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Abstract—Although some existing counterdrone measures can
disrupt the invasion of certain consumer drone, to the best of
our knowledge, none of them can accurately redirect it to a
given location for defense. In this paper, we proposed a Drone
Position Manipulation (DPM) attack to address this issue by
utilizing the vulnerabilities of control and navigation algorithms
used on consumer drones. As such drones usually depend on
GPS for autopiloting, we carefully spoof GPS signals based on
where we want to redirect a drone to, such that we indirectly
affect its position estimates that are used by its navigation
algorithm. By carefully manipulating these states, we make a
drone gradually move to a path based on our requirements. This
unique attack exploits the entire stack of sensing, state estimation,
and navigation control together for quantitative manipulation of
flight paths, different from all existing methods. In addition,
we have formally analyzed the feasible range of redirected
destinations for a given target. Our evaluation on open-source
ArduPilot system shows that DPM is able to not only accurately
lead a drone to a redirected destination but also achieve a large
redirection range.

Index Terms—drone security, UAS, navigation algorithm

I. INTRODUCTION

Urgent Concerns. While consumer drones help us support
many new applications, they have also been abused in many
attacks. Therefore, it is urgent to develop effective drone
countermeasures. We focus on consumer drones because of
their low cost and broad deployment; we do not consider high-
end drones due to their different resources and requirements.
So, in this paper, we use drones to refer to consumer drones.

Motivations. Several direct physical methods for drone
defense have been developed by industry in recent years, e.g.,
jamming a drone’s control channels to trigger its fail-safe
mode to land, or capturing it with a net. While such simple
physical methods work well in many cases, they usually can
not handle collateral damages. When a drone carries a bomb,
we really do not want it to land in a protected area; instead,
we would like to redirect it to a designated area for safe
handling. While several projects [1]–[5] have demonstrated
the feasibility of such attacks, none of them is able to provide
concrete quantitative control on practical systems, which is
the focus of this paper. Furthermore, as more robotic vehicles
are developed for new applications, many similar security
issues become serious concerns. In this paper, we propose
to systematically address such issues by investigating the
entire control stack to achieve accurate quantitative control
for specific goals.

Ideally, we like to gain the complete control of an in-
vading drone, e.g., by hacking into its control software or
communications. While several methods have been developed
to exploit specific drone settings, they require to compromise
drone software, sensors, or communication channels [6]–[8],
which are difficult to achieve in practice. While these methods
can deal with weak systems with known vulnerabilities, we
cannot solely rely on such methods, because the vulnerabilities
may be easily patched.

Our method. Therefore, different from these methods,
we will focus on a new challenge in this paper: we would
like to accurately control a drone without depending on
compromising its software or hardware. To achieve this
goal, we propose a holistic approach to explore the entire
stack of sensing, state estimation, and navigation together.
First, almost all consumer drones depend on guidance inputs,
e.g., civilian GPS. We can utilize existing software-defined
radio (SDR) tools to spoof the signals to achieve our attacks.
Furthermore, assume we can identify the type and model of
an invading drone [9], [10], we can then find out its state
estimation and navigation algorithms. As these algorithms
are designed mainly for control without considering security
concerns, we have carefully analyzed them and identified their
guidance inputs as the attack surface. Therefore, we focus
on carefully constructing spoofed GPS inputs to exploit both
state estimation and navigation algorithms for manipulating a
drone’s position. Such a holistic solution allows us to integrate
the vulnerabilities at three levels together and achieve accurate
quantitative position control.

Although spoofing GPS to attack drones had been exploited
in two other projects [1], [5], neither of them exploited the
entire control stack as in this paper. While their methods
indeed gained some control of the drone but did not achieve
the accurate position control as the proposed Drone Position
Manipulation (DPM) attack. Furthermore, although anecdotes
on military GPS spoofing attacks have been reported, the
details have never been revealed. So, we consider these attacks
on military drones beyond the scope of this paper; our focus
is the civilian GPS system on consumer drones.

Contributions. Our novel contributions in this paper in-
clude: (1) We develop a theoretical model to help us achieve
accurate manipulation of a drone’s position for specific goals,
while existing methods were able to disrupt a drone’s mission
but did not define a clear model or achieve quantitative control.
(2) The proposed attack exploits the entire stack of sensing,



state estimation, and navigation control, while existing meth-
ods mostly focused on one or two layers. (3) The proposed
attack is validated on ArduPilot, arguably the most popular
open-source flight control system, to show its effectiveness in
practical settings; while existing methods are mostly evaluated
on theoretical platforms. (4) The proposed attack does not
require to compromise the software or hardware of a drone
as some existing methods required.

To demonstrate the proposed attack, we evaluate it on the
Software-in-the-loop (SITL) module of ArduPilot [11], which
runs the same code as a firmware on a real drone. Our
evaluation shows that the proposed attack is able to accurately
lead a drone to a redirected destination. In addition, we have
identified the range of feasible redirected destinations for a
target to show the strong capability of DPM.

The proposed attack have broad impacts. First, existing
projects and our own experiments have shown that we can
use cheap SDR cards (e.g., BladeRF) to spoof a drone’s GPS
inputs. Although an enhanced GPS receiver may detect such
spoofing attacks with extra hardware and software improve-
ment, a common GPS receiver cannot detect carefully-crafted
GPS spoofing. Furthermore, because the state estimation and
navigation control algorithms on consumer drones are also
broadly used in many other autonomous systems, understand-
ing their weaknesses is also critical to secure those systems.

The remainder of this paper is organized as follows. In
Section II, we will introduce our problem statement, common
drone control algorithms, and GPS spoofing methods. We will
then propose the DPM attack in Section III. We will present the
performance evaluation in Section IV. We will discuss related
work in Section V, and conclude this paper in Section VI.

II. PROBLEM STATEMENT AND DRONE BACKGROUND

A. Problem Statement

As shown in Figure 1, we set up a restricted area around
a critical asset to protect it from drone invasions. When a
drone flies towards the critical asset, we need to redirect it
away from the asset (its target destination) to a redirected
destination for safe handling, e.g., guiding it into a blast
containment chamber. Because we can usually recognize an
invading drone with existing approaches (via radar, radio or
traffic profiling, or image processing [9], [12]), we are able
to identify its sensors (e.g., GPS) and firmware (including its
state estimation and navigation algorithms). Assume that we
have obtained the same model of drone and analyzed it ahead
of time; utilizing the weaknesses of its GPS receiver, state
estimation, and navigation algorithms, we propose a method
to carefully spoof its GPS inputs to manipulate its position
states such that its navigation control will change its path
towards a redirected destination. As a result, our method does
not require to compromise its software or hardware as some
existing methods required.

To address this challenge, we need to carefully exploit the
entire sensing, state estimation, and navigation control stack
to achieve quantitative control on a practical system, different
from existing methods [1], [5]. In particular, we need to solve

Fig. 1. Restricted Area around a critical asset.

the following problems: (1) We need to make a drone lock on
our spoofed GPS signals. We will rely on existing methods
to achieve this, e.g., using the covert attack proposed in [1].
In this paper, we show a method to spoof GPS inputs on the
SITL simulation platform in order to understand how to spoof
GPS signals without being detected. (2) We need to determine
how to construct the spoofed GPS position inputs based on
the drone’s original flight path and the redirected destination,
within a given attack duration. This is the focus of this paper
as presented in the following.

We further divide the process of determining spoofed GPS
signals into two steps: First, we will determine the shifting
distance of the drone’s position in each GPS cycle (i.e., 0.1
second) in order to make the navigation algorithm adjust its
path towards the redirected destination during a given attack
period. Second, we will construct the spoofed GPS inputs
based on the shifting distance in a GPS cycle. The challenge
here is: because the maximum spoofing range in a cycle is
limited by a bad data detection threshold (see Section II-B)
and the physical limitation of its GPS receiver, we have to
carefully determine the spoofing signals within proper ranges
in order to shift the drone position as much as we can, without
triggering GPS-failure alarms. Obviously, we cannot arbitrarily
redirect a drone to any destination due to constraints such as
the maximum redirection distance per cycle and the attack
duration. We will present the detailed attack steps and analyze
the feasible range of the attack under given constraints in
Section III.

B. Drone Control Background

Here we introduce the related drone control background and
discuss how we will address the above research problems.
Without loss of generality, to simplify our model, we assume
that an invading drone is on autopilot, because of two reasons:
First, because the drone operator usually does not want to ex-
pose itself, it has to turn off the control channel to avoid being
triangulated based on its control signals. Second, because the
control channel can be easily disrupted by the defense, the
operator cannot depend on the channel to control the drone in
the restricted area. So, autopilot is a natural choice.

As shown in Figure 2, autopilot is often achieved in four
steps as many feedback-control systems. Starting with sensor
measurements, the system estimates related states and then
passes the states to its navigation algorithms to determine how
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Fig. 2. Common Drone Control Loop.

to adjust actuators for real-time control. Such a loop is usually
completed in a fixed period, e.g., the default state update on
ArduPilot is set to every 10 ms when IMU sensors generate
new readings. We introduce the most popular state estimation
algorithms and the most common navigation algorithm in the
following.

Common State Estimation Algorithms. A consumer drone
conducts state estimation based on sensor readings, e.g., from
accelerometers, gyroscopes, magnetometers, GPS signals, and
barometers. Extended Kalman Filters (EKF) and its variants
are the most commonly-used state estimation methods in
current systems [13], [14], providing fairly accurate state
estimations. A few enhanced methods are proposed for critical
altitude estimations based on other sensors (e.g., ultrasonic
sensors). However, because they usually need more resources
that are not available on low-end consumer drones, we focus
on the common EKF-based state estimation in this paper.
The EKF on ArduPilot 3.6 estimates 24 states for drone
control [15]; we focus on the position and velocity estimation
because our goal is to manipulate drone positions to affect
flight paths. Readers interested in the details of these EKF
algorithms can refer to our previous paper [16].

We adopt several common assumptions in this paper. First,
we assume that we are able to determine the parameters used in
the control system, e.g., the bad-data detection threshold 𝜏 (see
below). Many parameters on a drone are usually configured to
default values based on experiences and its physical properties
(e.g., weight or acceleration limit), which can be easily learned
by examining the open-source code or reverse-engineering the
firmware of the same model. In addition, we consider that
the proposed attack is performed when the system is in a
steady state, such that we can draw concrete conclusions to
illustrate the attack effects. This is a common assumption in
examining EKF-based control systems, and usually achieved
in real systems [13], [17], [18].

Bad Data Detection. The EKF on ArduPilot uses a com-
mon anomaly detection algorithm to determine if a sensor
measurement is acceptable, e.g., for position measurements,
by checking if the following condition is true:

𝑖𝑛𝑛𝑁
2 + 𝑖𝑛𝑛𝐸2 ≤ (𝑣𝑎𝑟 𝑖𝑛𝑛𝑁 + 𝑣𝑎𝑟 𝑖𝑛𝑛𝐸 ) · 𝜏, (1)

where 𝜏 is a pre-set threshold, 𝑖𝑛𝑛𝑁 and 𝑖𝑛𝑛𝐸 are the innova-
tion between a prediction and a measurement of a position
state in the North and East directions, 𝑣𝑎𝑟 𝑖𝑛𝑛

𝑁
and 𝑣𝑎𝑟 𝑖𝑛𝑛

𝐸

are the variances of 𝑖𝑛𝑛𝑁 and 𝑖𝑛𝑛𝐸 , respectively. The values

of 𝑣𝑎𝑟 𝑖𝑛𝑛
𝑁

and 𝑣𝑎𝑟 𝑖𝑛𝑛
𝐸

are calculated based on the covariance
matrix of the EKF and the GPS position accuracy information;
they can be regarded as constants in a steady-state system,
based on existing results [1], [13].

Navigation Adjustment. The navigation of ArduPilot uses
a linear-track-based algorithm, which is the most popular
path-following algorithm on drones, more accurate than oth-
ers [19]. Because a drone may drift away slightly from its
scheduled flight track, due to various factors (e.g., wind
disturbances), it usually runs a path-following algorithm to
trace the track, as shown in Figure 3. Here, as the drone’s
track is from the bottom left to the upper right, the algorithm
should keep the drone close to the track, i.e., its position states
(estimated via EKF) should be close to the track. In order
to achieve this, the navigation frequently adjusts the drone’s
movements to make it close to the track.

Track desired max

Track desired
Move back

𝑃𝐸𝐾𝐹(t)
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Fig. 3. Adjustment in path-following.

In each time interval, the navigation calculates a position
called 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑 for the next interval based on its current
position estimation and its scheduled velocity. Assume its posi-
tion estimation is 𝑃𝐸𝐾𝐹 (𝑡−1) in the interval (𝑡−1). In interval
𝑡, the navigation finds itself at the position 𝑃𝐸𝐾𝐹 (𝑡) away from
the track (based on GPS), and it then performs the following
adjustment. First, the distance between 𝑃𝐸𝐾𝐹 (𝑡) and its pro-
jection on the track 𝑃𝐸𝐾𝐹

𝑝𝑟𝑜 𝑗
(𝑡) is defined as a 𝑡𝑟𝑎𝑐𝑘_𝑒𝑟𝑟𝑜𝑟.

Next, the algorithm determines a 𝑡𝑟𝑎𝑐𝑘_𝑙𝑒𝑎𝑠ℎ_𝑙𝑒𝑛𝑔𝑡ℎ based
on its velocity, acceleration, and current position, and uses
it to choose how the drone should fly back to the original
track as follows. Specifically, the algorithm first identifies
a position on the track called 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑚𝑎𝑥 (which
is the farthest distance along the track that the leash will
allow), and then compares it with 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑 position
to decide which position the drone should fly back to.
In particular, if 𝑡𝑟𝑎𝑐𝑘_𝑙𝑒𝑎𝑠ℎ_𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑡𝑟𝑎𝑐𝑘_𝑒𝑟𝑟𝑜𝑟, then
𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑚𝑎𝑥 is the projection of the current posi-
tion 𝑃𝐸𝐾𝐹 (𝑡) on the track; otherwise, 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑚𝑎𝑥
is the position on the track that has the distance of
𝑡𝑟𝑎𝑐𝑘_𝑙𝑒𝑎𝑠ℎ_𝑙𝑒𝑛𝑔𝑡ℎ from the current position 𝑃𝐸𝐾𝐹 (𝑡), as
shown in the figure. Furthermore, if 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑚𝑎𝑥
is closer to the destination than 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑, as in this
example, the drone will fly to 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑; otherwise, the
drone will fly to 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑚𝑎𝑥. Our attack exploits this
adjustment to achieve our drone position manipulation.



C. Attack Methods: Smart GPS Spoofing

After an invading drone enters the restricted zone, we use
GPS spoofing to compromise its GPS position and velocity
readings, to carefully feed crafted inputs to the drone state es-
timation algorithms in order to mislead its navigation control.
In this paper, we will manipulate the drone position in a 2D
plane of longitude and latitude. In ArduPilot simulations, we
pass the GPS inputs with MAVLink GPS_INPUT messages to
emulate a covert spoofing, such that we can test our attacks
on the navigation control, which are the focus of this paper.

In addition, we also verified the feasibility of practical GPS
spoofing on real drones. While we assume we can use existing
tools to achieve covert GPS spoofing, we have conducted GPS
spoofing on a SkyViper GPS drone for testing, whose firmware
is a variant of ArduPilot. We overpowered the civilian GPS
signals using a BladeRF A9 card to transmit shifted GPS
signals from a moderate distance [20]. The drone gained a lock
on the spoofed GPS signals after a short delay. We verified
this by reading the GPS raw inputs from the drone via its
MAVLink interface.

III. PROPOSED DPM ATTACK

In this section, we will introduce the Drone Position Manip-
ulation (DPM) attack that directly uses the estimated position
states of a drone to craft spoofed GPS inputs. Although
obtaining EKF states is impractical on a real system, this
method helps us better understand the proposed attack on
a complicated control system and build a baseline analysis
model of the attack. We will further develop a practical
solution for obtaining drone positions in our following work.
In the following, we will present the DPM attack and then
illustrate its capability by formally analyzing its maximum
feasible redirection range for a given original destination.

A. Theoretical Foundation of DPM

Let us first present the theoretical foundation of DPM,
consisting of three important propositions.

Notations. We first define related notations for our discus-
sion. Because we focus on the drone position in a horizontal
2D plane, we consider the drone’s real velocity as a 2D
vector 𝑉𝑟 = (𝑉𝑟

𝑁
, 𝑉𝑟
𝐸
), with a sub-component to the North, 𝑉𝑟

𝑁

meter/second (m/s), and a sub-component to the East, 𝑉𝑟
𝐸

m/s.
For example, when a drone moves at 4 m/s to the Northeast,
we observe a velocity vector 𝑉𝑟 as (2.81, 2.81) m/s. In DPM,
for each GPS cycle, we build the spoofed GPS position inputs
by first obtaining the estimated position state and then adding
a shift to it with an injection vector of 𝐼 = (𝐼𝑁 , 𝐼𝐸) m/s, which
has a sub-component to the North 𝐼𝑁 , and a sub-component
to the East 𝐼𝐸 . Now when applying 𝐼 = (0, 10) m/s (or (0, 1)
m/GPS cycle) to a drone flying to the Northeast with 𝑉𝑟 =
(2.81, 2.81) m/s, i.e., injecting 0 m/s to the GPS position in
the North direction and 10 m/s (or 1 m/GPS cycle) to the GPS
position in the East, we observe that the drone’s real velocity
𝑉𝑟 quickly entered a stable velocity of (2.81, 2.37) m/s. In
other words, the drone drifts away at a stable velocity 𝑉𝑟

𝑑𝑟𝑖 𝑓 𝑡

at (0, -0.44) m/s, i.e., the drone drifts to the West at 0.44 m/s as

the result of the injections. With these notations, we introduce
the following propositions:

Proposition 1. Drift velocity 𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡

is proportional to injec-
tion rate 𝐼 under a DPM attack with an attack coefficient 𝐶𝑎

defined as follows:

𝐶𝑎 = (𝐶𝑎𝑁 , 𝐶𝑎𝐸) = (
𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡 ,𝑁

