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Abstract

An overarching goal in machine learning is to build a generalizable model with a
small number of samples. To this end, overparameterization has been the subject of
immense interest to explain the generalization ability of deep nets even when the
size of the dataset is smaller than that of the model. While prior literature focuses on
the classical supervised setting, this paper aims to demystify overparameterization
for meta-learning. Here we have a sequence of linear-regression tasks and we ask:
(1) Given earlier tasks, what is the optimal linear representation of features for
a new downstream task? and (2) How many samples do we need to build this
representation? This work shows that surprisingly, overparameterization arises as a
natural answer to these fundamental meta-learning questions. Specifically, for (1),
we first show that learning the optimal representation coincides with the problem
of designing a task-aware regularization to promote inductive bias. This inductive
bias explains how the downstream task actually benefits from overparameterization,
in contrast to prior works on few-shot learning. For (2), we develop a theory to
explain how feature covariance can implicitly help reduce the sample complexity
well below the degrees of freedom and lead to small estimation error. We then
integrate these findings to obtain an overall performance guarantee for our meta-
learning algorithm. Numerical experiments on real and synthetic data verify our
insights on overparameterized meta-learning.

1 Introduction

In a multitude of machine learning (ML) tasks with limited data, it is crucial to build accurate models
in a sample-efficient way. Constructing a simple yet informative representation of features is a critical
component of learning a model that generalizes well to an unseen test set. The field of meta-learning
dates back to [8, 4] and addresses this challenge by transferring insights across distinct but related
tasks. Usually, the meta-learner first (1) learns a feature-representation from previously seen tasks and
then (2) uses this representation to succeed at an unseen task. The first phase is called representation
learning and the second is called few-shot learning. Such information transfer between tasks is
the backbone of modern transfer and multitask learning and finds ubiquitous applications in image
classification [14], machine translation [6] and reinforcement learning [17].

Recent literature in ML theory has posited that overparameterization can be beneficial to gener-
alization in traditional single-task setups for both regression [27, 37, 3, 31, 28] and classification
[30, 29] problems. Empirical literature in deep learning suggests that overparameterization is of
interest for both phases of meta-learning as well. Deep networks are stellar representation learners
despite containing many more parameters than the sample size. Additionally, overparameterization
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Figure 1: Illustration of the benefit of overparameterization in the few-shot phase. (a) Double-
descent in transfer learning: dashed lines indicate the location where the number of features R
exceed the number of training points; i.e., the transition from under to over-parameterization. The
experimental details are contained in the supplement. (b) Illustration of the benefit of using Weighted
minL2-interpolation in Definition 3 (blue). See Remark 1 for details and discussion.

is observed to be beneficial in the few-shot phase for transfer-learning in Figure 1(a). A ResNet-50
network pretrained on Imagenet was utilized to obtain a representation of R features for classifica-
tion on CIFAR-10. All layers except the final (softmax) layer are frozen and are treated as a fixed
feature-map. We then train the final layer of the network for the downstream task which yields a
linear classifier on pretrained features. The figure plots the effect of increasing R on the test error
on CIFAR-10, for different choices of training size ny. For each choice of ns, increasing R beyond
ng is seen to reduce the test-error. These findings are corroborated by [17] (MAML) and [36], who
successfully use a transfer learning method that adapts a pre-trained model, with 112980 parameters,
to downstream tasks with only 1-5 new training samples.

In Figure 1(b), we consider a sequence of linear regression tasks and plot the few-shot error of our
proposed projection and eigen-weighting based meta-learning algorithm for a fixed few-shot training
size, but varying dimensionality of features. The resulting curve looks similar to Figure 1(a) and
suggests that the observations regarding overparameterization for meta-learning in neural networks
can, to a good extent, be captured by linear models, thus motivating their detailed study. This aligns
with trends in recent literature: while deep nets are nonlinear, recent advances show that linearized
problems such as kernel regression (e.g., via neural tangent kernel [20, 16, 33, 12]) provide a good
proxy to understand some of the theoretical properties of practical overparameterized deep nets.

