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Abstract

Neural Architecture Search (NAS) is a popular
method for automatically designing optimized
deep-learning architectures. NAS methods com-
monly use bilevel optimization where one opti-
mizes the weights over the training data (lower-
level problem) and hyperparameters - such as the
architecture - over the validation data (upper-level
problem). This paper explores the statistical as-
pects of such problems with train-validation splits.
In practice, the lower-level problem is often over-
parameterized and can easily achieve zero loss.
Thus, a-priori, it seems impossible to distinguish
the right hyperparameters based on training loss
alone which motivates a better understanding of
train-validation split. To this aim, we first show
that refined properties of the validation loss such
as risk and hyper-gradients are indicative of those
of the true test loss and help prevent overfitting
with a near-minimal validation sample size. Im-
portantly, this is established for continuous search
spaces which are relevant for differentiable search
schemes. We then establish generalization bounds
for NAS problems with an emphasis on an activa-
tion search problem and gradient-based methods.
Finally, we show rigorous connections between
NAS and low-rank matrix learning which leads to
algorithmic insights where the solution of the up-
per problem can be accurately learned via spectral
methods to achieve near-minimal risk.

1. Introduction

Hyperparameter optimization (HPO) is a critical component
of modern machine learning pipelines. It is particularly im-
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portant for deep learning applications where there are many
possibilities for choosing a variety of hyperparameters to
achieve the best test accuracy. A crucial application of HPO
is Neural Architecture Search (NAS) which aims to find the
most suitable architecture in an automated manner without
extensive user trial and error. HPO/NAS problems are often
formulated as bilevel optimization problems and critically
rely on a train-validation split of the data, where the parame-
ters of the model (e.g. network weights) and the hyperparam-
eters are optimized over the training data (lower-level prob-
lem) and validation data (upper-level problem) respectively.
With an ever growing number of configurations/architecture
choices in modern learning problems, there has been a surge
of interest in differentiable HPO methods that focus on con-
tinuous relaxations. For instance, differentiable architecture
search schemes learn continuously parameterized architec-
tures which are discretized only at the end of the training
(Liu et al., 2018). Similar techniques have also been applied
to learn data-augmentation policies (Cubuk et al., 2020) and
meta-learning (Franceschi et al., 2018; Finn et al., 2017).
These differentiable algorithms are often faster and seam-
lessly scale to millions of hyperparameters (Lorraine et al.,
2020). However, the generalization capability of HPO/NAS
with such large search spaces and the benefits of the train-
validation split remain largely mysterious.

Addressing the above challenge is particularly important in
modern overparameterized learning regimes where the train-
ing loss is often not indicative of the model’s performance
as large capacity networks can effortlessly fit to training
data and achieve zero loss. To be concrete, let ny and ny
denote the training and validation sample sizes and p and
h the number parameters and hyperparmeters of the model.
HPO/NAS problems typically operate in a regime where

‘p 1= # params > ny >ny > h = # hyperparams‘ (1)

Figure 1 depicts such a regime (e.g. when p > poly(nr)))
where the neural network model is in fact expressive enough
to perfectly fit the dataset for all possible combinations
of hyperparameters. Nevertheless, training with a train-
validation split tends to select the right hyperparameters
where the corresponding network achieves stellar test accu-
racy. This leads us to the main challenge of this paper':

"While we do provide guarantees for generic HPO problems
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Figure 1. This figure depicts the typical scenario arising in modern HPO/NAS problems per Eq. 1. In Figure (a), the training loss is not
indicative of the test loss as an overparameterized network can perfectly fit the training data for all choices of (continuously-parameterized)
architectures. However, with train-validation split in Figure (b), the validation loss uniformly concentrates around the test loss and
helps discover the best architecture. This paper rigorously establishes this phenomena (e.g., see our Theorem 3). Figure (c) shows NAS
experiments with DARTS during the search phase. We evaluate train/test/validation losses of the continuously-parameterized supernet
with h = 224 hyperparameters. We observe that training error is consistently zero after 30 epochs, whereas validation error almost
perfectly tracks test error as soon as the validation size is mildly large (e.g.> 250), which is consistent with Figures (a), (b) and our theory.

How does train-validation split for NAS/HPO over

large continuous search spaces discover near-optimal

hyperparameters despite overparameterization?
To this aim, in this paper, we explore the statistical aspects of
NAS with train-validation split and provide theoretical guar-
antees to explain its generalization capability in the practical
data/parameter regime of (1). Specifically, our contributions
and the basic outline of the paper are as follows:
o Generalization with Train-Validation Split (Sec. 3): We
provide general-purpose uniform convergence arguments
to show that refined properties of the validation loss (such
as risk and hyper-gradients) are indicative of the test-time
properties. This is shown when the lower-level training
problem is optimized by an algorithm which is (approxi-
mately) Lipschitz with respect to the hyperparameters. Our
result applies as soon as the validation sample size scales
proportionally with the effective dimension of the hyperpa-
rameter space and only logarithmically in this Lipschitz
constant. We then utilize this result to obtain an end-to-end
generalization bound for bilevel optimization under generic
conditions which are then verified for neural nets.
e Generalization Guarantees for NAS are established in
Section 4. Specifically, we first develop results for a neural
activation search problem that aims to determine the best
activation function for shallow neural networks. We study
this problem in connection to a feature-map/kernel learn-
ing problem involving the selection of the best feature-map
among a continuously parameterized family. Furthermore,
when the lower-level problem is optimized via gradient de-
scent, we show that the bilevel problem is guaranteed to
select the activation that has the best generalization capabil-
ity. We then discuss extensions general deep architectures
by similarly linking the NAS problem to the search for the
optimal kernel function. With this link, we show how train-

