over individual
objects. Note that an object is expressed through ghost state
because the block holding the object might be located in the
on-disk log or in the data region, and ownership of an object
says nothing about other objects in the same disk block.

The proof also introduces a similar a ↦→op o predicate for
the local view of operation op, and it is this ownership that is
needed for reads and writes. A caller obtains these predicates
with a logical operation we call lifting that converts ownership
of a ↦→d o into a ↦→op o, granting the ability to read and write.

To make it easier to work with lifting, the specification
allows lifting an entire predicate P and transforms all of its
points-to facts simultaneously, which we denote this paper
denotes by switching subscripts. For example, we re-use the
definition file_rep from §5.1 for both a file laid out on disk
and a file as owned by a journal operation, which we denote
with file_repd and file_repop respectively. The specifica-
tion for lifting a generic predicate P is:

{Pd ∗durable_pred(op,Qd)}
noop{︁

Pop ∗durable_pred(op,Pd ∗Qd)
}︁

Since lifting is purely logical (it only modifies ghost state),
we write it as a Hoare triple for a no-op, much like how
Dafny and F⋆ lemmas are simply methods with pre- and post-
conditions but no code [22: §12.2.3].1 The outcome of lifting
is to expand the memory covered by the journal operation to
incorporate Pd . Observe that durable_pred is expanded to
“snapshot” Pd , which tracks that if the operation were to abort
or crash, the durable Pd that we started with would still hold.
The on-disk values do not change over the course of a buffered
journal operation (as expected, since these are in-memory
writes). The key part of the postcondition, however, is Pop:
the a ↦→op o predicates within Pop (e.g., the i ↦→op meta within
file_repop(i,data)) give the caller the right to read and write
objects from within the operation, as we will see in §5.3.

5.3 Reads and writes

The specification for OverWrite describes the effect of writing
to the local memory of a buffered journal operation:

{︁
is_op(op)∗a ↦→op o∗buf_obj(bu f ,o′)

}︁
op.OverWrite(a,bu f ){︁
is_op(op)∗a ↦→op o′

}︁
The precondition includes buf_obj(bu f ,o′) to say that the

in-memory buffer bu f encodes the object to be written o′. The
is_op predicate is both required and returned by the specifi-
cation, which reflects the fact that OverWrite operates on the
in-memory state covered by this predicate.

The specification for ReadBuf is more subtle. ReadBuf re-
turns a buffer that the caller is allowed to modify in-place,
which has the side-effect of updating the in-memory state of
the ongoing journal operation, which will in turn be committed
by Commit. Figure 3 shows an example, where lines 18–20
modify a read buffer in-place. The specification captures this

1In case the reader is already familiar with Iris, these Hoare triples repre-
sent what is usually called a “view shift” in Iris.
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behavior as follows:{︁
is_op(op)∗a ↦→op o

}︁
op.ReadBuf(a)ret bu f ,

buf_obj(buf ,o)∗
(∀o′,buf_obj(buf ,o′)−∗
is_op(op)∗a ↦→op o′)


This states that, when ReadBuf finishes, it returns a buffer

buf and two resources: buf_obj(buf ,o) says the buffer has the
old object o, while the second is a separating implication or
wand −∗. The wand says that if the caller modifies the buffer
to produce buf_obj(buf ,o′) for some other data o′ (or leaves
it unchanged, picking o′ = o), it can get back the is_op(op)
predicate, along with a a ↦→op o′ fact indicating that a has been
modified in-place to the new data o′.2 The wand is just another
resource that the caller can invoke at the right time in the proof
(e.g., after the call to SetDirty in Figure 3 on line 21).

5.4 Crash-aware locking
As seen in Figure 2, the NFS server acquires a per-file lock
(within the lockmap) to prevent concurrent access to the same
disk object. Each lock logically protects both the file metadata
stored in its inode and the data block pointed to by the inode.
The usual specification for a lock in concurrent separation
logic says that it protects some lock invariant, guaranteeing
that this invariant holds upon acquiring the lock and conversely
obliging the caller to prove the lock invariant to release. This
invariant may claim ownership of resources which are then
owned by clients during their critical section. The file i’s lock
in SimpleNFS protects roughly file_repd(i,data), where we
write d to indicate the file is laid out on disk; we make the
invariant more precise later when we connect it to crash safety.

This lock specification, however, is insufficient to prove that
the SimpleNFS server maintains all relevant invariants when
the system crashes. The specification makes no guarantees
about the protected data during a critical section—however, a
crash while the lock is held exposes any durable data that was
protected by the lock. The lock specification fails to express
that the lock holder should keep the durable data in a state that
can be recovered from after a crash.