However, existing analysis of subspace-based meta-learning algorithms for both the representation
learning and few-shot phases of linear models have typically focused on the classical underparame-
terized regime. These works (see Paragraphs 2-3 of Sec. 1.2) consider the case where representation
learning involves projection onto a lower-dimensional subspace. On the other hand, recent works on
double descent shows that an overparameterized interpolator beats PCA-based method. to build upon
these results to develop a theoretical understanding of overparameterized meta-learning.

1.1 Our contributions

This paper studies meta-learning when each task is a linear regression problem, similar in spirit to
[35, 22]. In the representation learning phase, the learner is provided with training data from 7" distinct
tasks, with n; training samples per task: using this data, it selects a matrix A € R?*% with arbitrary
R to obtain a linear representation of features via the map £ — A " . In the few-shot learning phase,
the learner faces a new task with ny training samples and aims to use the representation A " 2 to aid
prediction performance.

We highlight that obtaining the representation consists of two steps: first the learner projects x
onto R basis directions, and then performs eigen-weighting of each of these directions, as shown in
Figure 2(b). The overarching goal of this paper is to propose a scheme to use the knowledge gained
from earlier tasks to choose A that minimizes few-shot risk. This goal enables us to engage with
important questions regarding overparameterization:

Q1: What should the size R and the representation A be to minimize risk at the few-shot phase?
Q2: Can we learn the Rd dimensional representation A with N < Rd samples?



The answers to the questions above will shed light on whether overparameterization is beneficial
in few-shot learning and representation learning respectively. Towards this goal, we make several
contributions to the finite-sample understanding of linear meta-learning, under assumptions discussed
in Section 2. Our results are obtained for a general data/task model with arbitrary task covariance
X g and feature covariance X g which allows for a rich set of observations.

Optimal representation for few-shot learning. As a stepping stone towards the goal of characteriz-
ing few-shot risk for different A, in Section 3 we first consider learning with known covariances 3
and X respectively (Algorithm 1). Compared to projection-only representations in previous works
(see Paragraphs 2-3 of Sec. 1.2), our scheme applies eigen-weighting matrix A* to incentivize the
optimizer to place higher weight on promising eigen-directions. This eigen-weighting procedure has
been shown in the single-task case to be extremely crucial to avail the benefit of overparameterization
[5, 28, 31]: it captures an inductive bias that promotes certain features and demotes others. We show
that the importance of eigen-weighting extends to the multi-task case as well.

Canonical task covariance. Our analysis in Section 3 also reveals that, the optimal subspace and rep-
resentation matrix are closed-form functions of the canonical task covariance 31 = 2]1;/ QETE;/ 2,

which captures the feature saliency by summarizing the feature and task distributions.

Representation learning. In practice, task and fea-

ture covariances (and hence the canonical covariance) > Feature covariance
are rarely known apriori. However, we can estimate >, Task covariance
the principal subspace of the canonical task covari- = . :

= . X Canonical task covariance
ance X7 (which has a degree of freedom (DoF) of Samples per cach earlier task
Q(Rd)) from data. In Section 4 we first present em- ! Des .
pirical evidence that feature covariance ¥ is “pos- JZ\; TNurlnber Olf car he;tasks
itively correlated” with 3. Then we propose an osta sa{n pfe s12¢ anl
efficient algorithm based on Method-of-Moments e >amples for new task
(MoM), and show that the sample complexity of rep- A Eigen-weighting matrix

resentation learning is well below O(Rd) due to the Table 1: Main notation

inductive bias. Our sample complexity bound de-

pends on interpretable quantities such as effective

ranks X g, f]T and improves over prior art (e.g., [22, 35]), even though the prior works were special-
ized to low-rank X7 and identity 3 (see Table 2).

End to end meta-learning guarantee. In Section 5, we consider the generalization of Section 3,
where we have only estimates of the covariances instead of perfect knowledge. This leads to an overall
meta-learning guarantee in terms of A*, N and ns and uncovers a bias-variance tradeoff: As N
decreases, it becomes more preferable to use a smaller R (more bias, less variance) due to inaccurate
estimate of the weak eigen-directions of 3. In other words, we find that overparameterization is
only beneficial for few-shot learning if the quality of representation learning is sufficiently good. This
explains why, in practice, increasing the representation dimension may not help reduce few-shot risk
beyond a certain point (see Fig. 5).

