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Abstract

In this paper, we answer the question of when inserting label noise (less informative
labels) can instead return us more accurate and fair models. We are primarily in-
spired by three observations: 1) In contrast to reducing label noise rates, increasing
the noise rates is easy to implement; 2) Increasing a certain class of instances’
label noise to balance the noise rates (increasing-to-balancing) results in an easier
learning problem; 3) Increasing-to-balancing improves fairness guarantees against
label bias. In this paper, we first quantify the trade-offs introduced by increasing a
certain group of instances’ label noise rate w.r.t. the loss of label informativeness
and the lowered learning difficulties. We analytically demonstrate when such an
increase is beneficial, in terms of either improved generalization power or the
fairness guarantees. Then we present a method to insert label noise properly for
the task of learning with noisy labels, either without or with a fairness constraint.
The primary technical challenge we face is due to the fact that we would not know
which data instances are suffering from higher noise, and we would not have the
ground truth labels to verify any possible hypothesis. We propose a detection
method that informs us which group of labels might suffer from higher noise
without using ground truth labels. We formally establish the effectiveness of the
proposed solution and demonstrate it with extensive experiments.

1 Introduction

The presence of training label noise is generally considered harmful. Typically the goal of learning
with noisy labels is to improve the training by reducing the amount of noise in the training data
[4, 11]. This paper discusses the feasibility of the opposite strategy and shows cases when adding
label noise, leading to a scenario with less informative labels, will result in more accurate and fair
models. We are primarily motivated by three observations:

Observation I: Reducing label noise is hard, but increasing it is easy. While the literature has
provided us with solutions to perform data cleaning, they often require a highly customized training
process. Their lack of theoretical rigor has also posed challenges when performing evaluations.
On the other hand, as we will see later, increasing label noise is easy — one can always do so by
randomly flipping the current noisy labels to increase it further.

Observation II: Increasing a certain class of instances’ noise rate to balance the noise rates
results in an easier learning problem. When label noise is class-dependent (label class Y = +1
v.s. Y = −1), popular noise-tolerant learning algorithms typically require the knowledge of noise
rates [25]. However, the learner often needs to identify the unknown noise rates by some estimation
procedure [26, 27, 36]. We articulate that the mis-specification of noise rates will introduce additional
learning errors, especially when the label noise is asymmetric (see Theorem 1). On the other
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hand, although increasing the noise rate of the lower class one to balanced error rates reduces the
informativeness of the training labels, it is regarded as an easier case to handle — when error rates are
balanced, invoking loss correction procedures becomes unnecessary (see Lemma 2 & Theorem 3).

Observation III: Increasing-to-balancing improves fairness guarantees against label bias.
When the label noise rates are group-dependent (data from young group v.s. senior group), it
has been reported in the literature that imposing fairness constraints directly on the noisy labels would
instead reinforce the unfairness [30]. Fixing the fairness constraints again requires the knowledge of
the label noise rates. We will show that increasing and balancing noise rates allows us to directly
impose fairness guarantees on the noisy training data without knowing the noise rates (Theorem 6).

This paper first quantifies the trade-offs introduced by increasing a certain group of instances’
label noise rate with respect to the loss of informative labels and the gained benefits for doing so.
We analytically demonstrate when such an increase proves beneficial in terms of either improved
generalization error or fairness guarantees. Then we present a method to leverage our idea of inserting
label noise for the task of learning with noisy labels, either without or with a fairness constraint. The
primary technical challenge we face is that we would not know which data instances are suffering
from higher noise, and again we would not have the ground truth labels to verify any possible
hypothesis. In response, we propose a detection method that informs us which group of labels might
suffer from higher noise without using ground truth information. The core discovery is a couple of
metrics that check the agreements of noisy labels among local neighbors. These two metrics can be
easily estimated using noisy labels only and are shown to be sufficient to inform us of the class of
labels with a higher noise rate. With this knowledge, we propose an algorithm (NOISE+) to gradually
insert noise into the lower noise class of labels. Our contributions summarize as follows:

• Our paper prototypes the idea of pre-processing noisy training labels for both the constrained and
unconstrained learning problems. We show the possibility of improving the training accuracy and
fairness guarantees by increasing a certain class of instances’ noise rates (increasing-to-balancing).

• To enable the deployment of our idea, we propose a detection algorithm to identify the class of
instances with a higher label noise rate without using any ground truth label information.

• Our solution contributes to the learning with noisy labels literature by adding another tool that is
robust to noise rate (noise transition matrix) estimation errors.

All omitted proofs can be found in the Appendix. The code for reproducing the experimental results
is available at https://github.com/UCSC-REAL/CanLessBeMore.

1.1 Related work

Our work is a contribution to the well-established literature of learning with noisy labels [11, 22, 25,
27–29, 33]. The classical solutions within the literature leveraged the knowledge of noise rates to
perform loss correction [25, 27, 28], label correction [23, 27], loss reweighting [19], among many
other treatments. The importance of knowing the correct noise rate parameters is clearly established.
Follow-up works have provided tools for estimating the noise rates without accessing the ground
truth label. These include the confident learning approach [26], anchor point [5], and more recently
clustering-based ones [36]. Nonetheless, the possibility of unintended harm due to mis-specified noise
rates remains. More recent works have looked into robust loss functions that would not require the
knowledge of noise rate, hoping to improve the resistance to the mis-specifications [14, 21, 32, 34, 35].
Our work can be viewed as a contribution to this specific line of literature.

Our work also contributes to the understanding of fairness implications when learning with noisy
labels and other imperfect information [3, 7, 10, 17, 20, 24, 30, 31]. For instance, [17] considers
amending noisy sensitive attributes by appropriately re-scaling the fairness tolerance but is only
restricted to class-conditional random noise. [30] proposes two noise-resistant fair classification
approaches by constructing unbiased estimators with group-dependent label noise. While most of the
existing works would either require the noise rates to be balanced between groups or the knowledge
of the noise rates to perform noise correction [30], our work requires neither.

2 Preliminaries
We will consider a binary classification problem with d-dimensional feature space X ∈ Rd and label
space Y ∈ {−1,+1}. (X,Y ) generate according to distribution D. Instead of accessing the clean
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data, we consider the setting where the learners only have access to noisy labels Ỹ . The generation of
Ỹ follows the noise transition model: e+(x) := P(Ỹ = −1|Y = +1, X = x), e−(x) := P(Ỹ =

+1|Y = −1, X = x). We further assume Ỹ generates conditionally independently for different X .
For now, we do not restrict how e+(x), e−(x) depend on x but to enable our analysis, later we will.
Denote the noisy distribution for (X, Ỹ ) as D̃.

In the second constrained learning setting, we assume that for each instance (X,Y ), we also observe
a sensitive attribute Z ∈ {a, b} that defines two protected groups (e.g., senior v.s. young people) that
we will later enforce fairness constraints over.

Unconstrained learning problem. In the unconstrained setting, denote the collected training data
as D̃ := {(xn, ỹn)}Nn=1. The goal is to train a classifier h ∈ H that minimizes the empirical risk
ED[1(h(X) 6= Y )] with only accessing D̃, where 1(·) is the 0-1 loss function. We will focus on the
standard class-dependent noise rate model where e+(x) ≡ e+, e−(x) ≡ e−, ∀x. We assume we have
informative labels: e+, e− < 0.5. Hereby the noise rates depend only on the true label class [25],
but not the specific instance x when conditional on the true label. We will operate in the challenging
asymmetric error rates setting when e+ 6= e−.

Fairness constrained learning problem. In the fairness constrained setting, denote the collected
training data as D̃ := {(xn, ỹn, zn)}Nn=1. The goal is to train a classifier h ∈ H that maximizes the
accuracy while satisfying a certain fairness constraint, measured by a fairness metric Fz(h):

min
h∈H

ED[1(h(X) 6= Y )] s.t. |Fa(h)− Fb(h)| ≤ δ, (1)

wherein δ > 0 is a tolerance parameter for fairness violations. Exemplary Fa(h) includes the Equal
Opportunity measure Fa(h) := P(h(X) = +1|Y = +1, Z = a) [12], the demographic parity
Fa(h) := P(h(X) = +1|Z = a) [6], among others.

We assume the error rates are group dependent [30]: e+(x) = e−(x) = ez, z ∈ {a, b}. Again we
assume ea, eb < 0.5. Within each group, we can further assume that the noise rates are class-
dependent, but then we will simply apply our solution within each group (between +1/− 1 classes)
and across the group. We remove this additional layer of complication to stay concise.

Notations. We define the following quantities that we will repeatedly use. We will denote
by RD(h) := ED[1(h(X) 6= Y )] the true generalization error of a classifier h incurred on
the clean distribution D. For a classification-calibrated loss function, we will denote its risk
as R`,D(h) := ED[`(h(X), Y )]. Denote the empirical `-risk of a classifier h on dataset D as
R̂`,D(h) := 1

|D|
∑

(x,y)∈D `(h(x), y).

Our solution is generically applicable to multi-class settings, which we will explain later and demon-
strate with experiments. For a clear exposition of our core idea, we focus on the binary case.

3 Equalizing error rates can improve model accuracy

In this section, we focus on the unconstrained learning setting. We will show that while increasing
one label class’ noise rate raises the generalization errors due to less informative labels, at the same
time, it helps remove the training’s dependency on the noise rates (e+, e−), and therefore improves
robustness to possible mis-specification of them. We will quantify such trade-off.