To solve this problem, Perennial 2.0 contributes a new speci-
fication for locks called crash-aware lock specifications that is
useful for protecting durable data like file_repd . We proved
this specification both for ordinary locks (*sync.Mutex in Go)
and for the stripes in the lockmap, but here we present just
the lockmap version. With this specification, the proof asso-
ciates not just a lock invariant but also a crash obligation Ic(i)
to each file. Like the ordinary lock specification, acquiring
the lock gives the caller access to the lock invariant I(i), but
unlike that spec, this specification also obliges the caller to
prove the crash obligation Ic(i) at every intermediate step. The

2To simplify the presentation, we have omitted the obligation that forces
the caller to call buf .SetDirty() before getting back is_op.

proof enforces this using crash specifications: {P} e {Q}{Qc}
is like a Hoare triple but it has an extra predicate Qc, the crash
condition, describing what holds if the system crashes during
e’s execution. When the caller wants to prove something about
code that acquires a lock using the crash-aware specification,
it must do so with Ic(i) in its crash condition for the critical
section:

{P∗ I(i)} f() {Q∗ I(i)}{Ic(i)}
⊢ {P} Acquire(i); f(); Release(i) {Q}

In exchange for the extra work of having to prove a crash
specification, the crash-aware lock spec guarantees that the
lock’s crash obligation holds at crash time, ready to be used
by new threads spawned following the crash.

One final subtlety in the specification is that Perennial dis-
tinguishes between the disk while running dk and the new disk
following a crash dk+1, where k is a so-called generation num-
ber. This creates a distinction between the invariant protected
by the lock (in generation k) and the crash obligation (in the
next generation):

I(i)≜ ∃data,file_repdk(i,data)

Ic(i)≜ ∃data,file_repdk+1(i,data)

It is important that on crash the developer show file_rep
holds in the post-crash generation dk+1, because any
ephemeral resources in the current generation do not survive
to the next. Any in-memory state the system requires has to
be reconstructed from only the durable state.

5.5 Crash framing
As we have seen, acquiring a crash-aware lock imposes that
the crash obligation holds at every step until the crash lock is
released. For example, the developer must show that the crash
obligation Ic(i) holds at every step of NFS3_WRITE_locked.
However, much of the code for NFS3_WRITE_locked resides in
NFS3_WRITE_op, which modifies only in-memory state. This
presents an opportunity to simplify the proof: because no
durable state is modified, the developer should not need to
think about crashes at each individual step.

Perennial 2.0 formalizes this using the crash framing tech-
nique, expressed in the following rule:

{P} f() {Q}
⊢ {Ic ∗P} f() {Ic ∗Q}{Ic}

Informally, this rule says that if we currently own the crash
condition Ic, we can temporarily “give up” access to that own-
ership when proving f(). In exchange, the crash condition is
removed from our proof obligation: it is sufficient to prove
a regular crash-free Hoare triple for f(). Ic is not available
for the proof of f() (this is the “giving up” aspect of crash
framing), but the proof can continue to use Ic after the call to
f() returns.
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The proof of NFS3_WRITE gets access to I(i) by acquiring
the ith lock, lifts the file_repdk predicate into its buffered
operation, and then immediately uses the crash framing rule
to give up access to durable_pred(op,file_repdk) and prove
the crash condition for the duration of NFS3_WRITE_op (which
only manipulates the in-memory file_repop). The crash fram-
ing rule gives back the durable_pred predicate at the end of
the operation, which is required to reason about commit.

5.6 Commit
The remainder of the proof after preparing file_repop with
the new data is to reason about committing the operation
with the new file. The code commits this operation using the
following specification for Commit:{︁

Qop ∗is_op(op)∗durable_pred(op,Pd)
}︁

op.Commit(true)
{ret ok, if ok then Qd else Pd}
{Pd ∨Qd}

This specification nicely captures how Commit works: if
we started with data Pd on disk, then modified it to Qop in
memory, then if Commit succeeds the new data Qd is on disk.
If Commit fails (which happens if the journal operation is too
large to fit on disk) then the data reverts back to Pd . On crash
either of these could happen, depending on when the crash
occurs.3

The caller will sometimes start an operation and then abort
it, say due to encountering an error. The API has no method
for this because aborting is a purely logical operation that
restores ownership of the on-disk objects:

{durable_pred(op,Qd)} noop {Qd}

The Commit proof internally executes the same logical op-
eration when the commit fails in order to return the original
durable data.

5.7 Summary
The combination of above features mean the developer is
mostly left with sequential crash-free reasoning about how
each operation (for example, each NFS3 RPC implementation)
transitions from the representation invariant in one state to
another, following the transition system of the specification.
We illustrate that proof flow using the NFS3_WRITE call in
Figure 2 as an example.