1.2 Related work

Overparameterized ML and double-descent The phenomenon of double-descent was first dis-
covered by [5]. This paper and subsequent works on this topic [3, 31, 30, 28, 10] emphasize the
importance of the right prior (sometimes referred to as inductive bias or regularization) to avail the
benefits of overparameterization. However, an important question that arises is: where does this
prior come from? Our work shows that the prior can come from the insights learned from related
previously-seen tasks. Section 3 extends the ideas in [32, 37] to depict how the optimal representation
described can be learned from imperfect covariance estimates as well.

Theory for representation learning Recent papers [22, 21, 35, 15] propose the theoretical bounds
of representation learning when the tasks lie in an exactly r dimensional subspace. [22, 21, 35]
discuss method of moment estimators and [35, 15] discuss matrix factorized formulations. [35] shows
that the number of samples that enable meaningful representation learning is O(dr?). [22, 21, 35]
assume the features follow a standard normal distribution. We define a canonical covariance which
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Figure 2: (a) Steps of the meta-learning algorithm. (b) Our representation-learning algorithm has
two steps: projection and eigen-weighting. We focus on the use of overparameterization+weighting
matrix (Def. 3), and compare this with overparameterization with simple projection (no eigen-
weighting), and underparameterization (for which eigen-weighting has no impact and is equivalent
to projection). [35, 22, 21, 15] study underparameterized projections only. To distinguish from
eigen-weighting, we will refer to simple projections as subspace-based representations.

handles arbitrary feature and task covariances. We also show that our estimator succeeds with O(dr)
samples when n; ~ r, and extend the bound to general covariances with effective rank defined.

Subspace-based meta learning With tasks being low rank, [22, 21, 35, 18, 15] do few-shot learning
in a low dimensional space. [38, 39] study meta-learning for linear bandits. [25] gives information
theoretic lower and upper bounds. [7] proposes subspace-based methods for nonlinear problems such
as classification. We investigate a representation with arbitrary dimension, specifically interested
in overparameterized case and show it yields a smaller error with general task/feature covariances.
Related work [15] provides results on overparameterized representation learning, but [15] requires
number of samples per pre-training task to obey n; = d, whereas our results apply as soon as ny = 1.

Mixed Linear Regression (MLR) In MLR [40, 23, 11], multiple linear regression are executed,
similar to representation learning. The difference is that, the tasks are drawn from a finite set, and
number of tasks can be larger than d and not necessarily low rank. [24, 9, 26] propose sample
complexity bounds of representation learning for mixed linear regression. They can be combined
with other structures such as binary task vectors [2] and sparse task vectors [1].

2 Problem Setup

The problem we consider consists of two phases:

1. Representation learning: Prior tasks are used to learn a suitable representation to process features.
2. Few-shot learning: A new task is learned with a few samples by using the suitable representation.

This section defines the key notations and describes the data generation procedure for the two phases.
In summary, we study linear regression tasks, the features and tasks are generated randomly, i.i.d.
from their associated distributions D and Dp, and the two phases share the same feature and task
distributions.The setup is summarized in Figure 2(a).

2.1 Data generation

Definition 1 (Task and feature distributions) Throughout, D1 and Dr denote the distributions
of tasks B; and features x;; respectively. These distributions are subGaussian, zero-mean with
corresponding covariance matrices X and X .

Definition 2 (Data distribution for a single task) Given a specific realization of task vector 3 ~
Dy, the corresponding label/input distribution (y,x) ~ Dg is obtained via y = x ' B + € where
x ~ Dy and ¢ is zero-mean subgaussian noise with variance o>.



Data for Representation Learning (Phase 1). We have T tasks, each with n; training examples.
The task vectors (3;)1_; C R? are drawn i.i.d. from the distribution D7. The data for ith task is

given by (yij, ®ij), N Dg,. In total, there are N = T' x n; examples.

Data for Few-Shot Learning (Phase 2). Sample task 3, ~ Dr. Few-shot dataset has no examples
ny  Pid.

(yiami)jzl ~ Dg.-

We use representation learning data to learn a representation of feature-task distribution, called
eigen-weighting matrix A in Def. 3 below. The matrix A is passed to few-shot learning stage, helping
learn 3, with few data.

2.2 Training in Phase 2

We will define a weighted representation, called eigen-weighting matrix, and show how it is applied
for few-shot learning. The matrix is learned during representation learning using the data from the T'
tasks. Denote X € R"2*? whose i row is «;, and y = [y1, ..., ym] | . We are interested in studying
the weighted 2-norm interpolator defined below for overparameterization regime R > ng.

Definition 3 (Eigen-weighting matrix and Weighted />-norm interpolator) Letr the representa-
tion dimension be R, where R is any integer between 1 and d. We define an eigen-weighting
matrix A € R¥™E and the associated weighted {5-norm interpolator

Ba = argmﬁin |ATBl2 st y=XB and B € range_space(A).

The solution is equivalent to defining & = Af B A and solving an unweighted minimum 2-norm
regression with features X A. This corresponds to our few-shot learning problem

ap = argminflaf; st y=XAa
«@

from which we obtain ﬁ A = Adaa. When there is no confusion, we can replace B A With B One

can easily see that ,3 = A(XA)Ty. We note that Definition 3 is a special case of the weighted
ridge regression discussed in [37], as stated in Observation 1. An alternative equivalence between
min-norm interpolation and ridge regression can be found in [31].

Observation 1 Let X € R™*? qnd y € R™, define
B = %ir% argming || X3 — yll2+tBT(AAT)TB, B € column space of A. 2.1
—

We have that fﬂl = ,@

3 Canonical Covariance and Optimal Representation

In this section, we ask the simpler question: if the covariances ¥ and X are known, what is
the best choice of A to minimize the risk of the interpolator from Definition 3? In general, the
covariances are not known; however, the insights from this section help us study the more general
case in Section 5. Define the risk as the expected error of inferring the label on the few-shot dataset,

risk(A, 27, 8r) = Eqy 5(y — ' Ba)* = Es(Ba — B) ' Zr(Ba — B) + 02 3.1
The natural choice of optimization for choosing A would be to choose the weighting that minimizes
the eventual risk of the learned interpolator.

A* =arg min risk(A', X7, XF) (3.2)
A/eRdXR

1/2

Since the label y is bilinear in « and 3, we introduce whitened features £ = 3"’ “& and associated

task vector ,é = E}J/ 25. This change of variables ensures x” 3 = aET,@; now, the task covariance in
the transformed coordinates takes the form

< 1/2 1/2

ISR TS Y0 TN
which we call the canonical task covariance; it captures the joint behavior of feature and task
covariances X, X7. Below, we observe that the risk in Equation (3.1) is invariant to the change of

co-ordinates that we have described above i.e it does not change when E;/ QETE};/ % is fixed and we
vary 3 and Y.



Algorithm 1 Constructing the optimal representation

Require: Projection dimension R, noise level o, canonical covariance X, task covariance X .

1: function COMPUTEOPTIMALREP(R, 3r, iT, o,N2)

2 U,, 38 31 55 = COMPUTEREDUCTION(R, X, X7, 0)

3 Optimization: Get 8* from (OPT-REP).

4 Map to eigenvalues: Set diagonal A}, € RF*® with entries A}, ; = (1/6;7 —1)72
5: Lifting and feature whitening: A* < Uy (Z8)~1/2A%,.
6 return A*
7: function COMPUTEREDUCTION(R ZJF,ET, o)
8

9

Get eigen-decomposition S, =USU".
Principal eigenspace U; € R¥* % = the first R columns of U.

10 Top eigenvalues: Set X% = U $,:U, 28 = U =xU,
11:  Equivalent noise level: 0% < 02 + tr(Xr) — tr(ZF).
12: return U, 21{3, E%, OR

Observation 2 (Equivalence to problem with whitened features) Let data be generated as in
Phase 1. Denote X1 = 21/22 21/2 Then risk(% V2N, S, Sr) = risk(A, Zp, I).

This observation can be easily verified by substituting the change-of-coordinates into Equation (3.1)
and evaluating the risk.

The risk in (3.1) quantifies the quality of representation A; however it is not a manageable function
of A that can be straightforwardly optimized. In this subsection, we show that it is asymptotically
equivalent to a different optimization problem, which can be easily solved by analyzing KKT optimal-
ity conditions. Theorem 1 characterizes this equivalence; the COMPUTEREDUCTION subroutine of
Algorithm 1 calculates key quantities that are used in specifying the reduction, and the COMPUTEOP-
TIMALREP subroutine of Algorithm 1 uses the solution of the simpler problem to obtain a solution
for the original.