We would mainly demonstrate our idea by comparing to methods that explicitly use the knowledge
of noise rates. For one reason, these approaches often have strong theoretical guarantees. The other
reason is that the benefit of our approach of not requiring the noise rate would be clearer for this
comparison. Particularly, we will use loss correction [25] as the running example. We are aware
of the other recent works that do not require the noise rates. First of all, these approaches focus on
improving model accuracy, but not the fairness constraints. Secondly, empirically we observe that
these approaches can also benefit from our noise rate balancing procedure. We left the discussions to
our experiments, where we will demonstrate using one of such losses, peer loss [21].

Loss correction. Once knowing e+, e−, there exist different ways to improve training robustness
in the presence of noisy labels. We consider demonstrating our idea using the classical loss correction
framework [25, 27]: denote by ẽ+, ẽ− the estimated version of e+, e−. In practice, this knowledge
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can be obtained by using existing techniques [19, 26, 36]. For a given calibrated loss `, the loss
correction approach defines the following loss:

˜̀(h(xn), ỹn) := (1− ẽ−sgn(ỹn)) · `(h(xn), ỹn)− ẽsgn(ỹn) · `(h(xn),−ỹn) (2)

where in above sgn is the sign function. A favorable property of ˜̀ is its unbiasedness (expec-
tation over Ỹ |Y = y) w.r.t. `(h(x), y) when given the correct noise rate parameters e+, e−.
For readers who need more background knowledge of loss correction, we reproduce details in
Appendix A.1. A classifier will be trained following empirical risk minimization (ERM) us-
ing ˜̀: h∗˜̀,D̃ := arg minh∈H

∑N
n=1

˜̀(h(xn), ỹn). Compared to the standard loss correction, we
omit the 1 − ẽ− − ẽ+ term from the denominator, which will not affect the minimizer of our
ERM problem. Denote h∗`,D = arg minh∈HR`,D(h), the optimal classifier for R`,D(h), and
errM := max{|ẽ+ − e+|, |ẽ− − e−|} the maximal mis-specification error. When ` is L-Lipschitz
and bounded by ¯̀, let L1 := 4L,L2 := 2¯̀> 0, adapting the proof from [25] we show:
Theorem 1. For any δ > 0, we have with probability at least 1− δ:

R`,D(h∗˜̀,D̃)−R`,D(h∗`,D) ≤ 1

1− e+ − e−︸ ︷︷ ︸
label informativeness

·L1 · R(H) +
errM

1− e+ − e−︸ ︷︷ ︸
mis-specification

·L2 + 2

√
log 1/δ

2N
, (3)

where in aboveR(H) denotes the Rademacher complexity ofH.

Clearly, e+, e− control the error due to label informativeness: a pair of e+, e− with higher sum
(e+ + e−) induce larger generalization error bound. On the other hand, the potential imperfect
estimates of them introduce additional error due to the mis-specification.

3.1 When does equalizing error rate improve performance?

Now we first provide intuitions for why increasing noise rate to balance e+ and e− might be
considered helpful. Without loss of generality, suppose e+ > e−. When we increase e− to match e+
such that e = e+ = e− (later we will explain how we do so), denote by Ŷ the newly generated noisy
label with e symmetric error rates for both classes. Note that e < 0.5. Denote by ŷn the generated
label for example n, D̂ the distribution of (X, Ŷ ), and D̂ the dataset {(xn, ŷn)}Nn=1. We first show:

Lemma 2. When e < 0.5, minimizing P(h(X) 6= Ŷ ) is equivalent with minimizing P(h(X) 6= Y ).

The above lemma says that the minimizer of P(h(X) 6= Ŷ ) is equivalent to the optimal classifier for
P(h(X) 6= Y ) when the hypothesis spaceH covers the optimal h! Therefore when ` is classification-
calibrated on the noisy distribution D̂, and when the hypothesis space is sufficiently large, we know
that the optimal classifier for ED̂[`(h(X), Ŷ )] will be exactly the same as the one for ED[`(h(X), Y )].
This further implies that when the error rates are symmetric, the training might not need the error
rates information, and performing ERM on the noisy data:

h∗
`,D̂

:= arg min
h∈H

N∑
n=1

`(h(xn), ŷn) (4)

suffices to find the optimal classifier for the clean distribution, when given a sufficient amount of data.
The above argument is slightly trickier when considering a finite hypothesis spaceH. Denote by −h
the classifier that always flips the prediction from h. Then we prove that
Theorem 3. Suppose 1) ` is symmetric s.t. `(h(x),−y) = `(−h(x), y) and 2) −h∗

`,D̂
,−h∗`,D ∈ H:

R̂`,D̂(−h∗
`,D̂

) ≥ R̂`,D̂(−h∗`,D). Then for any δ > 0, we have with probability at least 1 − δ:

R`,D(h∗
`,D̂

)−R`,D(h∗`,D) ≤ 1
1−2e · L1 · R(H) + 2

√
log 1/δ
2N .

The second condition above is simply stating that the opposite classifier of the empirically optimal
one incurs a high empirical loss, and particularly higher than −h∗`,D. Intuitively, this condition is
satisfied for binary classification — if one classifier performs the best on the empirical data, flipping
its prediction often results in a very wrong one. Now comparing Theorem 1 and 3 we observe that
equalizing noise rates increases the error due to loss of informative labels by:∣∣∣∣ 1

1− 2e
− 1

1− e+ − e−

∣∣∣∣ · L1 · R(H) =
|e+ − e−|

|1− e+ − e−| · |1− 2e+|
· L1 · R(H).
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On the other hand, equalizing noise rates avoids the error due to mis-specifying e+, e− by errM
1−e+−e− ·

L2. Therefore, it is considered helpful to increase e− to e+ when errM ≥ |e+−e−|·L1·R(H)
|1−2e+|·L2

. The
above condition is likely to hold when the gap between noise rates |e+ − e−| is sufficiently small,
and when we do not have high confidence in the estimation of e+, e− (therefore a high errM).

4 Equalizing error rates improves fairness guarantee

In this section, we consider the fairness constrained learning problem and show that equalizing noise
rates helps improve fairness guarantee when only accessing the noisy labels. There are generally
two types of fairness constraints: those that do not depend on the label and those that do. For the
ones that do not, for example, demographic parity P(h(X) = +1|Z = a) = P(h(X) = +1|Z = b),
the existence of noisy labels does not impose additional challenges when enforcing such constraints.
For those that do, typically they are functions of true positive rates (TPR, also known as the equal
opportunity measure) and false positive rates (FPR). It was shown in [30] that equalizing TPR and
FPR on the noisy label leads to disparities when ea 6= eb. We will reproduce the same observations.
We focus on the second type of constraints: equalizing TPR and FPR using the noisy labels.

Having noted that equalizing TPR and FPR on the noisy labels leads to unintended consequences, the
literature has observed recent works on performing fairness constraint correction [30]. Similar to the
loss correction approaches, such correction methods would again require the knowledge of ea, eb,
which is subject to mis-specification error. Define

TPRz(h) := P(h(X) = +1|Y = +1, Z = z), FPRz(h) := P(h(X) = +1|Y = −1, Z = z)

T̃PRz(h) := P(h(X) = +1|Ỹ = +1, Z = z), F̃PRz(h) := P(h(X) = +1|Ỹ = −1, Z = z)

Resampling the noisy data examples such that P(Ỹ = +1|Z = z) = P(Ỹ = −1|Z = z) = 0.5, z ∈
{a, b}, define Cz,1 := 0.5 · ez, Cz,2 := 0.5 · (1− ez), we derive the following relationship:

Lemma 4. TPRz(h), FPRz(h) relate to T̃PRz(h), F̃PRz(h) as follows:

TPRz(h) =
Cz,1 · T̃PRz(h)− Cz,2 · F̃PRz(h)

ez − 0.5
, FPRz(h) =

Cz,1 · F̃PRz(h)− Cz,2 · T̃PRz(h)

ez − 0.5
(5)

The above lemma first implies that since two groups a, b might have different Cz,1, Cz,2, equalizing
T̃PR, F̃PR using the noisy labels naively is insufficient to guarantee equalization of TPR,FPR.

Unfairness due to model error. On the other hand, Lemma 4 points out a way to perform constraint
correction using the knowledge of ea, eb. Denote by ẽa, ẽb (both < 0.5) the estimated copies of
ea, eb that we have access to. Suppose we suffer from the following mis-specifications: errM :=

max{|ẽa − ea|, |ẽb − eb|}. Denote the corrected TPR and FPR using the noisy T̃PR and F̃PR as well
as ẽa, ẽb as TPRcz(h), FPRcz(h): Define C̃z,1 := 0.5 · ẽz, C̃z,2 := 0.5 · (1− ẽz), and:

TPRcz(h) =
C̃z,1 · T̃PRz(h)− C̃z,2 · F̃PRz(h)

ẽz − 0.5
, FPRcz(h) =

C̃z,1 · F̃PRz(h)− C̃z,2 · T̃PRz(h)

ẽz − 0.5
(6)

Theorem 5 establishes possible fairness violation due to errM, noise rates mis-specification:
Theorem 5. Equalizing TPRcz(h) & FPRcz(h) for a, b leads to following possible fairness violation:

|TPRa(h)− TPRb(h)| ≤ errM ·

(
T̃PRa(h)

(2ea − 1)(2ẽa − 1)
+

T̃PRb(h)

(2eb − 1)(2ẽb − 1)

)

|FPRa(h)− FPRb(h)| ≤ errM ·

(
F̃PRa(h)

(2ea − 1)(2ẽa − 1)
+

F̃PRb(h)

(2eb − 1)(2ẽb − 1)

)

But as a consequence of Lemma 4, we immediately know that

Theorem 6. When ea = eb, equalizing T̃PR and F̃PR suffices to equalizing the true TPR and FPR.
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This is simply because equalizing ea and eb also equalizes both Cz,1 and Cz,2. Theorem 6 helps us
establish a strong fairness guarantee: as long as we know the training data has balanced label noise
rates across different groups, enforcing the constraints directly on the noisy data suffices to guarantee
the equality between true TPR and FPR.