(cf. Sec. 3), the emphasis of this work is NAS and the search for the
optimal architecture rather than broader class of hyperparameters.

validation split achieves the best excess risk bound among
all architectures using few validation samples and provide
insights on the role of depth and width. Detailed results are
deferred to the extended paper (Oymak et al., 2021).

o Algorithmic Guarantees via Connection to Low-rank
Learning (Section 5): The results so far focus on general-
ization and are not fully algorithmic: they assume access
to an approximate solution of the upper-level (validation)
problem. This raises the question: Can one provably find
such an approximate solution with a few validation samples
and a computationally tractable algorithm? To this end, we
connect the neural activation search problem to a novel low-
rank matrix learning problem with an overparameterized
dimension p. We then provide an algorithm to find the near-
optimal hyperparameters via a spectral estimator that also
achieves a near-optimal test risk. Interestingly, this holds as
long as the matrix dimensions obey h x p < (n1 + ny)?
which allows for the regime (1). In essence, this shows that
it is possible to tractably solve the upper problem in the
regime of (1) even when the problem is potentially overfit-
ting for all choices of hyperparameters, similar in spirit to
NAS where even poor quality architectures can fit the data.

The proofs and refinements of our theorems, detailed results
on deep architectures and further discussion of related works
are deferred to the extended work (Oymak et al., 2021).

2. Preliminaries and Problem Formulation

We begin by introducing some notation used throughout the
paper. We use X' to denote the Moore—Penrose inverse
of a matrix X. 2, < denote inequalities that hold up to an

absolute constant. We define the norm ||-|| x over an input
space X as || f||x == supgecx | f()]. O(-) implies equality
up to constant/logarithmic factors. ¢, C > 0 are used to
denote absolute constants. Finally, we use NV (A) to denote
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an e-Euclidean ball cover of a set A.

Throughout, we use (z,y) ~ Dwithx € X andy € ),
to denote the data distribution of the feature/label pair. We
alsouse 7 = {(x;,y;)};7, to denote the training dataset
and V = {(x;,y;)},Y, the validation dataset and assume 7
and V are drawn i.i.d. from D. Given a loss function ¢ and
a hypothesis f : X — ), we define the population risk and

the empirical validation risk as follows
ny

L) = Evltly, F@))). Evlf) = > 405, (@)
i=1
For binary classification with y € {—1, 1} also define the
test classification error as £L°71(f) = P(yf(z) < 0). We
focus on a bilevel empirical risk minimization (ERM) prob-
lem over train/validation datasets involving a hyperparame-
ter « € R" and a hypothesis f. Here, the model f (which
depends on the hyperparameter cx) is typically trained over
the training data 7 with the hyperparameters fixed (lower
problem). Then, the best hyperparameter is selected based
on the validation data (upper-level problem).

The lower problem typically solves an (possibly regularized)
empirical risk of the form L (f) = ﬁ ST Uy, [ ().
In this work, we do not explicitly require a global optima
of this empirical loss and assume that we have access to an
algorithm A that returns a model based on the training data
T given hyperparameters . Specifically, this model is

I = Ale,T).

We provide some example scenarios with the corresponding
algorithms below.

Scenario 1: Strongly Convex Problems. The lower-level
problem ERM is strongly convex with respect to the pa-
rameters of the model and A returns its unique solution.
A specific example is learning the optimal kernel given a
predefined set of kernels per §4.1.

Scenario 2: Gradient Descent & NAS. In NAS, f is typically
a neural network and a encodes the network architecture.
Given this architecture, A trains the weights of f on dataset
T by running fixed number of gradient descent iterations.
See §4.2 for more details.

As mentioned earlier, modern NAS problems typically obey
(1) where h is typically less than 1000 and obeys h =
dim(a) < my. Intuitively, this is the regime in which all
lower-level problems have solutions perfectly fitting the data.
However, as we will show, the under-parameterized upper
problem can provably guide the algorithm towards the right
model. To select the optimal model, given hyperparameter
space A and tolerance § > 0, the following Train-Validation
Optimization (TVO) returns a J-approximate solution to the
validation risk £y (upper problem)

acfacA|Ly(f]) < min Ly(f]) +0}. (TVO)

3. Generalization with Train-Validation Split

This section provides our generic generalization bounds for
train-validation split. Specifically, Section 3.1 introduce our
result for generalization gap between the test and validation
risk as well as the corresponding gradients. Section 3.2
provides a bound jointly capturing the role of training and
validation. In Section 4, we utilize these bounds and further
innovations to establish guarantees for NAS.

3.1. Low validation risk implies good generalization

Our first result connects the test (generalization) error to
that of the validation error. A key aspect of our result is
that we establish uniform convergence guarantees that hold
over continuous hyperparameter spaces which is particularly
insightful for differentiable HPO/NAS algorithms such as
DARTS (Liu et al., 2018). Besides validation loss, we also
establish the uniform convergence of the hyper-gradient
VaLly(fI) of the upper problem under similar assump-
tions. Such concentration of hyper-gradient is insightful
for gradient-based bilevel optimization algorithms to solve
(TVO). Specifically, we will answer how many validation
samples are required so that upper-level problems (hyper-
)gradient concentrates around its expectation. Our results
rely on the following definition and assumptions.

Definition 1 (Effective dimension) For a set A € R" of
hyperparameters we define its effective dimension hg as the
smallest value of hgy > 0 such that [NZ(A)| < (C/e)har
forall e > 0 and a constant C' > 0.

The effective dimension captures the degrees of freedom of
a set A. In particular, if A € R™ has Euclidean radius R,
then hei = h with C = 3R so that it reduces to the number
of hyperparameters. However, h.g is more nuanced and can
also help incorporate problem structure/prior knowledge
(e.g. sparse architectures have less degrees of freedom).”

Assumption 1 A(-) is an L-Lipschitz function of o in
I-llx norm, that is, for all pairs o1, € A, we have
1£&, = fa,llx < Lllon — aalle,.

Assumption 2 For all hypotheses fI, the loss {(y, -) is T-
Lipschitz over the feasible set {7 (x) | ® € X}. Addition-
ally, U(y, fI(z)) — E[l(y, £ (x))] has bounded subexpo-
nential norm with respect to the randomness in (x,y) ~ D.

Assumption 1 is key to our NAS generalization analysis and
we show it holds in a variety of scenarios. In general, we
only need A to be approximately Lipschitz over a partition-
ing of the set A. Assumption 2 requires the loss or gradient
on a sample (x,y) to have a sub-exponential tail. While
these assumptions allow us to show that the validation error
is indicative of the test error, the two additional assump-
tions (which parallel those above) allow us to show that the

?In the empirical process theory literature this is also known as
the uniform entropy number e.g. see (Mendelson, 2003)[Def 2.5].
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hyper-gradient is concentrated around gradient of the true
loss with respect to the hyperparameters. As mentioned
earlier such concentration of the hyper-gradient is insightful
for gradient-based bilevel optimization algorithms.

Assumption 1’ For some R > 1 and all a1, a5 € A and
x € X, hyper-gradient obeys ||Va fl (x)|l¢, < R and
IVafd, (@) = Vafl,(@)e < RL|ow — asle,

Assumption 2’ ¢'(y,-) is T-Lipschitz and the hyper-
gradient noise VU(y, fI (x)) — E[V{(y, {1 (x))] over the
example (x,y) ~ D has bounded subexponential norm.

Our first result establishes a generalization guarantee for
(TVO) under these assumptions.

Theorem 1 Suppose Assumptions 1&2 hold. Let & be an
approximate minimizer of the validation risk per (TVO) and
set hof := hoglog(C LTy [ heg). If ny > heg + T for some
T > 0, with probability at least 1 — 2e~", we have

~ C(h,
sup [£(5T) - By (D)) <y St 7). @)
acA ny
T . T C(heg+7)
L) < min LD + 2\ [ =2 v )

Suppose also Assumptions 1'& 2' hold and ny > h+heg+T
for some T > 0. Then, with probability at least 1 —2e™ ", the

hyper-gradient of the validation risk converges uniformly:
C(h+ heg+ )

sup [[VLy(f1) = VLD lley < | ——L—=.
acA ny
)

This result shows that as soon as the size of the valida-
tion data exceeds the effective number of hyperparameters
ny 2 heg (up to log factors) then as evident per (2) the
test error is close to the validation error (i.e. validation error
is indicative of the test error) and per (3) the optimization
over validation is guaranteed to return a hypothesis on par
with the best choice of hyperparameters in A. Theorem 1
has two key distinguishing features, over the prior art on
cross-validation (Kearns et al., 1997; Kearns & Ron, 1999),
which makes it highly relevant for modern learning prob-
lems. First, it applies to continuous hyperparameters and
bounds the size of A via the refined notion of effective
dimension, establishing a logarithmic dependence on other
problem parameters. This is particularly important for the
Lipschitzness L which can be rather large in practice. Sec-
ond, besides the loss function, per (4) we also establish
the uniform convergence of hyper-gradients. Once the vali-
dation loss satisfies favorable properties (e.g. Lojasiewicz
condition), one can obtain generalization guarantees based
on the stationary points of validation risk via (4) (Foster
et al., 2018). Additionally, we note that (4) requires at least

h samples - which is the ambient dimension and greater
than h.g. This is unavoidable due to the vectorial nature of
the (hyper)-gradient and is consistent with related results on
uniform gradient concentration (Mei et al., 2018).

Finally, we note that the results above do not directly im-
ply good generalization as they do not guarantee that the
validation error (ming, £y (f.])) or the generalization error
(mingea L£(f7)) of the model trained with the best hyper-
parameters is small. This is to be expected as when there
are very few training data one can not hope for the model
fZ to have good generalization even with optimal hyperpa-
rameters. However, whether the training phase is successful
or not, the validation phase returns approximately the best
hyperparameters even with a bad model! In the next sec-
tion we do in fact show that with enough training data the
validation/generalization of the model trained with the best
hyperparameter is indeed small allowing us to establish an
end-to-end generalization bound.

3.2. End-to-end bound with Train-Validation Split

To establish an end-to-end bound, firstly, we discuss the
role of the training data by characterizing how the test risk
of the algorithm A changes with the training data ny. Let
us consider the population limit n — +o0 and define the
corresponding model for a given hyperparameter o

P = A(a,D) := lim A(e,T).
ny—oo

Classical learning theory results typically bound the dif-
ference between the population loss/risk of a model that
is trained with finite training data (£(f)) and the loss
achieved by the idealized infinite data model (£(fL)) in
terms of an appropriate complexity measure of the class
and the size of the training data. In particular, for a specific
choice of the hyperparameter «, based on classical learning
theory (Bartlett & Mendelson, 2002)) a typical behavior is

to have

L+ Covt
VT
with probability at least 1 — e~*. Here, C/ is a dataset-
dependent complexity measure for the hypothesis set of the
lower-level problem and Cj is a positive scalar. We are
now ready to state our end-to-end bound which ensures a
bound of the form (5) holds simultaneously for all choices
of hyperparameters o € A.

£(fT) < £(f2) + (5)

Proposition 1 (Train-validation bound) Consider the set-
ting of Theorem I and for any fixed o« € A assume (5) holds.
Also assume fP (in || - || x norm) and CL have bounded
Lipschitz constants with respect to o over A. Then with
probability at least 1 — 3e~* over the train T and validation
V datasets

cl O(h,
L(f3) < min <,c(f5) + \/;;T) At nﬁ;+t) vy
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In a nutshell, the above bound shows that the generalization
error of a model trained with train-validation split is on par
with the best train-only generalization achievable by picking
the best hyperparameter o € A. The only loss incurred
is an extra y/hegr/ny term which is vanishingly small as
soon as the validation data is sufficiently larger than the
effective dimension of the hyperparameters. We note that
the Lipschitzness condition on f2 and C/ can be relaxed.

4. Feature Maps and Shallow Networks

This section provides our main results on neural archi-
tecture/activation search which utilize the generalization
bounds above. We first introduce the feature map selection
problem (Khodak et al., 2019), which can be connected to
NAS and kernel selection problems (Gonen & Alpaydin,
2011). Building on our findings on feature maps/kernels,
Sec. 4.2 provides our results on activation search for shallow
networks and discusses extensions to deep architectures.

4.1. Feature map selection for kernel learning

Below, the hyperparameter o € R"*! controls both the
choice of the feature map and the regularization strength.

Definition 2 (Feature Map Selection) Suppose we are
given h feature maps ¢; : X — RP. Define the super-
position ¢a(-) = ZLI a;0;(+). Given training data T,
the algorithm A solves ridge regression with feature matrix
&, = ®/ via

0, = arg mein lly — <I>0‘9||?2 + ah+1H0||%2 (6)
where @y = [pa(T1) dalx2) ... (ba(a:nT)]T. @)

Here ap 1 € [Amin, Amax] € BT U {0} controls the regu-
larization strength. We then solve for optimal choice & via
(TVO) with hypothesis f] (v) = v78,.

This problem formulation models weight-sharing which has
been a key ingredient of the state-of-the-art NAS algorithms
(Pham et al., 2018; Li et al., 2020). In essence, for NAS, the
parameter @ corresponds to the (super)network’s weights
and the feature maps ®,, will be induced by different archi-
tecture choices so that the formulation above can be viewed
as the simplest of NAS problems with linear networks. Nev-
ertheless, as we will see in the forthcoming sections this
analysis serves as a stepping stone for more complex NAS
problems. To apply Theorem 1 to this problem we need to
verify its assumptions and characterize et

Lemma 1 Suppose the feature maps and labels are
bounded i.e. SUp ey 1<i<p, |0s(@)||7, < Band |y| < 1.
Also assume the loss ¢ is bounded and 1-Lipschitz w.r.t. the
model output. Set \og = Amin + infaea 02, (Po) >

min

0. Additionally let A be a convex set with {y radius
R > 1. Then, Theorem 1 holds with hyy = (h +
1) log(20R3 BnZ2\;?(Bnr + 1)).

An important component of the proof of this lemma is that
we show that when \y > 0, f, is a Lipschitz function of
and Theorem 1 applies. Thus per (TVO) in this setting one
can provably and jointly find the optimal feature map and
the optimal regularization strength as soon as the size of the
validation exceeds the number of hyperparameters.

We note that there are two different mechanisms by which
we establish Lipschitzness w.r.t. a in the above theorem.
When Apin > 0, the lower problem is strongly-convex with
respect to the model parameters. As we show in the next
lemma, this is more broadly true for any training proce-
dure which is based on minimizing a loss which is strongly
convex with respect to the model parameters.

Lemma 2 Let A be a convex set. Suppose [ is parame-
terized by 8, where 0, is obtained by minimizing a loss
function L(c,0) : A x RP — R. Suppose L1(c, 0)
is p strongly-convex in @ and L smooth in o. Then 0., is
\/ L/ p-Lipschitz in a.
Importantly, Lemma 1 can also operate in the ridgeless
regime (Api;, = 0) even when the training loss is not
strongly convex. This holds as long as the feature maps
are not poorly-conditioned in the sense that

Inf owin (Pa®q) = X0 > 0. ®)

We remark that the exact value of )\ is not too important
as our bound only depends logarithmically on this quantity.
In what follows, we focus on ridgeless regression with an
emphasis on neural nets which can often generalize well
in an overparameterized regime without any regularization
despite perfectly interpolating the training data.

Our next result utilizes Proposition 1 to provide an end-to-
end generalization bound for feature map selection involving
both training and validation sample sizes.

Theorem 2 Consider the setting of Def. 2 with op41= 0.
Assume that SUp e v 1 <i<p, |0i(2) |7, < B and the valida-
tion loss function { is T'-Lipschitz and bounded. Suppose
(8) holds with probability at least 1 — pg and p > ny >
ny 2 hlog(M) with M = 30R*B>\;°T'(n% +n2)|lyl|e,
where R = supgea ||tle,. Define the label vector y =
[Y1 Y2 - .. Yny ). Then with probability at least 1 —4e ™" —po,
the population risk (over D) obeys

B TK¢;1 ] M
L(fa) < min QF\/ Y y+0\/h og( )+T_|_5.
acA nr -

This theorem shows that for the feature map selection prob-
lem, bilevel optimization via a train-validation split returns a
generalization guarantee on par with that of the best feature
map (minimizing the excess risk) as soon as the size of the
validation data exceeds the number of hyperparameters.
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4.2. Activation search for shallow networks

In this section we focus on an activation search problem
where the goal is to find the best activation among a pa-
rameterized family of activations for training a shallow
neural networks based on a train-validation split. To this
aim we consider a one-hidden layer network of the form
x — fu(z) = vTo(We) and focus on a binary classifi-
cation task with y € {—1,+1} labels. Here, 0 : R — R
denotes the activation, W € R¥*< input-to-hidden weights,
and v € R? hidden-to-output weights. We focus on the
case where the activation belongs to a family of activa-
tions of the form o, = Z?:l «;0; with o € A denot-
ing the hyperparameters. Here, {o;}"_; are a list of can-
didate activation functions (e.g., ReLU, sigmoid, Swish).
The neural net with hyperparameter « is thus given by
Jana(x) = v 0o (We). For simplicity of exposition, we
will use the input layer for training thus the training weights
are W with dimension p = dim(W') = k x d and fix v to
have ++/co/k entries (half of each) for some ¢y > 0.

[ TVO for shallow activation search: We now explain |
the specific gradient-based algorithm for the lower-level
optimization problem. For a fixed hyperparameter o, the
lower-level optimization aims to minimize a quadratic
loss over the training data of the form

~ 1 &7,
Lr(W) =35> i~ fmalzi W))*. (9
i=1

To this aim, for a fixed hyperparameter o« € A, starting
from a random initialization of the form W) N (0,1)
we run gradient descent updates of the form W, =
W, — nVET(WT) for T iterations. Thus, the lower
algorithm A returns the model

T () = vl oo (Wra).

We then solve for the §-approximate optimal activation &
via (TVO) by optimizing validation using ¢ = hinge loss.

J

To state our generalization guarantee, we need a few defi-
nitions. First, we introduce neural feature maps induced by
the Neural Tangent Kernel (NTK) (Jacot et al., 2018).

Definition 3 (Neural feature maps) Let f,, (-, 0) be a
neural net parameterized by weights @ € RP and architec-
ture o Define ¢o(x) = 8f“g‘g‘0(m) fo be the neural feature
map at the random initialization 6y ~ Dy,;. Define the
neural feature matrix ®o = [pa(T1) ... ¢al(Tn )T €

R"™*P asin (7) i.e.

@ _ 8flm,a($1) afnn,a(mn) T
* 00, 00, '

(10)

We define the gram matrix as j(\a = &,PL c R7xnT
with (i, j)th entry equal to (o (;), ¢a(2;)) and NTK ma-
trixis as Ko, = Eg, [Kq-

Neural feature maps are in general nonlinear functions of
a. However, in case of shallow networks, they are nicely
additive and obey ¢ (x;) = Z?Zl a;¢1(x;), regardless
of 0y, establishing a link to Def. 2. The next assumption
ensures the expressivity of the NTK to interpolate the data
and enables us to establish regularization-free bounds.

Assumption 3 (Expressive Neural Kernels) There exists
Ao>0 such that for any oo € A, NTK matrix Ko = Ao,

This assumption is similar to (8) but we take expectation
over random 6. Assumptions in a similar spirit to this are
commonly used for the optimization/generalization analysis
of neural nets, especially in the interpolating regime (Chizat
etal., 2018; Du et al., 2018; Mei & Montanari, 2019). For
fixed o, Ko > 0 as long as no two training inputs are
perfectly correlated and ¢, is analytic and not a polynomial
(Du et al., 2019). The key aspect of our assumption is that
we require the NTK matrices to be lower bounded for all o.
In (Oymak et al., 2021), we also show this assumption can
be overcome with a small ridge regularization.

With these definitions in place we are now ready to state
our end-to-end generalization guarantee for Shallow activa-
tion search where the lower-level problem is optimized via
gradient descent. Note that Ay and K, scales linearly with
initialization variance cg. To be invariant to initialization,
we will state our result in terms of the normalized eigen
lower bound \g = \g/co and kernel matrix Ko, = Kq/co.

Theorem 3 (Neural activation search) Suppose input fea-
tures have unit norm ||x||e, = 1 and labels are +1. Pick
A to be a subset of the unit {1 ball. Suppose Assumption 3
holds for 8y +» Wy and the candidate activations have first
two derivatives (|c}|, |o}'|) bounded by B > 0. Fix output
weights v; = t++/co/k for a proper choice of c¢y. Define
the normalized lower bound Mg = Ao /co and kernel matrix
K,=K, /co. Also assume the network width obeys
k> poly(nr,A\g ', e7h).

for atolerance level 1 > & > 0 and the size of the validation
data obeys ny, 2, O(h). Consider (TVO) where lower-level
(9) is optimized with a proper ) > 0 choice and # of gradient
iterations obeying T 2, (9(%0Z log(e~1)). The classification
error (0-1 loss) on the data distribution D obeys

TR=! o)
L£07Y(f2) < min 2B\/y Ea y+0\/0(h) +t+s+6,
acA nr ny

with probability at least 1 —4(e™t +n7> +e~19%) (over the
randomness in Wy, T, V). Here, y = [y1 Y2 ... Yn, |- On
the same event, for all o« € A, the training classification
error obeys ﬁgfl(fg;) <e.

For a fixed o, the norm-based excess risk term ”Tfl{i‘;ly
quantifies the alignment between the kernel and the label-
ing function (which is small when vy lies on the principal
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eigenspace of K ). This generalization bound is akin to
expressions that arise in norm-based NTK generalization
arguments such as (Arora et al., 2019a). Critically, however,
going beyond a fixed a, our theorem establishes this for all
activations uniformly to conclude that the minimizer of the
validation error also achieves minimal excess risk. The final
statement of the theorem shows that the training error is
arbitrarily small (essentially zero as T — oo) over all acti-
vations uniformly. Together, these results formally establish
the pictorial illustration in Figures 1(a) & (b).

The proof strategy has two novelties with respect to stan-
dard NTK arguments. First, it requires a subtle uniform
convergence argument on top of the NTK analysis to show
that certain favorable properties that are essential to the
NTK proof hold uniformly for all activations (i.e. choices
of the hyperparameters) simultaneously with the same ran-
dom initialization Wj. Second, since neural nets may not
obey Assumption 1, to be able to apply our generaliza-
tion bounds we need to construct a uniform Lipschitz ap-
proximation via its corresponding linearized feature map
(fina(®) = 2T ¢o(x)) and bound the neural net’s risk
over train-validation procedure in terms of this proxy. This
uniform approximation is in contrast to pointwise approxi-
mation results of (Arora et al., 2019b).

Extensions to deep architectures: Section 5 of our ex-
tended work (Oymak et al., 2021) provides discussion and
results for general multilayer architectures. Here, rather than
gradient descent, we investigate training with the linearized
neural features which is a good proxy for the optimization
dynamics of wide nets. The main takeaway is that, a version
of Theorem 3 still holds even if ®,, is a highly nonlinear
function of ««. We argue that Lipschitz constant L is at
most exponential in depth D, thus, depth costs at most a
factor of D validation samples. We also show the uniform
concentration of the kernel matrix K, over a € A once
the width of the network is sufficiently large and discuss
how Assumption 3 can be obviated via ridge regression.

S. Algorithmic Guarantees via Connection to
Low-rank Matrix Learning

The results stated so far focus on generalization and are not
fully algorithmic in nature in the sense that they assume ac-
cess to an approximate solution of the upper-level problem
per (TVO). In this section we wish to investigate whether
it is possible to provably find such an approximate solu-
tion with a few validation samples and a computationally
tractable algorithm. To this aim, we establish algorithmic
connections between our activation/feature-map search prob-
lems of Section 4 and a rank-1 matrix learning problem. In
Def. 2 —instead of studying ®, for fixed a— let us consider
the matrix of feature maps

X = [p1(z) po(x) ... ¢p(x)]” € R™P

for a fixed input . Then, the population squared-loss risk
of a (v, 8) pair predicting 87 ¢, () is given by

L(e,0) :=E[(y — o’ X0)’] = E[(y — (X, a0"))?].

Thus, the search for the optimal model pair (e, 0y) is
simply a rank-1 matrix learning task with M, = «,0,”.
We ask: Can we learn a useful matrix in the regime (1)?

This is a rather subtle question as in the regime (1) there
is not enough samples to reconstruct M, as anything al-
gorithm regardless of computational tractability requires
nt + ny 2 p+ h! But this of course does not rule out the
possibility of finding an approximately optimal hyperparam-
eter close to a,.. To answer this —rather tricky question— we
study a discriminative data model commonly used for mod-
eling low-rank learning. Consider a realizable setup y =
o, T X0, where we ignore noise for ease of exposition. We
also assume that the feature matrix X has i.i.d. N'(0, 1) en-
tries. Suppose we have T = (y;, X)) 7,V = (vi, XZ):L:"l
datasets with equal sample split n = ny = ny. If we com-
bine these datasets into 7 and solve ERM, when 2n < p,
for any choice of o, weights 8 € RP can perfectly fit the
labels. Instead, we propose a two-stage algorithm to achieve
a near-optimal learning guarantee. Set M = Z?:l 7 X;.

1. Spectral estimation : Set & = top_eigen_vec(MM7).

n

2. Solve ERM on 7 : Set § = arg min > (yi —a' Xx,6)?

i=1
We have the following guarantee for this procedure.
Theorem 4 (Low-rank learning with p > n) Ler
(X, X)) be iid. matrices with iid. N(0,1) en-
tries. Let y; = o, T X;0, for unit norm o € R",0 € RP.
Consider an asymptotic setting where p,n, h grow to infinity
with fixed ratios given by p =p/n > 1, h :Ah/n < 1land
consider the asymptotic performance of (&, 0).

Let 1 > pa, .a > 0 be the correlation between a,aie.
Po,.a = o al. Suppose ph < 1/6. We have that

lim p2 4 >1—64ph (11)
n—00 ’

Additionally, if ph < c for sufficiently small constant ¢ > 0,

A 1 200h
lim L(&,0) < 1-— - - . (12)
n—o0 p o 1-1/p
risk(oe,)  estimating o,

A few remarks are in order. First, the result applies in the
regime p > n as long as —the rather surprising condition—
ph < n? holds (see (11)). Numerical experiments in ap-
pendix verify that this condition is indeed necessary. Here,
risk(ay) = 1 — n/p is the exact asymptotic risk one would
achieve by solving ERM with the knowledge of optimal
a,. Our result shows that one can approximately recover



Generalization Guarantees for Neural Architecture Search with Train-Validation Split

this optimal c, up to an error that scales with ph/n?. Our
second result achieves a near-optimal risk via a without
knowing a,. Since 1 — 1/p is essentially constant, the risk
due to a,-search is proportional to h = h/n. This rate is
consistent with Theorem 1 which would achieve a risk of
1 —n/p+ O(y/h/n). Remarkably, we obtain a slightly
more refined rate (h/n < \/h/n) using a spectral estimator
with a completely different mathematical machinery based
on high-dimensional learning. To the best of our knowledge,
our spectral estimation result (11) in the p > n regime is
first of its kind (with a surprising ph < n? condition) and
might be of independent interest. Finally, while this result
already provides valuable algorithmic insights, it would be
desirable to extend this result to general feature distribu-
tions to establish algorithmic guarantees for the original
activation/feature map search problems.

6. Related Works

Our work establishes generalization guarantees for architec-
ture search and is closely connected to the literature on deep
learning theory, statistical learning, and NAS.

Statistical learning: The statistical learning theory pro-
vide rich tools for analyzing test performance of algorithms
(Bartlett & Mendelson, 2002; Vapnik, 2006). Our discussion
on learning with bilevel optimization and train-validation
split connects to the model selection literature (Kearns,
1996; Kearns et al., 1997; Vuong, 1989) as well as the more
recent works on architecture search (Khodak et al., 2020;
2019). The model selection literature is mostly concerned
with controlling the model complexity (e.g. via nested hy-
pothesis), which is not directly applicable to high-capacity
deep nets. The latter two works are closer to us and also
establish connections between feature maps and NAS. How-
ever, there are key distinctions. First, we operate on con-
tinuous hyperparameter spaces whereas these consider dis-
crete hyperparameters which are easier to analyze. Second,
their approaches do not directly apply to neural nets as they
have to control the space of all networks with zero train-
ing loss which is large. In contrast, we analyze tractable
lower-level algorithms such as gradient-descent and study
the properties of the specific model returned by the algo-
rithm. (Guyon et al., 1997) discuss methods for determining
train-validation split ratios. Favorable learning theoretic
properties of (cross-)validation are studied by (Kearns &
Ron, 1999; Xu et al., 2020). These works either apply to
specific scenarios such as tuning lasso penalty or do not
consider hyperparameters. We also note that algorithmic
stability of (Bousquet & Elisseeff, 2001) utilizes stability
of an algorithm to changes in the training set. In contrast,
we consider the stability with respect to hyperparameters.
Finally, (Wang et al., 2020b) explores tuning the learning
rate for improved generalization. They focus on a simple
quadratic objective using hyper-gradient methods and char-
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w2 =i
10 —— £a=0.03 20 S
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8 bR —— 0a=0.07 1.5 —— Aa=0.005 P=
N o6 + Aa=0.01
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(a) Input layer stability for a (b) Stability of weights of a
one-hidden layer network deeper four layer network

Figure 2. We visualize the Lipschitzness of the algorithm when
A(-) is stochastic gradient descent. We train networks with activa-
tion parameters « and o+ A and display the normalized distances
[0a — Oataalle,/Aa for different perturbation strengths Acv.

acterize when train-validation split provably helps.

Generalization in deep learning: The statistical study of
neural networks can be traced back to 1990’s (Anthony &
Bartlett, 2009; Bartlett et al., 1998; Bartlett, 1998). With
the success of deep learning, the generalization properties
of deep networks received a renewed interest in recent years
(Dziugaite & Roy, 2017; Arora et al., 2018; Neyshabur
et al., 2017a; Golowich et al., 2018). (Bartlett et al., 2017;
Neyshabur et al., 2017b) establish spectrally normalized
risk bounds for deep networks and (Nagarajan et al., 2018)
provides refined bounds by exploiting inter-layer Jacobian.
(Arora et al., 2018) proposes tighter bounds using compres-
sion techniques. More recently, (Jacot et al., 2018) has
introduced the neural tangent kernel which relates training
dynamics of wide deep nets to kernel regression. NTK re-
ceived significant attention for analyzing the optimization
and learning dynamics of wide networks (Du et al., 2018;
Zhang et al., 2019; Nitanda & Suzuki, 2019; Zou et al.,
2018; Wang et al., 2020a; Oymak & Soltanolkotabi, 2019;
Chizat & Bach, 2018). Closer to us, (Arora et al., 2019a;
Ma et al., 2019; Oymak et al., 2019; Allen-Zhu et al., 2018;
Arora et al., 2019a) provide generalization bounds for gradi-
ent descent training. A line of research implements neural
kernels for convolutional networks and ResNets (Yang,
2019; Li et al., 2019; Huang et al., 2020). Related to us
(Arora et al., 2019b) mention the possibility of using NTK
for NAS and recent work by (Park et al., 2020) shows that
such an approach can indeed produce good results and speed
up NAS. In connection to these, Section 4 establishes the
first provable guarantees for NAS and also provide a rig-
orous justification of the NTK-based NAS by establishing
data-dependent bounds under verifiable assumptions.