First, the function starts a journal operation and acquires
a lock on i. Then the proof requires some purely mechani-
cal work to lift the lock invariant (§5.2) and frame the crash
obligation (§5.5). Next, the developer proves the correctness
of the sequential code. This proof does involve the bulk of
the application code, but it requires neither worrying about

3For op.Commit(false), which does not flush to disk right away, GoJournal
provides a lower-level spec that allows expressing the more complex resulting
crash condition.

concurrency (since reads and writes operate on the exclusive
ownership of a ↦→op o) nor about crash safety (since crash
framing has dismissed any crash obligations while reasoning
about the in-memory operations on the *Op).

The sequential code must prove that the reads and
writes with ReadBuf, SetDirty, and OverWrite transform
file_repop(i,data) to produce file_repop(i,data′), where
data′ is the correct state of the file as described by the tran-
sition of the formalized NFS state machine for a write. The
new file representation with contents data′ is the Qop in the
precondition to Commit’s specification, while Pd is the old file
with contents data on disk (snapshotted while lifting).

If the system doesn’t crash and Commit returns true, then
the operation succeeds, producing a new file representation
file_repdk(i,data′). If the operation fails (say due to not
fitting in the log), then Commit returns the old representation
invariant with contents data. On crash, either of these two is
possible, but not some inconsistent combination of the two,
guaranteeing crash atomicity.

The proof for NFS3_WRITE wraps up by releasing the lock.
Whether or not Commit succeeds, we have a file with some
contents: ∃data,file_repdk(i,data); this is exactly the lock
invariant I(i) required to release the lock.

6 Verifying GoJournal
GoJournal consists of multiple layers, as described in §3.2.
This section provides some highlights of the complexity in-
volved in GoJournal’s implementation, along with the proof
techniques required to formally reason about that complexity.

6.1 Write-ahead logging (WAL)
The write-ahead log layer is responsible for updating multiple
disk blocks (a multiwrite) atomically. Each multiwrite is a list
of updates, where an update consists of a disk block number
and the new data to write in that block. A background logger
thread moves multiwrites from an in-memory buffer to an
on-disk log. To make this atomic, the logger first writes the
contents of a multiwrite in a log entry, and then updates a
designated header block to indicate the entry is complete. If
a crash happens before the header is updated, none of the
multwrite’s updates are applied; if a crash happens after the
header update, the multiwrite will be applied during recovery.
Meanwhile, an installer thread applies entries in the log to the
disk, clearing space for new multiwrites. If a crash happens
before the updates in an entry are fully installed, recovery
installs the updates again from the on-disk log.

The write-ahead log implements two optimizations related
to combining multiwrites. Two or more multiwrites can be
group committed by logging them together, which still guaran-
tees their atomicity. If multiwrites being committed together
update the same block, the first update can be absorbed and
replaced with the second. These optimizations trigger both for
multiwrites that are committed without waiting for durability
and also for concurrent, synchronous multiwrites.
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Internal abstract state: logical log. To prove the write-ahead
log layer correct, GoJournal represents the state of the write-
ahead log as a logical list of multiwrites, as shown in Figure 6.
Multiwrites before memStart have already been installed, and
their log entries do not physically exist in memory or on disk.
Multiwrites from memStart to diskEnd are already logged on
disk. Multiwrites from diskEnd to nextDiskEnd are currently
being logged from memory to disk. Finally, multiwrites be-
tween nextDiskEnd and memEnd are purely in-memory, and are
eligible for absorption.

Installed
writes

Logged
writes

Writes
being

logged

Unstable
writes

↑ 0 ↑ memStart ↑ diskEnd ↑ nextDiskEnd ↑ memEnd
Advanced by

installer
Advanced by

logger
Advanced by
Flush

Advanced by
Commit

Figure 6: The logical write-ahead log. Vertical arrows indicate designated
positions in the logical log. Labels below the arrows indicate what thread or
function is responsible for advancing that logical position to the right.

This representation allows GoJournal to precisely specify
how concurrent operations modify this abstract state, and
how the state changes on crash. For example, although the
installer thread performs many disk writes to install multi-
writes, its only effect on the abstract state is that it advances
memStart. Similarly, the logger thread’s only change to the ab-
stract state is to advance diskEnd. Calling Flush() advances
nextDiskEnd, freezing the data to be logged, then waits for the
logger to advance diskEnd up to that point. Committing a new
multiwrite simply appends it at memEnd. Finally, on crash, an
arbitrary suffix of the log from diskEnd onwards is discarded.

External abstract state: durable lower bound. Although
the details of the logical log are important for proving the WAL
layer, the caller (i.e., the OBJ layer) does not need to know
about installation, group commit, etc. To abstract away these
details, the WAL provides a simplified state as its interface, as
shown in Figure 7. The simplified state consists of the same
list of multiwrites, together with durable_lb, which is a lower
bound on what set of multiwrites will be preserved on crash.
Using a lower bound instead of precisely exporting diskEnd
means that this abstract view does not need to change if the
logger thread adds more multiwrites to disk in the background,
and thus hides this concurrency.