Our above observation points out increasing one group’s label noise to match another helps establish
the fairness guarantees more easily. Consider the case ea > eb. Now suppose we are able to
increase eb to match ea such that e = ea = eb. Denote by Ŷ the newly generated noisy label with e
symmetric error rates for both groups, and correspondingly ŷn the newly generated training labels.
Then performing fairness constrained ERM directly on D̂ := {(xn, ŷn, zn)}n:

h∗
`,D̂

:= arg min
h∈H

N∑
n=1

`(h(xn), ŷn) s.t. |F̂a(h)− F̂b(h)| ≤ δ, (7)

will help us equalize TPR and FPR between two groups when the number of training data is sufficiently
large. In above, F̂a(h), F̂b(h) are the empirically computed fairness measures using D̂.

5 Identifying cleaner class without using ground truth label

With the aforementioned benefits of balancing the noise rates, the remaining technical question is to
determine how does e+ or ea compare to e− or eb? Of course, when we have access to ground truth
labels, we will have a rough estimate and carry on to insert label noise (e.g., by further randomly
flipping the noisy labels, which we will discuss at the end of this section). In this section, we describe
another approach without the need for ground truth labels. We prove its sufficiency in identifying the
noisier class of labels. We demonstrate our idea using the unconstrained learning setting for detecting
sgn(e+ − e−), but the idea easily generalizes to the fairness setting to detect the order of ea and eb.

5.1 Noisy label agreements

We first present the following definition:
Definition 7 (Clusterability). We say the dataset D satisfies 2-NN clusterability if each instance x
shares the same true label class with its two nearest neighbors measured by ||x− x′||2.

For the rest of the section, we will assume that D satisfies 2-NN clusterability. 2-NN was similarly
introduced in a recent work [36] and has been shown to be a requirement that is mild to satisfy. Now
we define the following two quantities that are central to the development of our idea. For an arbitrary
instance X1 with noisy label Ỹ1, denote the noisy labels for two nearest neighbor instances of X1 as
Ỹ2, Ỹ3. Define the following agreement measures:

Definition 8 (2-NN Agreements). Let Ỹ1 denote the noisy label for a randomly selected instance X1.
Ỹ2, Ỹ3 are the noisy labels of X1’s 2-NN instances (measured by ||x− x′||2).

Positive Agreements PAD := P(Ỹ2 = Ỹ3 = +1|Ỹ1 = +1) (8)

Negative Agreements NAD := P(Ỹ2 = Ỹ3 = −1|Ỹ1 = −1) (9)

2-NN Agreement for 
Negative Labels

2-NN Agreement for 
Positive Labels

Negative Label Unknown true classPositive Label

Figure 1: 2-NN Agreements. “Trans-
parent" ones are the solid instance’s 2-
NN instances.

PAD computes the likelihood of the neighbor data points
“agreeing" on a positive label. NAD computes the one for
the negative label. Now we will first sub-sample the noisy
distribution and compute PAD,NAD:

• Step 1 Sample Ỹ such that P(Ỹ = +1) = P(Ỹ =

−1) = 0.5. Denote this resampled distribution as D�.
• Step 2 Compute NAD� , PAD� .

Next we prove that knowing NAD� , PAD� suffices to in-
form the order between e+, e− (sgn(e+ − e−)):
Theorem 9. When e+, e− < 0.5 and D satisfies 2-NN
clusterability, PAD� ,NAD� relate to e+, e− as follows:
PAD� − NAD� = 2(0.5− e+)(0.5− e−)(e− − e+). Then if PAD� > NAD� , we know that e+ < e−;
otherwise e+ > e−. If PAD� = NAD� , then e+ = e−.
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Estimating PAD� ,NAD� using D�. Note that both PAD� and NAD� , P(Ỹ2 = Ỹ3 = +1|Ỹ1 = +1)

and P(Ỹ2 = Ỹ3 = −1|Ỹ1 = −1) can be counted from the noisy data without accessing the ground
truth. For instance for PAD� :

• Step 1 Find all xn in D� with ỹn = +1 and their 2-NN n1, n2.

• Step 2 Count #{n: ỹn=ỹn1
=ỹn2

=+1}
#{n: ỹn=+1} . #(·) counts the number of samples that satisfy the condition.

We show pseudocode for an implementation of estimating PA in Figure A1 in Appendix A.11.

5.2 Our solution: NOISE+
We show that randomly flipping Ỹ = y with the smaller esgn(y) by a small probability ε monoton-
ically decreases the gap between noise rates |e+ − e−|. Without the loss of generality suppose
e+ < e−, and we will only flip the Ỹ = +1 labels (but not flipping the ones with Ỹ = −1).
We show numpy-like pseudocode for the flipping function in Figure 3, and the implementation
for exclusively flipping Ỹ = −1 labels is symmetric. Denote by Ŷ as the flipped version of Ỹ :
P(Ŷ = −1|Ỹ = +1) = ε, and ê+ := P(Ŷ = −1|Y = +1), ê− := P(Ŷ = +1|Y = −1). We have:

Proposition 10. ê+ = (1− e+) · ε+ e+, ê− = (1− ε) · e−. Further, the new gap between the noise
rates of the flipped label Ŷ is a monotonic function of ε: ê− − ê+ = e− − e+ − (1− e+ + e−) · ε.

Since 1− e+ + e− > 0, when ε is small, the above derivation shows the effectiveness in reducing
the noise rate gap e− − e+ by randomly flipping the noisy labels that correspond to the class with
lower noise rate. The only remaining question is how to find the optimal ε s.t. ê− − ê+ = 0.
Calling Theorem 9, we know PAD� − NAD� = 2(0.5 − ê+)(0.5 − ê−)(ê− − ê+). Denote by
f(ε) := 0.5 · (PAD� − NAD�). Easy to derive the three solutions for f(ε) = 0 (setting each of
the terms to 0): ε1 = 1 − 0.5

e−
< 0, ε2 = e−−e+

1−e++e−
, ε3 = 0.5−e+

1−e+ : note that ε2 = e−−e+
1−e++e−

<
(e−−e+)+(1−e+−e−)

(1−e++e−)+(1−e+−e−) = 1−2e+
2(1−e+) = ε3, and ε3 will lead to an uninformative state where ê+ = 0.5.

Therefore ε2 is our target root.

Figure 2: Agreement gap PA−NA
varies for different ε. There are
only two positive roots for PA −
NA = 0. The less one results in
ê+ = ê−.

The monotonicity of f(ε) from 0 to ε2 motivates us to look for
a proper ε by a binary search procedure. Suppose we have two
different flipping parameters εl < εr. Initially the synthetic
datasets induced by them are Dl and Dr, and the gaps of the
counted agreements are Cl = PADl

−NADl
and Cr = PADr

−
NADr

, satisfying Cl > 0 > Cr. In each iteration, we try a
new flip parameter εmid = (εl + εr)/2, and check whether the
new gap Cmid is bounded by a threshold γ. If −γ ≤ Cmid ≤ γ,
we return the labels flipped by εmid. Otherwise, we update the
values of εl and εr according to the sign of Cmid: if Cmid < 0,
we set εr ← εmid,Dr ← Dmid (reducing εr); otherwise εl ←
εmid,Dl ← Dmid (increasing εl). We summarize NOISE+ in
Algorithm 1. Here, we initialize εr = 0.3 which empirically
succeeds in varied noise settings. In case εr = 0.3 fails, we can
grid search a variety of ε values (e.g., 0.1, 0.2) satisfyingCr < 0
as the initial εr to proceed our binary search algorithm. Note
that Algorithm 1 assumes e+ < e−, and the implementation is
symmetric for e+ > e−.

Selection of loss function. Our algorithm is particularly suitable for losses that do not require the
knowledge of noise rates. Standard cross entropy (CE) would certainly be applicable. Other robust
loss functions are great options too. We note a recently proposed loss, peer loss function [21], does
not require the specification of noise rates:

`peer(h(xn), ỹn) := ` (h(xn), ỹn)− α · ` (h(xp1), ỹp2) .

Here, α > 0 is a hyper-parameter to control the balance of the instances for each label, p1 and p2 are
uniformly and randomly selected peer samples. Peer loss is also promoted in [30] for the fairness
constrained setting. We believe it is particularly suitable for our NOISE+. We will evaluate CE and
peer loss in the experiment section.
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Fairness constrained learning. Our above derivations and observations can be similarly applied to
the fairness constrained setting. The only difference lies in that now PAD� ,NAD� are corresponding
to the agreements within each of the two groups a, b instead of the two label class group Ỹ = +1
and Ỹ = −1. We provide details in the Appendix A.9 without repeating them here.