7. Numerical Experiments

We provide two sets of experiments to verify our theory.
First, to test Theorem 3, we verify the (approximate) Lips-
chitzness of trained neural nets to perturbations in the acti-
vation function. Second, to test Theorem 1, we will study
the test-validation gap for DARTS search space.
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Figure 3. The test-validation gap for the continuously parameter-
ized architecture during the search phase of DARTS.

a. Lipschitzness of Trained Networks. To verify As-
sumption 1, we consider a single hyperparameter o« € R
to control the activation via a combination of ReLU and
Sigmoid i.e. o, (z) = (1 — @)ReLU(z) + « - Sigmoid(z).
Training the network weights 8 with this activation from
the same random initialization leads to the weights 6,. We
are interested in testing the stability of these weights to
slight a perturbations by studying the normalized distance
|00 — Outrnlle, /Ac. This in turn ensures the Lipschitz-
ness of the model output via a standard bound. Fig. 2
presents our results on both shallow and deeper networks
on a binary MNIST task which uses the first two classes
with squared loss. This setup is in a similar spirit to our
theory. In Fig. 2(a) we train input layer of a shallow network
fa(x) = vT0o, (W X) where W € RF*™4_ In Fig. 2(b),
a deeper fully connected network with 4 layers is trained.
Here, the number of neurons from input to output are k,
k/2, k/4 and 1 and the same activation o, (X)) is used for
all layers. Finally, we initialize the network with He initial-
ization and train the model for 60 epochs with batch size
128 with SGD optimizer and learning rate 0.003. For each
curve and width level, we average 20 experiments where
we first pick 20 random « € [0, 1] and their perturbation
a + Aa. We then compute the average of normalized dis-
tances ||0n — Ont+nalle, /A

All figures support our theory and show that, the normal-
ized distance is indeed stable to the perturbation level A«
across different widths and only mildly changes. Note that
Aa € {0.01,0.005} result in a slightly larger normalized
distance compared to larger perturbations. Such behavior
for small A« is not surprising and is likely due to the im-
perfect Lipschitzness of the network (especially with ReLU
activation). Fortunately, our theory allows for this as it
only requires an approximate Lipschitz property (recall the
discussion below Theorem 1).

b. Test-Validation Gap for DARTS. In this experiment,
we study a realistic architecture search space via DARTS
algorithm (Liu et al., 2018) over CIFAR-10 dataset using
10k training samples. We only consider the search phase
of DARTS and train for 50 epochs using SGD. This phase
outputs a continuously-parameterized architecture, which

can be computed on DARTS’ supernet. Each operation on
the edges of the final architecture is a linear superposition of
eight predefined operations (e.g. conv3x3, zero, skip). The
curves are obtained by averaging five independent runs. In
Figures 3 and 1(c), we assess the gap between the test and
validation errors while varying validation sizes from 20 to
1000. Our experiments reveal two key findings via Figure
3. First, consistent with Theorem 1, the train-validation gap
decreases rapidly as soon as the validation size is only mildly
large, e.g. around ny = 250 —much smaller than the typical
validation size used in practice. On the other hand, there is
indeed a potential of overfitting to validation for ny < 100.
We also observe that the gap noticeably increases with more
epochs. The small gaps at initial epochs may be due to
insufficient training For later epochs, since early-stopping
has a ridge regularization effect, we suspect that widening
gap may be due to the growing Lipschitz constant with
respect to the architecture choice. Such behavior would be
consistent with Thm 1 as well as Lemma 1 (smaller ridge
penalty leads to more excess validation risk). Figure 1(c)
displays the train/validation/test errors by epoch for different
validation sample sizes. The training loss/error quickly goes
down to zero. Validation contains much fewer samples
but it is difficult to overfit (despite continuous architecture
parameterization). However, as discussed above, below a
certain threshold (ny < 100), differentiable search indeed
overfits to the validation leading to deteriorating test risk.

8. Conclusions

In this paper, we explored theoretical aspects of the NAS
problem. We first provided statistical guarantees when
solving bilevel optimization with train-validation split. We
showed that even if the lower-level problem overfits —which
is common in deep learning— the upper-level problem can
guarantee generalization with a few validation data. We
applied these results to establish guarantees for the opti-
mal activation search problem and extended our theory to
generic neural architectures. These formally established
the high-level intuition in Figure 1. We also showed in-
teresting connections between the activation search and a
novel low-rank matrix learning problem and provided sharp
algorithmic guarantees for the latter.
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