Lock-free logging and installation. For performance, Go-
Journal has dedicated threads that perform logging and instal-
lation. However, these threads do not hold any locks while
reading or writing to disk. To allow these threads to run concur-
rently, GoJournal uses two separate header blocks, as shown
in Figure 8. One header block (owned by the installer thread)
stores the start of the on-disk log, and another header block
(owned by the logger thread) stores the end of the on-disk log.

Record update := { addr: u64; data: Block; }.
Record State :=
{ multiwrites: list (list update);
(* at least durable_lb elements are durable *)
durable_lb: nat; }.

Definition mem_append (ws: list update) :
transition State unit :=

modify (set multwrites (fun l => l ++ [ws]));
ret tt.

(* non-deterministically pick how many
multiwrites survive the crash. *)

Definition crash : transition State unit :=
durable <- suchThat (fun s i => durable_lb s ≤ i);
modify (set multiwrites (fun l => l[:durable]));
modify (set durable_lb (fun _ => durable));
ret tt.

Figure 7: Parts of the specification for the WAL interface.

Logger
end

pointer

Installer
start

pointer

Logged
multiwrites

Installed
blocks

↑ 0 ↑ 513

CIRCULAR

Figure 8: The physical write-ahead log.

This lets the installer and logger concurrently advance their
pointers (memStart and diskEnd respectively) without locks.

Although the logger and installer threads can perform lock-
free disk writes, they must still coordinate with one another.
For example, the installer cannot run ahead of the logger
thread, and the logger thread must coordinate with threads
that are appending new multiwrites in memory. GoJournal’s
proof uses the notion of monotonic counters to reason about
the safety of the logger and installer’s lock-free operations.

The logger thread needs to check that memStart is far
enough along that the log will have space for the new multi-
write. The proof gets a lower bound on the memStart variable
while holding a lock, which remains true even after releas-
ing the lock. Even though memStart might grow after the
initial check, the log will only have more space and thus the
multiwrite will still fit.

The installer has a similar lock-free region that also reasons
using a lower bound. The installer retrieves the updates from
the current memStart to diskEnd in order to start installing
them to disk. When the installer eventually trims the log, it
needs to be sure not to advance beyond the current logger
position, which the proof demonstrates using a lower bound
on diskEnd from when the logger initially started.

6.2 Logically atomic crash specifications
Throughout the GoJournal stack we specify internal layers
using a transition-system specification, such as the examples
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func Append(txns, {P}noop{Q}) {
... // write data
hdr := ...
disk.Write(LOGHDR, hdr)
...
}

Append proof in CIRCULAR Logger proof in WAL

use
{P}noop{Q} diskEnd+= len(txns)

Figure 9: Illustration of how the proof of Append executes a logical callback
{P}noop{Q}. The logger passes a callback that adds len(txns) to diskEnd.

illustrated in Figure 7 for the WAL layer. Perennial formalizes
what it means for the code in a layer to implement a transition
using Hoare triples in a style we call logically atomic crash
specifications. While the precise encoding involves some
technical details of Iris, we explain here the intuition behind
these specifications as well as why they are useful.

As a motivating example, consider the moment when the
logger thread commits a new batch of multiwrites to the phys-
ical log in order to advance the durable point diskEnd in the
logical log of the WAL layer. It does this by calling into the
Append method of the CIRCULAR layer, which appends to the
small buffer of logged multiwrites. The code for Append com-
mits at some internal step when it writes the header block and
makes the data valid, and it is at this instant that the logical
log’s diskEnd should be incremented. How can we verify
Append in the CIRCULAR layer separately from the WAL layer,
while still executing the right update in the logger proof?

Logically atomic specifications achieve this separation by
having the precondition to Append take a logical callback [16],
which the proof promises to “execute” at the commit point.
This callback is a Hoare triple of the form {P} noop {Q},
where P and Q are later selected by the logger proof to update
the diskEnd ghost state of the logical log, as shown in Figure 9.
This specification for Append provides modularity in that the
Append proof does not need to know about the logical log
and its diskEnd, and the logger proof does not need to worry
about why Append is atomic. A key advance of Perennial’s
logically atomic crash specs lies in additionally capturing the
crash behavior in this callback style, so as to enable a complete
proof of crash safety across layers.

6.3 Concurrency within a block (OBJ)
GoJournal’s OBJ layer allows the caller to issue reads and
writes that are smaller than a full block. This finer granularity
helps increase concurrency: for example, the NFS file server
packs multiple inodes into a single disk block, and OBJ allows
threads to concurrently read and write multiple inodes even if
they share a disk block.

At commit time, OBJ’s Commit may need to perform an
“installation read” and read a full block, update the range that
was modified by the caller as part of a journal operation, and
write back the full block using the WAL layer. To ensure
correctness of this read-modify-write operation, Commit uses
a lock to serialize all commit operations. However, Read

operations are lock-free: they can execute concurrently with
one another and concurrently with Commit.

Lock-free reads pose a verification challenge because the
disk block can be modified during the read. Consider the
example shown in Figure 10, where a single disk block stores
many inodes. Inode 1 initially contains the value A, while
inode 4 contains B. Thread 1 is committing a write of B’
to inode 4 in that block, while thread 2 concurrently reads
inode 1 from the same block. To read inode 1, thread 2 will
read the entire block, and then copy out the part of the block
corresponding to inode 1. The block seen by thread 2 will
differ depending on whether thread 1’s write happens before
or after the read, but inode 1 will contain A in either case.

A B . . .Disk Block:

0 1 2 3 4 5 6 7

A B’ . . .Thread 1:

A B/B’ . . .Thread 2:
Figure 10: An example of a concurrent Read of inode 1 and Commitmodifying
inode 4 in the OBJ layer.

Formally reasoning about the Read operation requires the
OBJ layer to connect the a ↦→op o predicate about a disk object
(such as an inode) to the disk block containing that object at
the WAL layer. However, due to the race condition described
above, the Read implementation might observe many possible
values of the containing disk block. As a result, it is important
for the OBJ invariant to relate the a ↦→op o predicate not just
to the latest value of the containing block, but to all recent
contents of that block. Specifically, the invariant for a ↦→op
o requires that all recent writes to a’s block (since Read(a)
started) must agree on the part of the block storing o. As a
result, regardless of what block happened to be read, the caller
is guaranteed to see the correct object o.

7 Implementation
Perennial 2.0 is a re-write of the Perennial 1.0 framework [6],
implemented on top of Goose [6, 7], Iris [18, 19], and Coq [29].
Figure 11 shows the lines of specifications and proof for Peren-
nial. Perennial extends the Iris Proof Mode [21] to support
convenient interactive proofs in Coq for crashes and Peren-
nial’s atomic crash specifications.

Perennial’s program logic for crashes provides the formal
foundations for framing away crash conditions and for atomic
crash specifications. Lifting is implemented as part of the
helper libraries. Ghost resources implement lock-free con-
current reasoning, including monotonic counters (to track log
positions in Figure 6) and multi-versioned disks (to track logi-
cal disk contents at crash time for disk-object ownership).
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Component Lines of Coq

Helper libraries (maps, lifting, tactics) 5,760
Ghost state and resources 5,125
Program logic for crashes 9,375
Total 20,260

Figure 11: Lines of specs and proofs for Perennial.

Lines of code Lines of proof Ratio
(Go) (Coq)

CIRCULAR 109 1,905 17×
WAL-STS 555 10,125

23×
WAL — 2,854
OBJ 133 2,971 22×
JRNL-STS 121 1,261

24×
JRNL — 1,640
LOCKMAP 118 864 7×
Misc. 311 4,177 13×
GoJournal total 1,345 25,797 19×

GoNFS 3,911 Not verified —
SimpleNFS 462 3,749 8×

Figure 12: Lines of code and proof for the components of GoJournal and
for SimpleNFS. Ratio is the proof:code ratio, a rough measure of verification
overhead.

Using GoJournal, we implemented GoNFS and its core
verified subset, SimpleNFS. Both implementations can be
mounted by the Linux NFS client, which translates file-system
calls into NFS RPCs. GoNFS is sufficiently complete that it
can run fsstress and fsx-linux tests through the Linux NFS
client.

The breakdown of lines of code and proof by layer, as seen
in Figure 12, shows a proof-to-code ratio of about 20× for
the layers that involve tricky crash safety and concurrency
reasoning. Notably the SimpleNFS proof is relatively short
due to the GoJournal implementation and specification largely
hiding crash reasoning. The WAL and JRNL layers are split
into two parts for proof purposes; the layers labeled “STS”
are specified with an atomic state-transition system while the
next layer presents an easier-to-use ownership-based interface
using separation logic. The write-ahead log’s proof is largely
in establishing its atomic transitions, while half of the top-level
GoJournal proof is proving its separation logic specification
as described in §5.

All of the proofs for Perennial, GoJournal, and SimpleNFS
are checked by Coq, and we used Print Assumptions to ver-
ify that the proofs are complete. The code is publicly avail-
able.4

8 Evaluation
This section empirically answers several questions:

4GoJournal is available at https://github.com/mit-pdos/go-
journal while GoNFS and SimpleNFS are at https://github.com/mit-
pdos/go-nfsd.

• Is GoJournal sophisticated enough to support real storage
systems and to achieve good performance? (§8.1)

• Is GoJournal’s concurrency important for storage systems
to achieve high performance? (§8.2)

• Are Perennial’s verification techniques important for prov-
ing the correctness of GoJournal (§8.4) and for enabling
application developers to prove their code on top of Go-
Journal (§8.3)?