Training. Once we have the output and noise-incremented dataset D̂ := {(xn, ŷn)}n from Algorithm
1, we will use it directly in our ERM framework for the unconstrained case as in Eqn. (4) and will
use it in the fairness constrained ERM in Eqn. (7) directly too.

Extension to multi-class. As explained at the beginning, our algorithm can largely extend to the
multi-class/group setting. The primary requirement of the extension is to extend the definition of
PAD� ,NAD� to each label class/group. We defer details to Appendix A.10. In the next section, we
will demonstrate the effectiveness of our results with the CIFAR-10 dataset.

Algorithm 1 NOISE+: A binary search algorithm for
balancing noise rates.
Require: γ > 0, εl = 0, εr = 0.3

Resample a balanced set D� from D̃;
Initialize Dl = D�, Dr = Flip(D�, εr);
Estimate PADl , PADr , NADl , NADr .
while PADl − NADl > γ and PADr − NADr < −γ do
εmid ← (εl + εr)/2,Dmid ← Flip(D�, εmid);
Estimate PADmid and NADmid ;
if PADmid − NADmid < −γ then

/* εmid is at the right of the root */
εr ← εmid,Dr ← Dmid;
PADr ← PADmid , NADr ← NADmid ;

else if PADmid − NADmid > γ then
/* εmid is at the left of the root */
εl ← εmid,Dl ← Dmid;
PADl ← PADmid , NADl ← NADmid ;

else
return D̂ = Flip(D̃, (εl + εr)/2);

end if
end while
return unsuccessful;

def flip(dataset , epsilon):
# unpack the dataset
(X, y) = dataset
# filter positives
y_plus = y[y > 0]
# flip the positive

labels w.p. epsilon
is_flipped = numpy.

random.binomial(1,
epsilon , y_plus.size
)

y[y > 0] = is_flipped *
(-y_plus) + (1 -
is_flipped) * y_plus

# pack and return the
dataset

return (X, y)

Figure 3: Pseudocode for Flip. Flip
takes the dataset and a small probability
ε as input, and only flips positive exam-
ples with probability ε.

6 Experiments

In order to verify the power of our increasing-to-balancing method, we conduct extensive experiments
on both unconstrained learning and constrained learning settings. The datasets include: the UCI
Adult Income dataset [9], the Compas recidivism dataset [2], Fairface [15] face attribute dataset, and
CIFAR 10 [16] dataset. We defer more dataset details to Appendix B.1.

6.1 Unconstrained learning

Setup. For the unconstrained learning, we implement a one-layer perceptron for binary classification
on Adult, Compas, and Fairface datasets. We flip the true labels on training set according to a set of
asymmetric noise rates, train the models on the corrupted labels, and evaluate the accuracy on test set
with clean labels. The baseline methods we compare include: surrogate loss [25] with mis-specified
noise rates (Mis. SL) and estimated noise rates (Est. SL) respectively, vanilla cross entropy (CE),
and peer loss functions [21] (Peer). For Mis. SL, we randomly generate the noise parameters but
ensure that the trace is equal to that of the true noise transition matrix. For Est. SL, we estimate
the noise rates by adopting the confident learning procedure [26]. We note that the training of peer
loss functions does not require the knowledge of noise rates, and follow their instructions to tune
the hyper-parameters through cross-validation. For the same corrupted training labels, we deploy
our increasing-to-balancing procedure, and evaluate the performance of cross entropy and peer loss
functions again. We set the threshold γ used in Algorithm 1 as 0.1% on Adult and Fairface datasets,
and loose it to 1% on Compas due to its much smaller data size. We repeat all the methods 5 runs
with different random seeds and report the mean and standard deviation.
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Table 1: Binary classification accuracy of compared methods on 3 datasets across different
levels of noise rates. Mis. SL: surrogate loss [25] with misspecified parameters. Est. SL: surrogate
loss [25] with estimated parameters. CE: vanilla cross entropy. Peer: peer loss function [21]. All
methods are trained with one-layer perceptron with the same hyper-parameters. For each noise
setting, we average across 5 runs and report the mean and standard deviation. We find that the
increasing-to-balancing can boost the vanilla cross entropy on all the noise settings. We highlight any
boost of increasing-to-balancing for vanilla CE in green, and the best accuracy in blue.

BASELINES (LESS NOISE) NOISE+ (MORE NOISE)

Dataset e− e+ Mis. SL Est. SL CE Peer CE Peer

Adult 0.0 0.1 72.79± 0.34 72.64± 0.38 72.63± 0.29 72.77± 0.32 73.62± 0.37 73.86± 0.41
n = 48, 842 0.0 0.2 72.27± 0.39 72.13± 0.37 71.26± 0.38 71.95± 0.34 72.73± 0.71 73.52± 0.58
d = 28 0.1 0.2 73.02± 0.50 72.68± 0.16 72.31± 0.25 72.88± 0.14 71.92± 1.98 73.81± 0.40

0.1 0.3 72.44± 0.47 72.15± 0.23 69.06± 2.01 72.26± 0.43 69.53± 4.90 73.34± 1.27
0.2 0.3 72.81± 0.51 72.43± 0.14 71.44± 0.93 72.78± 0.28 71.55± 2.04 73.75± 0.26
0.2 0.4 72.06± 0.19 71.97± 0.41 63.49± 1.58 71.97± 0.37 65.99± 7.99 71.43± 2.26
0.3 0.4 52.65± 0.53 72.67± 0.26 71.55± 0.88 73.49± 0.18 72.54± 1.84 74.27± 0.20

Compas 0.0 0.1 66.36± 1.05 66.04± 1.14 66.16± 1.13 68.06± 0.70 67.14± 0.92 68.22± 0.68
n = 7, 168 0.0 0.2 66.84± 0.69 66.06± 0.81 65.38± 1.40 68.03± 0.77 66.51± 1.90 68.40± 0.78
d = 10 0.1 0.2 66.41± 0.43 65.69± 0.57 65.91± 0.97 67.49± 0.40 66.54± 0.21 67.80± 0.44

0.1 0.3 65.91± 0.42 65.22± 0.63 61.24± 0.70 67.36± 0.79 65.76± 2.09 68.05± 0.56
0.2 0.3 65.06± 0.72 65.86± 1.69 65.06± 1.48 68.02± 0.94 66.46± 1.27 68.04± 1.11
0.2 0.4 64.82± 0.52 65.47± 0.46 59.68± 2.49 67.37± 0.54 63.85± 3.31 68.39± 0.56

Fairface 0.0 0.1 87.64± 0.03 87.75± 0.03 87.41± 0.11 87.58± 0.15 88.23± 0.07 88.49± 0.12
n = 108, 501 0.0 0.2 85.22± 0.06 85.83± 0.08 85.08± 0.16 85.18± 0.16 88.55± 0.03 88.67± 0.03
d = 50 0.1 0.2 87.67± 0.07 87.56± 0.04 87.21± 0.08 87.28± 0.05 88.45± 0.06 88.65± 0.07

0.1 0.3 72.03± 0.13 85.68± 0.07 83.20± 0.12 84.58± 0.09 87.81± 0.14 88.50± 0.12
0.2 0.3 74.18± 0.20 87.34± 0.14 86.47± 0.09 87.00± 0.11 88.46± 0.08 88.58± 0.10
0.2 0.4 58.30± 0.23 85.48± 0.09 78.33± 0.63 84.05± 0.13 81.90± 0.58 87.69± 0.15

Results. We show the experimental results in Table 1. We observe that our increasing-to-balancing
method significantly improves the accuracy of the vanilla cross entropy on the majority of noise set-
tings. It is notable that the cross entropy with increasing-to-balancing has a comparable performance
with Est. SL, when the noise is relatively small. When the noise rates are large (e.g. 0.2 and 0.4),
we observe a significant degradation for cross entropy, but increasing-to-balancing still boosts the
accuracy. Moreover, we find that peer loss after increasing-to-balancing is more robust to noise, and
dominantly achieve the highest accuracy.

Table 2: Accuracy of compared methods across different lev-
els of noise gap for multi-class classification.

LESS NOISE MORE NOISE

Dataset noise gap Mis. SL Est. SL CE Peer CE Peer

MNIST
0.1
0.2
0.3

89.59
88.10
84.97

89.69
88.61
86.88

86.66
84.53
85.24

88.12
87.21
86.35

86.81
85.97
81.89

89.19
89.12
88.75

CIFAR-10
0.1
0.2
0.3

70.90
80.51
81.30

85.76
86.34
90.61

88.03
88.43
89.78

89.66
89.36
90.24

88.69
89.01
87.98

89.90
90.08
89.92

Table 3: Accuracy of com-
pared methods on Cloth-
ing1M dataset.