Assumption 1 (Bounded feature covariance) There exist positive constants Yin, Xmax Such that

3 is lower/upper bounded as follows: 0 < Xinl = Xp = Ynaxl.

Assumption 2 (Joint diagonalizability) 3y and X1 are diagonal matrices.!

Assumption 3 (Double asymptotic regime) We let the dimensions and the sample size grow as
d, R,ny — oo at fixed ratios k := d/ng and k :== R/ns.

Assumption 4 The joint empirical distribution of the eigenvalues of Ar and f] is given by the
average of Dirac §’s: ZZ 1 An RV It converges to a fixed distribution as d — oo.

With these assumptions, we can derive an analytlcal expression to quantify the risk of a representation
A. We will then optimize this analytic expression to obtain a formula for the optimal representation.

Theorem 1 (Asymptotic risk equivalence) Suppose Assumptions 1, 2, 3, 4 hold. Let £ > 0 be the

— 2
unique number obeying ny = 221 (1 + (gA?)fl) " Define 8 € RE with entries 8; = 1.5_15\;\2

and calculate 2?, or using the COMPUTEREDUCTION procedure of Algorithm 1. Then, define the
analytic risk formula

f(8, 5%, ng) = w (”22 D)PEE 4 (1015 + 1)012:;) : (3.3)
2 i=1
We have that .
lim f(0,28,ny) = lim risk(E;°A, S7, S5) (3.4)
nog—>00 ng—>00

The proof of Theorem 1 applies the convex Gaussian Min-max Theorem (CGMT) in [34] and can

be found in the Appendix B.2.We show that as dimension grows, the distribution of the estimator (3
converges to a Gaussian distribution and we can calculate the expectation of risk.

I"This is equivalent to the more general scenario where 35 and X7 are jointly diagonalizable.



Theorem 1 provides us with a closed-form risk for any linear representation. Now, one can solve
for the optimal representation by computing (OPT-REP) below. In order to do this, we propose an
algorithm for the optimization problem in Appendix B.5 via a study of the KKT conditions for the
problem 2.

R
0" = argmin f(0, B, Tp), st 0<O <1, > 0 =ny (OPT-REP)
=1

The optimal representation is* AR, =((1/67 —1)¢ )~2. The subroutine COMPUTEOPTIMALREP in
Algorithm 1 summarizes this procedure.

Remark 1 Thm. 1 states that risk(E}l/ 2A, 31,3 ) can be arbitrarily well-approximated by
@, E?, na) if no is sufficiently large. In Fig. 1(b), we set Xp = I1o9, X7 = diag(I20,0.11g),
ng = 40. The curves in Figl(b) are the finite dimensional approximation of f (LHS of (3.4)); the
dots are empirical approximations of the risk (RHS of (3.4)). We tested two cases when A is the
optimal eigen-weighting or projection matrix with no weighting. Our theorem is corroborated by the
observation that the dots and curves are visibly very close. The approximation is already accurate
for the finite dimensional problem with just ny = 40.

The benefit of overparameterization. Theorem 1 leads to

an optimal eigen-weighting strategy via asymptotic analysis. 2.00 i
In Figure 3, we plot the effect on the risk of increasing R for 175 1 :
different shapes of task covariance; the parameter ¢ controls £1s0 S
how spiked 37 is, with a smaller value for ¢ indicating gl S i
increased spiked-ness. For the underparameterized problem, % LSS £
the weighting does not have any impact on the risk. In LRE NN
the overparameterized regime, the eigen-weighted learner §oso N
achieves lower few-shot error than its unweighted (A = I) 0.25

counterpart, showing that eigen-weighting becomes critical. 00020 60 80 100
Representation Dimension
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The eigen-weighting procedure can introduce inductive bias

during few-shot learning, and helps explain how optimal Figure 3: Theoretical risk of optimal
representation minimizing the few-shot risk can be overpa- representation. Xp = Iy, X7 =
rameterized with R > ny. We note that, an R dimensional diag(I29, tIg0), no = 40.
representation can be recovered by a d dimensional represen-

tation matrix of rank R, thus the underparameterized case

can never beat d dimensional case in theory. The error with optimal eigen-weighting in overparam-
eterized regime is smaller than the respective underparameterized counterpart. The error is lower
with smaller ¢. It implies that, while 37 gets closer to low-rank, the excess error caused by choosing
small dimension R (equal to the gap 0% — 02 in Algo 1) is not as significant.