• How much effort is required to prove the correctness of
GoJournal and applications on top of GoJournal? (§8.5)

• Does verification help developers avoid bugs? (§8.6)

8.1 GoJournal is functional and performant
To evaluate whether GoJournal is sophisticated enough to sup-
port real storage systems and to achieve good performance,
we measure the performance of GoNFS using three bench-
marks: the LFS smallfile and largefile benchmarks, as well
as a development workload, consisting of running git clone
on the xv6 source-code repository [10] and compiling it with
make. These benchmarks were also used by DFSCQ [8], a
previous state-of-the-art verified file system. As a compari-
son point for GoNFS, we run the Linux kernel NFS server
exporting an ext4 file system. The ext4 file system writes data
through the journal (using the data=journal mount option),
so that both systems provide the same crash-safety guarantees.
The GoJournal implementation supports atomic but unstable
writes, which match the semantics of unstable NFS WRITE
operations. While all the internal layers of the proof support
unstable writes, the separation logic specification presented
in §5 does not, so we conducted the evaluation without using
unstable writes in GoNFS.

We ran the benchmarks on Linux 5.12.3, using its NFS
client to mount both GoNFS and the Linux NFS server. The
experiments are run on two machines, a desktop with a rel-
atively slow SSD and an EC2 machine with a fast NVMe
disk. The desktop has an Intel Xeon E5-2640 20-core CPU
at 2.4 GHz, 64 GB of RAM, and a 256 GB Samsung 850
PRO SSD, which we use to measure in-memory performance
with no disk bottleneck as well as the impact of relatively
slow storage. The EC2 instance is an i3.metal, which has 72
vCPUs, 512 GB of RAM, and a local 1.9 TB NVMe SSD,
which we use to measure performance on fast storage with
good random-access performance. To reduce variability we
limit the experiment to a single socket, disable turbo boost,
disable processor sleep states, and disable Spectre mitigations
in the kernel.

We first evaluate GoNFS’s performance with a single client
issuing requests. Figure 13 shows the results on the Intel Xeon
desktop with both file systems backed by RAM, to avoid any
I/O overhead — GoNFS takes a simple Go interface for the
disk, which we implemented with a large array, while ext4

12

https://github.com/mit-pdos/go-journal
https://github.com/mit-pdos/go-journal
https://github.com/mit-pdos/go-nfsd
https://github.com/mit-pdos/go-nfsd


 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

smallfile largefile app

2
4

0
8

 fi
le

/s

2
8

6
 M

B
/s

0
.4

3
3

 a
p

p
/s

R
e
la

ti
v
e
 t

h
ro

u
g
h
p
u
t

Linux
GoNFS

Figure 13: Performance of Linux NFS and GoJournal + GoNFS for
smallfile, largefile, and app workload, on a RAMdisk. On an NVMe
disk GoNFS achieves at least 90% of Linux’s throughput.
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Figure 14: Performance of largefile depends on the storage medium. Linux
takes advantage of unstable writes to write a large amount of data between
barriers but GoNFS flushes to disk frequently.

uses a file in tmpfs.5 GoNFS achieves at least the throughput
of ext4 across the different workloads.

On both the NVMe and slower SSD, GoJournal’s perfor-
mance relative to ext4 is similar on the smallfile and app
workloads (not plotted), again achieving at least 90% of the
throughout of ext4. However, GoNFS performance on the
largefile benchmark is sensitive to disk I/O characteristics,
as shown in Figure 14. On the faster NVMe device, GoNFS’s
large file performance is comparable to ext4’s, but on the
slower SSD, it drops to under 20% of ext4’s throughput. The
reason is that the largefile benchmark produces a large num-
ber of parallel, unstable writes to the same file. GoNFS runs
them sequentially due to a per-inode lock, and then journals
sequentially because it ignores the unstable write flag. A disk
barrier on the SSD takes about 2 milliseconds, so getting good
disk throughput requires writing a large amount of data be-
fore issuing a barrier, and the 64 KB batch size is insufficient
to get the maximum SSD write throughput. Re-running the
experiment with unstable writes enabled in GoNFS raises its
throughput to 90% of ext4’s.

8.2 GoJournal concurrency improves performance
To test whether the concurrency of GoJournal is important for
performance we measure the aggregate throughput of GoNFS
with an increasing number of clients that run the smallfile
benchmark. We run the experiment on a physical disk in-
stead of an in-memory file system so that while a thread is
waiting for the disk another thread can run. We compare

5Running GoNFS on tmpfs performs slightly worse due to the around 1
microsecond syscall overhead of each disk operation, which ext4 does not
incur since everything happens within the kernel.

the performance of GoNFS to that of Linux ext4, and to a
single-threaded version of GoNFS that has no concurrency.