Method Test Accuracy

CE 68.94%
Loss Correction [27] 69.84%
Co-Teaching [11] 70.15%
CE + NOISE+ 70.37%

Multi-class extension. We test NOISE+ in the multi-class setting by balancing the noise rates
class by class. We evaluate the compared methods on MNIST [18] and CIFAR-10 [16] with more
sophisticated noise transition matrices. Considering that both datasets have 10 classes, we adopt the
following procedure to generate the 10× 10 noise transition matrix: (1) manually set the diagonal
elements at least 0.4; (2) permute the diagonal elements to increase the randomness; (3) fill out the
non-diagonal elements randomly and ensure the sum of each column is 1. An MLP model is trained
from scratch on MNIST dataset, while a pre-trained vision transformer [8] is used to extract visual
features on CIFAR-10 dataset. As shown in Table 2, we observe that when the noise gap is 0.1 and
0.2, CE and Peer with NOISE+ outperforms the pure CE and Peer, respectively. When the noise gap
is 0.3, balancing cannot compensate for the performance drop due to increased noise.

Experiments on Clothing1M. Clothing1M is a large-scale dataset collected from online shopping
websites, comprising of 1 million training images of clothes with realistic noisy and 10,000 test data
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Table 4: Constrained learning results with group-dependent label noise. We only report the
results for ea = 0.2 and eb = 0.4. LR: naïve logistic regression without noise correction. GPR:
group-weighted peer loss [30]. Peer: peer loss [21]. We highlight numbers of low fairness violation.

LESS NOISE MORE NOISE

Dataset Metrics LR GPL LR Peer

Adult accuracy
fairness

72.73
6.48

71.2
2.95

71.88
3.16

73.02
1.67

Compas accuracy
fairness

62.60
2.87

66.03
7.55

66.22
6.07

64.15
3.63

Fairface accuracy
fairness

86.97
5.87

87.47
4.70

88.19
1.38

87.93
0.25

with clean labels. For a fair comparison, we adopted the same setting as described in [27] and trained
a ResNet-50 [13] classifier. Table 3 compares our methods with some other baselines, including
loss correction [27] and Co-Teaching [11]. Without a careful tuning of training parameters, vanilla
CE with NOISE+reached 70.37% test accuracy. In comparison, standard CE achieves 68.94%, loss
correction achieves 69.84%, and Co-Teaching is 70.15%.

6.2 Constrained learning

Setup. We conduct experiments with equal odds constraints [12] on Adult, Compas, and Fairface
datasets. We add heterogeneous noise, i.e., uneven noise rates for different group memberships but
symmetric for different classes, into training labels but keep test labels clean. We stress-test the
performance of the naïve logistic regression (LR) and group-weighted peer loss (GPL) [30] with and
without our increasing-to-balancing program.1 We note that GPL degrades to peer loss when noise
rates are homogeneous across protected groups [30], and directly apply peer loss after balancing. For
a fair comparison, we use logistic regression as the base classifier for all the methods. We use the
reductions approach [1] to solve the constrained optimization.

Results. We report the accuracy and fairness violation for ea = 0.2 and eb = 0.4 in Table 4
and defer more noise settings to Appendix B.4. We make the following observations: (1) All the
methods retain a comparable accuracy. We conjecture that this benefits from the symmetric noise
rates between positive and negative classes. (2) After balancing, both naïve LR and Peer significantly
mitigate the fairness violations on Adult and Fairface datasets as a result of equalized noise rates
across groups. (3) Peer loss generally has a lower fairness violation than naïve LR. This implies
its capability of recovering unbiased classifiers. (4) We find out that the performance of LR with
increasing-to-balancing is less profitable on Compas dataset because of uninformative features (only
10-dimensional features), and more robust on Fairface dataset with rich image information.

7 Concluding Remarks

This paper elaborates the possibility of improving the training model accuracy and fairness guarantees
by increasing a certain class of instances’ noise rates. Our idea is based on several observations
that increasing-to-balance label noise rates can yield an easier learning problem that is robust to
mis-specified noise rate parameters. The above robustness helps us improve generalization power as
well as fairness guarantees. To deploy our idea, we propose a detection algorithm to identify the class
of instances with a higher label noise rate, without using any ground truth label information.

Our noise rate balancing solution is primarily a data pre-processing procedure and is compatible
with most existing learning with noisy label solutions. Our experiment result using peer loss is one
such example. Empirically we do observe that many other solutions may also enjoy the benefits of
balancing the noise rates. We believe this data pre-processing technique has the potential to find
applications in other learning tasks when balancing label noise or bias is desired.

1We did not repeat testing surrogate loss as it is reported in [30] that GPL appears to be a better and more
robust solution. Also we focus on correcting fairness constraints in this section, both SL and GPL would use the
same constraint corrections.
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This Appendix is organized as follows:

• Section A includes omitted proofs for theoretical conclusions in the main paper, as well as the
extension to fairness constrained setting (A.9) and multi-class classification (A.10).

• Section B presents more experimental details and results.

A Omitted Proofs

A.1 Proof for Theorem 1

Proof Let `� denote the noise-corrected loss with respect to true noise parameters e+, e−:

`�(h(xn), ỹn) := (1− e−sgn(ỹn)) · `(h(xn), ỹn)− esgn(ỹn) · `(h(xn),−ỹn) (A1)

It was established in [25] the unbiasedness of `�:
Lemma 11 (Unbiasedness of `�, [25]). 1

1−e+−e− · EỸ |Y=y[`�(h(x), Ỹ )] = `(h(x), y).

A direct consequence of this lemma, via repeatedly applying to each (X,Y ), is its unbiasedness on
the population level:

1

1− e+ − e−
· ED̃|D[R̂`�,D̃(h)] = R̂`,D(h),

1

1− e+ − e−
·R`�,D̃(h) = R`,D(h)

The following fact holds by subtracting `� from ˜̀:

˜̀(h(xn), ỹn) = `�(h(xn), ỹn) + (e−ỹn − ẽ−ỹn) · `(h(xn), ỹn) + (ẽ−ỹn − eỹn) · `(h(xn),−ỹn)

Using the triangle inequality of | · | we establish that

|˜̀(h(xn), ỹn)− `�(h(xn), ỹn)| ≤ max{|ẽ+ − e+|, |ẽ− − e−|} · ¯̀. (A2)

This further helps us bound the differences in the empirical risks:

|R̂˜̀,D̃(h)− R̂`�,D̃(h)| ≤ max{|ẽ+ − e+|, |ẽ− − e−|} · ¯̀ (A3)

Therefore

R̂`�,D̃(h∗˜̀,D̃) ≤ R̂˜̀,D̃(h∗˜̀,D̃) + max{|ẽ+ − e+|, |ẽ− − e−|} · ¯̀

≤ R̂˜̀,D̃(h∗`,D) + max{|ẽ+ − e+|, |ẽ− − e−|} · ¯̀ (Opt. of h∗
`,D̂

)

≤ R̂`�,D̃(h∗`,D) + 2 max{|ẽ+ − e+|, |ẽ− − e−|} · ¯̀ (A4)

1



Calling the results in [25], [Rademacher bound for max risk deviation, Proof of Lemma 2 therein],
we know that for any δ > 0, with probability at least 1− δ:

sup
h∈H

1

1− e+ − e−

∣∣∣R`�,D̃(h)− R̂`�,D̃(h)
∣∣∣ ≤ 2L

1− e+ − e−
· R(H) +

√
log 1/δ

2N
(A5)

The above knowledge further helps us establish that
R`,D(h∗˜̀,D̃)−R`,D(h∗`,D)

=
1

1− e+ − e−
(R`�,D̃(h∗˜̀,D̃)−R`�,D̃(h∗`,D)) (Unbiasedness of `� on D̃)

=
1

1− e+ − e−
(R`�,D̃(h∗˜̀,D̃)− R̂`�,D̃(h∗˜̀,D̃)) (Rademacher bound )

+
1

1− e+ − e−
(R̂`�,D̃(h∗˜̀,D̃)− R̂`�,D̃(h∗`,D)) (Eqn. (A4))

+
1

1− e+ − e−
(R̂`�,D̃(h∗`,D)−R`�,D̃(h∗`,D)) (Rademacher bound )

≤ 4L

1− e+ − e−
· R(H) + 2

√
log 1/δ

2N
+ 2

max{|ẽ+ − e+|, |ẽ− − e−|}
1− e+ − e−

· ¯̀

≤ 4L

1− e+ − e−
· R(H) + 2

√
log 1/δ

2N
+ 2

errM
1− e+ − e−

· ¯̀ .

We complete the proof.

A.2 Proof for Lemma 2

Proof Expanding P(h(X) 6= Ŷ ) using the law of total probability we have

P(h(X) 6= Ŷ ) = P(h(X) 6= Ŷ , Ŷ 6= Y ) + P(h(X) 6= Ŷ , Ŷ = Y )

= P(h(X) 6= Ŷ | Ŷ 6= Y ) · P(Ŷ 6= Y ) + P(h(X) 6= Ŷ | Ŷ = Y ) · P(Ŷ = Y ).

In binary classification, h(X) 6= Ỹ , Ỹ 6= Y implies h(X) = Y , such that

P(h(X) 6= Ỹ | Ỹ 6= Y ) = P(h(X) = Y | Ỹ 6= Y ).

Due to the independence of Ỹ and X given Y ,

P(h(X) = Y | Ỹ 6= Y ) =
P(h(X) = Y, Ỹ 6= Y )

P(Ỹ 6= Y )
=

P(h(X) = Y )P(Ỹ 6= Y )

P(Ỹ 6= Y )
= P(h(X) = Y )

Similarly, we have
P(h(X) 6= Ŷ | Ŷ = Y ) = P(h(X) 6= Ỹ ).