Low dimensional representations zero out features and cause bias. By contrast, when S e Rixd g
not low rank, every feature contributes to learning with the importance of the features reflected by the
weights. This viewpoint is in similar spirit to that of [19] where the authors devise a misspecified
linear regression to demonstrate the benefits of overparameterization. Our algorithm allows arbitrary
representation dimension R and eigen-weighting.

4 Representation Learning

In this section, we will show how to estimate the useful distribution in representation learning phase
that enables us to calculate eigen-weighting matrix A*. Note that A* depends on the canonical

covariance X1 = E},/2ETE;/ 2, Learning the R-dimensional principal subspace of > 1 enables us*
to calculate A*. Denote this subspace by S.

2In Sec. 5 the constraintis § < 0 < 1 — % 0 for robustness concerns.

3In the algorithm, £ = 1 and Ar; = (1/6; — 1)~2, because cA* for any constant ¢ gives the same /3.

*We also need to estimate X - for whitening. Estimating X - is rather easy and incurs smaller error compared
to 3. The analysis is provided in the first part of Appendix B.



Subspace estimation vs. inductive bias. The subspace-based representation Sp has degrees of
freedom= Rd. When X7 is exactly rank R and features are whitened, [35] provides a sample-
complexity lower bound of Q(Rd) examples and gives an algorithm achieving O(R?d) samples.
However, in practice, deep nets learn good representations despite overparameterization. In this
section, recalling our Q2, we argue that the inductive bias of the feature distribution can implicitly
accelerate learning the canonical covariance. This differentiates our results from most prior works
such as [22, 21, 35] in two aspects:

1. Rather than focusing on a low dimensional subspace and assuming N 2 Rd, we can estimate Sr

or St in the overparameterized regime N < Rd.

2. Rather than assuming whitened features ¥ = I and achieving a sample complexity of R?d,
our learning guarantee holds for arbitrary covariance matrices Xz, 3. The sample complexity
depends on effective rank and can be arbitrarily smaller than DoF. We showcase our bounds via a
spiked covariance setting in Example 1 below.

For learning > orits subspace Sr, we investigate the method-of- moments (MoM) estimator.

Deﬁn1t10n4(M0M Estimator) For 1 < i < T, define bzl = 2n] Z;L;/fy]m”, b172
2”1 _]11'7,1/2-‘,-1 Yijxij. Set

M_nllz (bi1b; 2+bz2b11)
i=1
The expectation ofM isequalto M = Y pXr¥p.

Inductive bias in representation learning: Recall that canonical covariance 37 = E}F/QETE;/ 2
is the attribute of interest. However, feature covariance E}/ ? term implicitly modulates the estimation
procedure because the population MoM is not Srbut M = El/ QETEU 2. For instance, when
estimating the principle canonical subspace Sy, the degree of alignment between X and S can

make or break the estimation procedure: If 3 and ET have well-aligned principal subspaces, Sr
will be easier to estimate since 3 will amplify the S direction within M.

We verify the inductive bias on practical image dataset, reported in Appendix A. We assessed
correlation coefficient between covariances 31, ¥ via the canonical-feature alignment score defined
as the correlation coefficient
(S $r) (ZF,2r) trace( M)
p(Xp, ) = = = = .
IZrllrlZrlls  1ZrlrlZErllr
Observe that, the MoM estimator M naturally shows up in the alignment definition because the

inner product of S, Sk s equal to trace( M ). This further supports our inductive bias intuition. As

reference, we compared it to canonical-identity alignment defined as % (replacing 3 r with
TIF

I). The canonical-feature alignment score is higher than the canonical-identity alignment score. This

significant score difference exemplifies how 3 r and > can synergistically align with each other
(inductive bias). This alignment helps our MoM estimator defined below, illustrated by Example 1
(spiked covariance).