Figure 15 shows the results on an EC2 i3.metal instance
with an NVMe SSD. Both GoNFS and Linux ext4 take ad-
vantage of concurrent requests to increase throughput. The
single-threaded GoNFS does just barely improve performance,
from parallelization among the clients and NFS server, but
this amounts to less than 2× throughput with 20 clients than
with one. Even with one client, GoNFS achieves 35% higher
throughput than single-threaded GoNFS due to concurrency
between the RPC thread, the logger thread, and the installer
thread. GoNFS achieves higher throughput than Linux ext4,
but it is hard to pin down the reason why, because there are
many differences in the designs. One possibility is that Linux
ext4 does not have concurrent logging and installation (but
GoJournal does); another possibility is that ext4 waits for
outstanding transactions to finish before flushing to disk (but
GoJournal does not).

Figure 16 shows the scaling of GoNFS and Linux, this time
on the Xeon desktop with a slower SSD. While GoNFS obtains
comparable performance for 7 or fewer cores, Linux scales lin-
early beyond while GoNFS does not. The scaling in this case
primarily comes from batching writes from concurrent clients,
resulting in better disk write throughput. GoJournal is not as
careful about this, sometimes committing a small amount of
data rather than gathering many multi-writes and issuing them
together. The NVMe experiment in Figure 15 uses storage
with fast enough random-write access that CPU efficiency is
more important than issuing large sequential writes; while a
disk barrier takes 2 milliseconds on the SSD it takes only 30
microseconds on the NVMe disk.
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Figure 15: Combined throughput of multiple parallel smallfile microbench-
marks, each creating files in different directories, on an NVMe SSD.

8.3 Journaling atomicity simplifies proofs
Many storage systems use journaling because they simplify
the implementation in terms of crash safety: the only point at
which durable state is modified is when an operation commits.
A goal of GoJournal is to carry this insight into proofs, so
that a storage system using the journal can prove an operation
is atomic using reasoning about durable storage only at the
commit point.
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Figure 16: Combined throughput of multiple parallel smallfile microbench-
marks, each creating files in different directories, on a (slow) SSD.

One measure of how well GoJournal achieves this goal is
the lines of code in SimpleNFS that require reasoning about
durable state. SimpleNFS consists of 462 lines of verified code.
Only 44 lines of code require proofs to explicitly consider
durable state, using crash conditions. In Figure 3, for example,
crash reasoning is only needed for lines 6–8 when acquiring
and releasing with the crash-aware lock specification. All of
the other code does not require reasoning about durable state;
it suffices to prove simple crash-free specifications that have a
pre- and post-condition, but no crash condition. This formal
reasoning is enabled by two techniques from Perennial: lifting
disk-object ownership and crash framing.

8.4 Perennial enables modular crash reasoning
Atomic crash specifications are crucial for enabling modular
reasoning about crash safety. In GoJournal, atomic crash specs
are used at many layer boundaries. Out of the layers shown in
Figure 4, CIRCULAR, WAL, OBJ, and JRNL all provide atomic
crash specifications, which are used by the layer above. One
benefit of atomic crash specs is that they allowed us to develop
these layers independently, using the specifications of lower
layers before their implements were fully proven, as one would
expect of any good API.

The modularity in Perennial largely follows the same struc-
ture as the code. Figure 12 shows that the WAL and JRNL
proofs were split into an atomic transition specification about
the code and a proof-only abstraction on top, but the bulk of
the division was due to boundaries in the code that made the
implementation manageable. Using separation logic it was
easy to prove data structures (like the striped lockmap) and
individual utility functions and use their abstract specifications
elsewhere in the proof.

8.5 Proof effort
Figure 12 shows the lines of code and lines of proof for Go-
Journal and SimpleNFS. The hardest part of GoJournal lies
in the WAL layer, which has significant lock-free concurrency,
and requires careful reasoning about crashes and recovery.
This is reflected in WAL’s relatively high lines of code, lines of
proof, and proof:code ratio. In contrast, SimpleNFS leverages

GoJournal’s atomicity, and ends up with a much smaller proof
relative to its code size.

8.6 Verification prevents bugs
When developing GoJournal, we wrote unit tests to quickly
find problems before starting verification, but they did not
catch all bugs. While proving GoJournal, we found a subtle
bug in absorption. When appending a new transaction in mem-
ory, GoJournal has an optimization called absorption where
earlier writes to the same address are replaced with the new
values. However, we discovered a race condition, where the
logger thread could have been already flushing those earlier
writes to disk, leading to unpredictable disk contents depend-
ing on the order of absorption vs logging. We fixed this issue
by introducing the nextDiskEnd boundary, as shown in Fig-
ure 6: the logger thread only logs up to nextDiskEnd, and ab-
sorption is only allowed to modify values after nextDiskEnd.