Combining all above we finished the proof when e < 0.5 by having:

P(h(X) 6= Ŷ ) = P(h(X) = Y ) · e+ P(h(X) 6= Y ) · (1− e)
= (1− 2e) · P(h(X) 6= Y ) + e

A.3 Proof for Theorem 3

Proof Again let `� denote the noise-corrected loss with respect to true noise parameters e+, e−:
`�(h(xn), ỹn) := (1− e−sgn(ỹn)) · `(h(xn), ỹn)− esgn(ỹn) · `(h(xn),−ỹn) (A6)

First notice the following when ` is a symmetric loss:
R`,D(h∗

`,D̂
)

=
1

1− 2e
·R`�,D̂(h∗

`,D̂
) (Unbiasedness of `� on D̂ using symmetric e)

=
1− e
1− 2e

·R`,D̂(h∗
`,D̂

)− e

1− 2e
·R`,D̂(−h∗

`,D̂
) (A7)
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The last equality uses the definition of `�, and is due to ` being symmetric. Then we show that

1

1− 2e
·
(
R`,D̂(h∗

`,D̂
)−R`,D̂(h∗`,D)

)
=

1

1− 2e

(
R`,D̂(h∗

`,D̂
)− R̂`,D̂(h∗

`,D̂
)
)

(Rademacher bound )

+
1

1− 2e

(
R̂`,D̂(h∗

`,D̂
)− R̂`,D̂(h∗`,D)

)
(≤ 0 Optimality of h∗˜̀,D̂ on `, D̂)

+
1

1− 2e

(
R̂`,D̂(h∗`,D)−R`,D̂(h∗`,D)

)
(Rademacher bound )

≤ 4L

1− 2e
R(H) + 2

√
log 1/δ

2N

The inequality is due to the Rademacher bound we invoked as in Eqn. (A5) as well as the optimality
of h∗

`,D̂
on `, D̂. That is we have proved with probability at least 1− δ that

1

1− 2e
·R`,D̂(h∗

`,D̂
) ≤ 1

1− 2e
·R`,D̂(h∗`,D) +

4L

1− 2e
R(H) + 2

√
log 1/δ

2N
(A8)

Repeating the same analysis and using the assumed condition that R̂`,D̂(−h∗
`,D̂

)− R̂`,D̂(−h∗`,D) ≥ 0

we have

1

1− 2e
·R`,D̂(−h∗

`,D̂
) ≥ 1

1− 2e
·R`,D̂(−h∗`,D)− 4L

1− 2e
R(H)− 2

√
log 1/δ

2N
(A9)

Combining above (Eqn. (A8) and (A9)),we have with probability at least 1− δ (that both of the above
bounds will happen simultaneously)

R`,D(h∗
`,D̂

) =
1− e
1− 2e

·R`,D̂(h∗
`,D̂

)− e

1− 2e
·R`,D̂(−h∗

`,D̂
)

≤ 1− e
1− 2e

·R`,D̂(h∗`,D)− e

1− 2e
·R`,D̂(−h∗`,D) +

4L

1− 2e
R(H) + 2

√
log 1/δ

2N

= R`,D(h∗`,D) +
4L

1− 2e
R(H) + 2

√
log 1/δ

2N
.

The inequality uses Eqn. (A8) and (A9). Again the last equality is reusing Eqn. (A7). This completes
the proof.

A.4 Proof for Lemma 4

Proof

P(h(X) = +1|Ỹ = +1, Z = a) =
P(h(X) = +1, Ỹ = +1|Z = a)

P(Ỹ = +1|Z = a)
(A10)

Again we do the trick of sampling P(Ỹ = +1|Z = a) to be 0.5, which allows us to focus on the
numerator.

P(h(X) = +1, Ỹ = +1|Z = a)

= P(h(X) = +1, Ỹ = +1, Y = +1|Z = a)

+ P(h(X) = +1, Ỹ = +1, Y = −1|Z = a)

= P(h(X) = +1, Ỹ = +1|Y = +1, Z = a) · P(Y = +1|Z = a)

+ P(h(X) = +1, Ỹ = +1|Y = −1, Z = a) · P(Y = −1|Z = a)

= P(h(X) = +1|Y = +1, Z = a) · (1− ea) · P(Y = +1|Z = a)

+ P(h(X) = +1|Y = −1, Z = a) · ea · P(Y = −1|Z = a)

(Independence of X and Ỹ given Y )
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That is

0.5 · T̃PRa(h) = TPRa(h) · (1− ea) · P(Y = +1|Z = a) + FPRa(h) · ea · P(Y = −1|Z = a)
(A11)

Similarly for FPR we have

P(h(X) = +1|Ỹ = −1, Z = a) =
P(h(X) = +1, Ỹ = −1|Z = a)

P(Ỹ = −1|Z = a)
(A12)

Following similar steps as above, the numerator further derives as

P(h(X) = +1, Ỹ = +1|Z = a)

= P(h(X) = +1|Y = −1, Z = a) · (1− ea) · P(Y = +1|Z = a)

+ P(h(X) = +1|Y = +1, Z = a) · ea · P(Y = −1|Z = a)

That is

0.5 · F̃PRa(h) = FPRa(h) · (1− ea) · P(Y = +1|Z = a) + TPRa(h) · ea · P(Y = −1|Z = a)
(A13)

When P(Ỹ = +1|Z = a) = P(Ỹ = +1|Z = b) = 0.5, we will also have

0.5 = P(Ỹ = +1|Z = a) = P(Y = +1|Z = a)(1− ea) + P(Y = −1|Z = a)ea (A14)

which returns us that P(Y = +1|Z = a) = 0.5−ea
1−2ea := p = 0.5. Using this knowledge and solving

the linear equations defined by Eqn. (A17) and (A13) we have

TPRa(h) =
Ca,1 · T̃PRa(h)− Ca,2 · F̃PRa(h)

ea − 0.5
(A15)

FPRa(h) =
Ca,1 · F̃PRa(h)− Ca,2 · T̃PRa(h)

ea − 0.5
(A16)

A.5 Proof for Theorem 5

Proof Combining Eqn. (5) and (6) we have

|TPRz(h)− TPRcz(h)|

=

∣∣∣∣∣0.5 · ez · T̃PRz(h)− 0.5(1− ez) · F̃PRz(h)

ez − 0.5
− 0.5 · ẽz · T̃PRz(h)− 0.5(1− ẽz) · F̃PRz(h)

ẽz − 0.5

∣∣∣∣∣
=
|ẽz − ez| · T̃PRz(h)

(2ez − 1)(2ẽz − 1)

≤ errM · T̃PRz(h)

(2ez − 1)(2ẽz − 1)
. (A17)

Then equalizing TPR that TPRca(h) = TPRcb(h) returns us

|TPRa(h)− TPRb(h)|
=|TPRa(h)− TPRca(h) + TPRcb(h)− TPRb(h)|
≤|TPRa(h)− TPRca(h)|+ |TPRcb(h)− TPRb(h)|

≤ errM · T̃PRa(h)

(2ea − 1)(2ẽa − 1)
+

errM · T̃PRb(h)

(2eb − 1)(2ẽb − 1)
,

where the last inequality is an application of Eqn. (A17).
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Similarly

|FPRz(h)− FPRcz(h)|

=

∣∣∣∣∣0.5 · ez · F̃PRz(h)− 0.5(1− ez) · T̃PRz(h)

ez − 0.5
− 0.5 · ẽz · F̃PRz(h)− 0.5(1− ẽz) · T̃PRz(h)

ẽz − 0.5

∣∣∣∣∣
=
|ẽz − ez| · F̃PRz(h)

(2ez − 1)(2ẽz − 1)

≤ errM · F̃PRz(h)

(2ez − 1)(2ẽz − 1)
.

Then equalizing FPR that FPRca(h) = FPRcb(h) we have

|FPRa(h)− FPRb(h)|
=|FPRa(h)− FPRca(h) + FPRcb(h)− FPRb(h)|
≤|FPRa(h)− FPRca(h)|+ |FPRcb(h)− FPRb(h)|

≤ errM · F̃PRa(h)

(2ea − 1)(2ẽa − 1)
+

errM · F̃PRb(h)

(2eb − 1)(2ẽb − 1)
.

A.6 Proof for Theorem 6

Proof Easy to show that when ea = eb, Ca,1 = Cb,1 and Ca,2 = Cb,2. Therefore, from Eqn. (5) we
know equalizing

T̃PRa(h) = T̃PRb(h), F̃PRa(h) = F̃PRb(h) (A18)

will also return us

TPRa(h) = TPRb(h), FPRa(h) = FPRb(h) (A19)

A.7 Proof for Theorem 9

Proof We start with deriving PAD� .