In the following subsections, let N = n;T refer to the total tasks in representation-learning phase.
Letrp = tr(XF), rr = tr(Xr), and 77 = tr(Xr). Define the approximate low-rankness measure
of feature covariance by’

sp =min sp, s.t. sk € {1,...,d}, sp/d> Ny 11(ZF)
‘We have two results for this estimator.

1. Generally, we can estimate M with O(rp72.) samples.
2. Letny > s, we can estimate M with O(sp7r) samples.

Paper [35] has sample complexity O(dr?) (r is exact rank). Our sample complexity is O(rp72).
rg, T can be seen as effective ranks and our bounds are always smaller than [35]. We will discuss
later in Example 1. Our second result says when n; > sp, our sample complexity achieves the O(dr)
which is proven a lower bound in [35].

The (sr 4 1)-th eigenvalue is smaller than s /d. Note the top eigenvalue is 1.



Y =diag(Is,,tplq—s,),

feature cov Sr = I, 37 = diag(I,,,0) S — diag(L, o714 o)

estimator | sample N | sample n; | error sample N | sample n | error
MoM dsZ 1 (ds2./N)1/? TETS 1 (rpra./N)1/2
MoM dST ST (sT/nl)l 2 TFTT rT (TT/nl)l 2

Table 2: Right side: Sample complexity and error of MoM estimators. s (s) is the dimension of the
principal eigenspace of the feature (task) covariance. 7p = sp + tp(d — sp), re = sp + vp(d — sT)
are the effective ranks. Left side: This is the well-studied setting of identity feature covariance and
low-rank task covariance. Our bound in the second row is the first result to achieve optimal sample
complexity of O(dsr) (cf. [35, 22]).

Theorem 2 Let data be generated as in Phase 1. Assume | Sr||, |S7|| = 1 for normalization®.

1. Let ny be a even number. Then with probability at least 1 — N 100,

IV = M| S (Fr+ %)y | + (|

2. AssumeT > sp. If ny 2 Fr + o2, then with probability at least
- - 1/2
IV~ M| S ((Fr +0%)/mi) .
Denote the top-R principal subspaces of M, M by M,,,, M,op and assume the eigen-gap condition
Ar(M) — Ag1(M) > 2||M — M||. Then a direct application of Davis-Kahan Theorem [13]
bounds the subspace angle as follows

angle(Mip, Miop) S |M — M||/(Ar(M) = Aps1(M)).

Estimating eigenspace of canonical covariance. Note that
if ¥p and X7 are aligned, (e.g. Example 1 below with

sp = st = R), then M,,, = St is exactly the principal s 12

subspace of > 7. Theorem 2 indeed gives estimation error I 1;

for the principal subspace of 3. Note that, such alignment (i 0.9

is and more general requirement compared to related works 8-3

which require whitened features [35, 22]. " 000 050 100 150 200
. (

Example 1 (Spiked X1, Aligned principal subspaces) Figure 4: Error of MoM estimator

Suppose the spectra of X and 3 are bimodal as follows
EF = diag(IsF, LFIdst); ET = didg(IsT7 LTIdfsT)-
Set statistical error Errp N 1= \/T‘%’I“F/N + \/T’T/T. When vr,vp < 1, Sp > s, the recovery
error of S and its principal subspace S are bounded as

angle(wa, S'T) S Errp N + ur  and ||M — 2T|| S Errp, N + Uiy

The estimation errors for X7, Sz are controlled in terms of the effective ranks and the spectrum
tails vy, 1. Typically spsT 2 nq SO \/r%rp /N term dominates the statistical error in practice. In

Fig. 4 we plot the error of estimating M (whose principal subspace coincides with ). Bp =
diag(Isq, tI70), X1 = diag(Is0,07¢). T = N = 100. We can see that the error increase with ¢ .

5 Robustness of Optimal Representation and Overall Meta-Learning Bound

In Section 3, we described the algorithm for computing the optimal representation with known
distributions of features and tasks. In Section 4, we proposed the MoM estimator in representation
learning phase to estimate the unknown covariance matrices. In this section, we study the algorithm’s
behaviors when we calculate A using the estimated canonical covariance, rather than the full-
information setting of Section 3.