9 Conclusion
GoJournal is the first concurrent crash-safe journaling system
with a machine-checked proof, built on top of the Perennial 2.0
framework. GoJournal uses Perennial’s techniques, including
lifting and crash framing, to carry over the atomic benefits
of journaling to its formal specification. This enables storage
applications to use mostly crash-free reasoning in their proofs.
For example, in the verified SimpleNFS server, only 44 lines
of code, out of 462, required crash reasoning. GoJournal is so-
phisticated enough to implement a functional (but unverified)
NFSv3 server, GoNFS, that achieves 90% of the performance
of a Linux ext4 NFSv3 server on a development workload, far
higher than any previous verified file systems, and GoJournal’s
concurrency enables GoNFS to scale with concurrent client
requests. To simplify GoJournal’s proofs, Perennial provides
logically atomic crash specifications, which capture the crash
properties of internal interfaces as single logical transitions,
enabling modular proofs for GoJournal’s internal layers.
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A Artifact
A.1 Abstract
The artifact has the code for three tasks: calculating lines
of code, running performance experiments, and checking the
proofs. Since the artifact is packaged as a virtual machine,
the generated graphs do not look exactly like the ones in the
paper, but they do demonstrate respectable performance and
that everything runs correctly.

A.2 Scope
The artifact will reproduce Figure 11 and Figure 12 (the lines
of code tables). It has the code to run the performance eval-
uation, generating Figure 13 and Figure 16. To back up the
claim that the proofs verify, we include the Coq source code
and compilation instructions. For convenience the source code
already includes the Goose-generated Perennial model of the
source code, so the artifact also includes instructions on re-
generating this output from scratch.

The paper includes a broader array of graphs than the ar-
tifact scripts generate, because it combines data from two
benchmarking machines. The performance evaluation was ex-
panded after artifact evaluation to include these more detailed
results.

Note that the performance is highly sensitive to your ma-
chine and SSD’s performance characteristics. We ran the
paper’s experiments with a litany of techniques to control vari-
ance, such as disabling turbo boost and using a single socket
(as described in §8.1); until we did this, results were vari-
able, and often hurt GoJournal more than Linux. The artifact
is packaged as a VM which doesn’t have the same careful
setup, but we still believe it is useful because the VM setup
documents the software requirements to run the benchmarks.

A.3 Contents
The artifact consists of a virtual machine with all the software
required pre-installed and a checkout of the GoNFS source
code, which has all the evaluation scripts.

A.4 Hosting
You can obtain the artifact’s VM image via Zenodo
DOI 10.5281/zenodo.4657115. The artifact instructions
are at https://github.com/mit-pdos/go-nfsd/tree/
master/artifact, as well as the Vagrantfile used to gen-
erate the VM image.
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A.5 Requirements
The virtual machine uses VirtualBox. We configured it with
8GB of RAM (though 4GB is probably fine) and 4 cores;
more cores might improve scalability numbers, although more
clients help saturate the SSD even if you have fewer cores
than clients. If the drive hosting the image is a hard drive, the
“SSD” performance numbers will look quite bad.

Running the evaluation natively requires a variety of soft-
ware that is documented by the VM provisioning scripts, which
are in the mit-pdos/go-nfsd repo alongside the instructions.

A.6 Results from artifact VM
On a MacBook Pro with a 2.4 GHz Intel i9-9980HK, we
obtained the performance results in this section from running
the artifact in a virtual machine. These experiments use the
default VM configuration, with 8GB of RAM and 4 cores, on
a host with 8 cores.

Figure 17 shows the results of running the microbenchmarks
on this hardware configuration. Figure 17a is analogous to
Figure 13. Figure 17b includes the largefile results shown
in Figure 14. Between these two figures we see more vari-
ability on smallfile than when run on physical hardware.
The largefile results are as expected, since the SSD in this
machine has performance somewhere in between the SSD in
the desktop machine and the NVMe drive from an i3.metal
instance.

Figure 17c shows the results of running the largefile bench-
mark across a variety of software configurations, all on an
SSD; these were not directly shown in the paper. From these
results we concluded that GoNFS can get good performance,
if using unstable writes. The “Linux (sync)” configuration
uses ext4 in data=journal mode but additionally mounts the
NFS share with the sync flag, which changes the benchmark
to a completely sequential and synchronous one. In this con-
figuration Linux’s optimizations do not kick in and it obtains
the same performance as GoNFS using stable writes.

Finally, Figure 18 shows scalability of the smallfile bench-
mark, analogous to Figure 16. Even though this disk gets much
better throughput and has a barrier latency of only 0.4 ms (in
the virtual machine) rather than 2 ms, the experiment has the
same trend as on the slower SSD.
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