PAD� = P(Ỹ2 = Ỹ3 = +1|Ỹ1 = +1) =
P(Ỹ1 = Ỹ2 = Ỹ3 = +1)

P(Ỹ1 = +1)

Due to the sampling step, we have P(Ỹ1 = +1) = 0.5 - this allows us to focus on the denominator:

P(Ỹ1 = Ỹ2 = Ỹ3 = +1)
(1)
= P(Y = +1)

3∏
i=1

P(Ỹi = +1|Y = +1) + P(Y = −1)
3∏
i=1

P(Ỹi = +1|Y = −1)

(2)
= P(Y = +1) · (1− e+)3 + P(Y = −1) · e3−

where in above, (1) uses the 2-NN clusterability of D, and (2) uses the conditional independence
between the noisy labels. Similarly for NAD� we have:

P(Ỹ2 = Ỹ3 = −1|Ỹ1 = −1) =
P(Ỹ1 = Ỹ2 = Ỹ3 = −1)

P(Ỹ1 = −1)

Again we have that P(Ỹ1 = −1) = 0.5, and the numerator derives as

P(Ỹ1 = Ỹ2 = Ỹ3 = −1) = P(Y = +1)
3∏
i=1

P(Ỹi = −1|Y = +1) + P(Y = −1)
3∏
i=1

P(Ỹi = −1|Y = −1)

= P(Y = +1) · e3+ + P(Y = −1) · (1− e−)3

5



Taking the difference (and normalize by 0.5) we have

0.5 · (PAD� − NAD�)

= P(Ỹ2 = Ỹ3 = +1|Ỹ1 = +1)− P(Ỹ2 = Ỹ3 = −1|Ỹ1 = −1)

= P(Y = +1)
(
(1− e+)3 − e3+

)
+ P(Y = −1)

(
e3− − (1− e−)3

)
(A20)

Notice two facts: first we can derive that

(1− e+)3 − e3+ = (1− 2e+)(e2+ − e+ + 1), e3− − (1− e−)3 = −(1− 2e−)(e2− − e− + 1)

Second, we will use the following fact:

0.5 = P(Ỹ = +1) = P(Y = +1)(1− e+) + P(Y = −1)e− (A21)

from which we solve that P(Y = +1) = 0.5−e−
1−e+−e− . Symmetrically, P(Y = −1) = 0.5−e+

1−e+−e− .

Return the above two facts back into Eqn. (A20), we have

P(Y = +1)((1− e+)3 − e3+) + P(Y = −1)(e3− − (1− e−)3)

= 2 · (0.5− e+)(0.5− e−)

1− e+ − e−
(
(e2+ − e+ + 1)− (e2− − e− + 1)

)
= 2 · (0.5− e+) · (0.5− e−) · (e− − e+)

completing the proof when e+, e− < 0.5.

A.8 Proof for Proposition 10

Proof Expanding P(Ŷ = −1|Y = +1) using the law of total probability we have

ê+ = P(Ŷ = −1|Y = +1)

= P(Ŷ = −1, Ỹ = +1|Y = +1) + P(Ŷ = −1, Ỹ = −1|Y = +1)

= P(Ŷ = −1|Ỹ = +1, Y = +1) · P(Ỹ = +1|Y = +1)

+ P(Ŷ = −1|Ỹ = −1, Y = +1) · P(Ỹ = −1|Y = +1)

= ε · (1− e+) + 1 · e+ (Independence between Ŷ and Y given Ỹ )
= (1− e+) · ε+ e+

Similarly,

ê− = P(Ŷ = +1|Y = −1)

= P(Ŷ = +1, Ỹ = +1|Y = −1) + P(Ŷ = +1, Ỹ = −1|Y = −1)

= P(Ŷ = +1|Ỹ = +1, Y = −1) · P(Ỹ = +1|Y = −1)

+ P(Ŷ = +1|Ỹ = −1, Y = −1) · P(Ỹ = −1|Y = −1)

= (1− ε) · e−.

The last equality is again due to the independence between Ŷ and Y given Ỹ , as well as the fact that
we do not flip the Ỹ = −1 labels so P(Ŷ = +1|Ỹ = −1, Y = −1) = 0. Taking the difference we
finish the proof.

A.9 Balancing noise for fairness constrained case

Define

PAD�,a = PZ=a(Ỹ2 = Ỹ3 = +1|Ỹ1 = +1) (A22)

PAD�,b = PZ=b(Ỹ2 = Ỹ3 = +1|Ỹ1 = +1) (A23)
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We now claim that sgn(PAD�,a − PAD�,b) = −sgn(ea − eb). We start with deriving PAD�,a.

PAD�,a = PZ=a(Ỹ2 = Ỹ3 = +1|Ỹ1 = +1) =
PZ=a(Ỹ1 = Ỹ2 = Ỹ3 = +1)

PZ=a(Ỹ1 = +1)

Due to the sampling step, we have PZ=a(Ỹ1 = +1) = 0.5 - this allows us to focus on the denomina-
tor:

PZ=a(Ỹ1 = Ỹ2 = Ỹ3 = +1)
(1)
= PZ=a(Y = +1)

3∏
i=1

PZ=a(Ỹi = +1|Y = +1)

+ PZ=a(Y = −1)
3∏
i=1

PZ=a(Ỹi = +1|Y = −1)

(2)
= PZ=a(Y = +1) · (1− ea)3 + PZ=a(Y = −1) · e3a

where in above, (1) uses the 2-NN clusterability of D, and (2) uses the conditional independence
between the noisy labels. Similarly for PAD�,b we have:

PAD�,b =
PZ=b(Y = +1) · (1− eb)3 + PZ=b(Y = −1) · e3b

0.5
(A24)

Firstly, we will use the following fact for z ∈ {a, b}:

0.5 =PZ=z(Ỹ = +1)

=PZ=z(Ỹ = +1|Y = +1) · PZ=z(Y = +1) + PZ=z(Ỹ = +1|Y = −1) · PZ=z(Y = −1)

=PZ=z(Y = +1) · (1− ez) + PZ=z(Y = −1) · ez

from which we solve that PZ=z(Y = +1) = 0.5−ez
1−2ez = 0.5. Therefore

PAD�,a − PAD�,b = (1− ea)3 − (1− eb)3 + e3a − e3b
= (eb − ea)

(
(1− ea)2 + (1− eb)2 + (1− ea)(1− eb)− e2a − e2b − eaeb

)
= (eb − ea) (1− 2ea + 1− 2eb + 1− ea − eb) (A25)

Note that 1− 2ea + 1− 2eb + 1− ea − eb > 0 when ea, eb < 0.5. This implies that we can use the
2-NN positive agreements PAD�,a − PAD�,b across groups to compare ea with eb.

A.10 Extension to multi-class

As explained at the beginning, our algorithm can largely extend to the multi-class/group setting.
The primary requirement of the extension is to extend the definition of PAD� ,NAD� to each label
class/group. Consider a multi-class classification problem with K label classes, and the noise rates
follow a uniform diagonal model:

P(Ỹ = k|Y = k) = 1− ek, P(Ỹ = k′|Y = k) =
ek

K − 1
, ∀k′ 6= k. (A26)

Define KAD�,k := P(Ỹ2 = Ỹ3 = k|Ỹ1 = k), k = 1, 2, ...,K. Similarly we can show that for any
pair of k1, k2: sgn(KAD�,k1 − KAD�,k2) = −sgn(ek1 − ek2), wherein above ek1 , ek2 are the error
rates of label class k1, k2. With the above, we can compute KAD�,k, rank them, and start inserting
noise to the classes that are determined to have a lower error rate to match the highest one.

A.11 Pseudocodes

B Additional Experiment Details and Results

We provide more details on the experimental setup as well as further results.
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import numpy as np
from sklearn.neighbors import NearestNeighbors
def estimate_PA(X, y):

nbrs = NearestNei .( n_neighbors =3, algorithm= ’ball_tree ’).fit(X)
_, indices = nbrs.kneighbors(X)
return np.mean(np.array ([np.all(y[i] == y[indices[i]]) for i in np

.where(y > 0)[0]]))

Figure A1: Numpy-like pseudocode for an implementation of estimating PA. Our implementa-
tion utilizes scikit-learn’s Nearest Neighbors module. The code for esimating NA is similar.

B.1 Datasets

We evaluate our methods on five datasets:

• Adult, the UCI Adult Income dataset [9]. The task is to predict whether an individual’s
income exceeds 50K. The dataset consists of 48,842 examples and 28 features. We select
female and male as two protected groups in constrained learning. We resample the dataset
to ensure that both the classes and groups are balanced.

• Compas, the COMPAS recidivism dataset for crime statistics with 7,168 instances and 10
features [2]. We select race as the protected attribute in constrained learning.

• Fairface, the face attribute dataset containing 108,501 images with balanced race and
gender groups [15]. We use a pre-trained vision transformer (ViT/B-32) model [8] to
extract image representations, and project them into 50-dimensional feature vectors. For
both unconstrained and constrained learning, we take gender attribute as labels for binary
classification. For constrained learning, we categorize race into White and Non-White
groups.

• MNIST [18], consisting of 50,000 training images and 10,000 test images in 10 classes. We
train a MLP model from scratch on the MNIST dataset.

• CIFAR-10 [16], consisting of 50,000 training images and 10,000 test images in 10 classes.
We evaluate unconstrained multi-class classification on CIFAR-10 dataset. Similar to
Fairface, we use a pre-trained vision transformer to extract 512-dimensional feature vectors.

For Adult, Compas, and German datasets, we perform random train/test splits in a ratio of 80 to 20.
For Fairface, MNIST, and CIFAR-10, we follow their original splits.

B.2 Computing infrastructure

For all the experiments, we use a GPU cluster with 4 2080 Ti GPUs for training and evaluation.

B.3 Noise transition matrix for CIFAR-10

We adopt the following procedure to generate the noise transition matrix:

1. Manually set the diagonal elements at least 0.4. We ensure that the difference between the
maximal elements and 0.4 is equal to the noise gap.

2. Permute the diagonal elements to increase the randomness.

3. Fill out the non-diagonal elements randomly and ensure the sum of each column is 1
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We show one sample noise transition matrix generated by our procedure with noise gap 0.2 as follows:

0.4 0.087 0.013 0.032 0.032 0.068 0.050 0.178 0.001 0.118
0.043 0.4 0.002 0.016 0.049 0.113 0.060 0.024 0.224 0.017
0.181 0.111 0.4 0.147 0.033 0.005 0.026 0.040 0.110 0.076
0.051 0.001 0.060 0.6 0.032 0.047 0.149 0.145 0.022 0.059
0.001 0.167 0.119 0.032 0.6 0.092 0.051 0.018 0.037 0.129
0.097 0.007 0.001 0.059 0.016 0.4 0.019 0.014 0.084 0.001
0.018 0.023 0.277 0.041 0.034 0.014 0.4 0.028 0.041 0.062
0.149 0.096 0.081 0.019 0.041 0.015 0.143 0.4 0.061 0.110
0.031 0.066 0.022 0.007 0.133 0.080 0.049 0.113 0.4 0.025
0.029 0.040 0.023 0.043 0.027 0.162 0.048 0.036 0.018 0.4


B.4 Additional results

Table B1: Binary classification accuracy of compared methods on 3 datasets across different
levels of noise rates. Mis. SL: surrogate loss [25] with misspecified parameters. Est. SL: surrogate
loss [25] with estimated parameters. CE: vanilla cross entropy. Peer: peer loss function [21]. All
methods are trained with one-layer perceptron with the same hyper-parameters. For each noise
setting, we average across 5 runs and report the mean and standard deviation. We find that the
increasing-to-balancing can boost the vanilla cross entropy on all the noise settings.

BASELINES (LESS NOISE) NOISE+ (MORE NOISE)

Dataset e− e+ Mis. SL Est. SL CE Peer CE Peer

Adult 0.0 0.1 72.79± 0.34 72.64± 0.38 72.63± 0.29 72.77± 0.32 73.62± 0.37 73.86± 0.41
n = 48, 842 0.0 0.2 72.27± 0.39 72.13± 0.37 71.26± 0.38 71.95± 0.34 72.73± 0.71 73.52± 0.58
d = 28 0.0 0.3 67.93± 0.52 71.58± 0.28 66.86± 0.47 71.33± 0.30 73.30± 0.27 73.74± 0.15

0.1 0.2 73.02± 0.50 72.68± 0.16 72.31± 0.25 72.88± 0.14 71.92± 1.98 73.81± 0.40
0.1 0.3 72.44± 0.47 72.15± 0.23 69.06± 2.01 72.26± 0.43 69.53± 4.90 73.34± 1.27
0.1 0.4 54.87± 0.85 71.48± 0.50 63.60± 1.04 71.44± 0.72 72.43± 1.90 73.56± 0.89
0.2 0.3 72.81± 0.51 72.43± 0.14 71.44± 0.93 72.78± 0.28 71.55± 2.04 73.75± 0.26
0.2 0.4 72.06± 0.19 71.97± 0.41 63.49± 1.58 71.97± 0.37 65.99± 7.99 71.43± 2.26

Compas 0.0 0.1 66.36± 1.05 66.04± 1.14 66.16± 1.13 68.06± 0.70 67.14± 0.92 68.22± 0.68
n = 7, 168 0.0 0.2 66.84± 0.69 66.06± 0.81 65.38± 1.40 68.03± 0.77 66.51± 1.90 68.40± 0.78
d = 10 0.0 0.3 58.06± 0.32 62.69± 1.20 53.04± 3.69 66.41± 1.19 59.02± 7.78 65.93± 0.56

0.1 0.2 66.41± 0.43 65.69± 0.57 65.91± 0.97 67.49± 0.40 66.54± 0.21 67.80± 0.44
0.1 0.3 65.91± 0.42 65.22± 0.63 61.24± 0.70 67.36± 0.79 65.76± 2.09 68.05± 0.56
0.1 0.4 51.60± 0.12 63.34± 1.12 57.65± 3.90 66.47± 1.34 55.83± 6.43 67.04± 0.75
0.2 0.3 65.06± 0.72 65.86± 1.69 65.06± 1.48 68.02± 0.94 66.46± 1.27 68.04± 1.11
0.2 0.4 64.82± 0.52 65.47± 0.46 59.68± 2.49 67.37± 0.54 63.85± 3.31 68.39± 0.56

Fairface 0.0 0.1 87.64± 0.03 87.75± 0.03 87.41± 0.11 87.58± 0.15 88.23± 0.07 88.49± 0.12
n = 108, 501 0.0 0.2 85.22± 0.06 85.83± 0.08 85.08± 0.16 85.18± 0.16 88.55± 0.03 88.67± 0.03
d = 50 0.0 0.3 81.51± 0.09 83.36± 0.04 79.62± 0.12 81.37± 0.35 87.44± 0.15 88.25± 0.06

0.1 0.2 87.67± 0.07 87.56± 0.04 87.21± 0.08 87.28± 0.05 88.45± 0.06 88.65± 0.07
0.1 0.3 72.03± 0.13 85.68± 0.07 83.20± 0.12 84.58± 0.09 87.81± 0.14 88.50± 0.12
0.1 0.4 59.30± 0.11 83.10± 0.08 74.56± 0.53 80.51± 0.30 80.83± 2.24 87.10± 0.39
0.2 0.3 74.18± 0.20 87.34± 0.14 86.47± 0.09 87.00± 0.11 88.46± 0.08 88.58± 0.10
0.2 0.4 58.30± 0.23 85.48± 0.09 78.33± 0.63 84.05± 0.13 81.90± 0.58 87.69± 0.15
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Table B2: Accuracy of compared methods across different levels of noise gap for multi-class
classification. Mis. SL: surrogate loss [25] with misspecified parameters. Est. SL: surrogate loss [25]
with estimated parameters. CE: vanilla cross entropy. Peer: peer loss function [21]. When noise gap is
less than 0.2, cross entropy with increasing-to-balancing reaches a higher accuracy than cross entropy
at a lower noise. When noise gap is 0.3, balancing cannot compensate for the loss of increasing noise.

BASELINES (LESS NOISE) NOISE+ (MORE NOISE)

Dataset noise gap Mis. SL Est. SL CE Peer CE Peer

MNIST
0.1
0.2
0.3

89.59± 0.01
88.10± 0.10
84.97± 0.11

89.69± 0.07
88.61± 0.16
86.88± 0.17

86.66± 0.54
84.53± 1.60
85.24± 1.05

88.12± 0.01
87.21± 0.53
86.35± 0.33

86.81± 0.62
85.97± 0.69
81.89± 1.54

89.19± 0.05
89.12± 0.24
88.75± 0.19

CIFAR-10
0.1
0.2
0.3

70.90± 2.66
80.51± 4.51
81.30± 2.31

85.76± 1.44
86.34± 2.30
90.61± 0.52

88.03± 1.07
88.43± 1.29
89.78± 1.16

89.66± 1.18
89.36± 0.56
90.24± 1.05

88.69± 0.82
89.01± 1.27
87.98± 1.29

89.90± 0.52
90.08± 1.26
89.92± 0.92

Table B3: Constrained learning results with group-dependent label noise. LR: naïve logistic
regression without noise correction. GPR: group-weighted peer loss [30]. Peer: peer loss [21].

LESS NOISE MORE NOISE

Dataset ea eb Metrics LR GPL LR Peer

Adult

0.1

0.2

0.2

0.3

0.3

0.3

0.4

0.4

accuracy
fairness
accuracy
fairness
accuracy
fairness
accuracy
fairness

72.57
2.37
72.4
6.67

72.73
6.48

73.15
5.29

71.92
3.39

72.92
3.36
71.2
2.95

73.74
4.11

71.07
1.83
73.07
4.21
71.88
3.16
71.36
5.49

73.21
1.95
71.8
0.93
73.02
1.67
72.74
1.88

Compas

0.1

0.2

0.2

0.3

0.3

0.3

0.4

0.4

accuracy
fairness
accuracy
fairness
accuracy
fairness
accuracy
fairness

63.88
7.17

63.73
10.52
62.60
2.87

61.93
17.97

63.73
6.58

63.28
4.47

66.03
7.55

62.08
3.06

64.56
7.35

64.26
7.10

66.22
6.07

61.63
7.70

64.33
1.89
67.8
2.76
64.15
3.63
62.68
3.74

Fairface

0.2

0.1

0.0

0.0

0.2

0.4

0.3

0.2

0.1

0.3

accuracy
fairness
accuracy
fairness
accuracy
fairness
accuracy
fairness
accuracy
fairness

86.97
5.87

88.23
5.53

88.61
4.05

89.08
3.99

88.63
3.50

87.47
4.70

88.23
4.93

88.53
3.75

88.84
3.92

88.78
3.14

88.19
1.38

88.58
2.11

88.90
2.64

89.00
2.97

88.80
2.19

87.93
0.25
88.60
2.17
88.85
2.20
89.05
2.91
88.83
1.33
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