SThis is simply equivalent to scaling y;;, which does not affect the normalized error | M — M]||/||M||. In
the appendix we define S = max{||Xr||, || 27| } and prove the theorem for general S.



Armed with the provably reliable estimators of Section 4, we can replace 37 and ¥ in Algorithm 1
with our estimators. In this section, we inquire: how does the estimation error in covariance-estimation
in representation learning stage affect the downstream few-shot learning risk? That says, we are
interested in” risk(A, X7, X ) — risk(A*, X7, X r).

Let us replace the constraint in (OPT-REP) by § < 6 <1 — d;—:? 6. This changes the “optimization”
step in Algorithm 1. Theorem 3 does not require an explicit computation of the optimal representation
by enforcing . Instead, we use the robustness of such a representation (due to its well-conditioned
nature) to deduce its stability. That said, for practical computation of optimal representation, we
simply use Algorithm 1. We can then evaluate  after-the-fact as the minimum singular value of this
representation to apply Theorem 3 without assuming an explicit 6.

Let Ag(R) = COMPUTEOPTIMALREP(R, XF, M., o, ny) denote the estimated optimal representa-
tion and Aj(R) = COMPUTEOPTIMALREP(R, X, X7, 0, ng) denote the true optimal representa-
tion, which cannot be accessed in practice. Below we present the bound of the whole meta-learning
algorithm. It shows that a bounded error in representation learning leads to a bounded increase on the
downstream few-shot learning risk, thus quantifying the robustness of few-shot learning to errors in
covariance estimates.

Theorem 3 Let Ag(R), Ay(R) be as defined above, and rp = tr(Xr), rr = tr(X7), 71 =
tr(Xr). The risk of meta-learning algorithm satisfies®

TL2 rr rr
isk(Ag(R), X7, Xp) — risk(Ay(R), 27, Xp) < 2 r 2= —
Fsk(Aa(R), B Bi)  iAG(R), B, Br) § gt (4 0%+
Notice that as the number of previous tasks 7" and total
representation-learning samples /V observed increases, the 2.00
risk of the estimated Ag(R) approaches that of the optimal 51 75 o
AE(R) as we expect. The result only applies to the overpa- 11,50 — m=1000

= perfect covariance

rameterized regime of interest R > ny. The expression of ~ © 1-25
risk in the underparameterized case is different, and cov-
ered by the second case of Equation(4.4) in [37]. We plot
it in Fig 1(b) on the left side of the peak as a comparison.

Risk with respect to PCA level R. In Fig. 5, we plot 40 50 60 70 80 90 100
the error of the whole meta-learning algorithm. We simu- Representation Dimension

late representation learning and get M, use it to compute Figure 5: End to end learning guarantees.
A and plot the theoretical downstream risk (experiments d = 100,ny = 40,7 = 200, X7 =
match, see Fig. 1 (b)). Mainly, we compare the behavior (Isg,0.05 - Isg), Xr = I10.

of Theorem 3 with different R. When R grows, we search

A in a larger space. The optimal A in a feasible subset is

always no better than searching in a larger space, thus the risk decreases with R increasing. At the
same time, representation learning error increases with R since we need to fit a matrix in a larger
space. In essence, this result provides a theoretical justification on a sweet-spot for the optimal
representation. d = R is optimal when N = oo, i.e., representation learning error is 0. As N
decreases, there is a tradeoff between learning error and truncating small eigenvalues. Thus choosing
R adaptively with N can strike the right bias-variance tradeoff between the excess risk (variance)
and the risk due to suboptimal representation.

6 Conclusion

In this paper, we study the sample efficiency of meta-learning with linear representations. We
show that the optimal representation is typically overparameterized and outperforms subspace-based
representations for general data distributions. We refine the sample complexity analysis for learning
arbitrary distributions and show the importance of inductive bias of feature and task. Finally we
provide an end-to-end bound for the meta-learning algorithm showing the tradeoff of choosing larger
representation dimension v.s. robustness against representation learning error.

"Note that Sec.6 of [37] gives the exact value of risk(A*, X7, X ) so we have an end to end error guarantee.
8The bracketed expression applies first conclusion of Theorem 3. One can plug in the second as well.
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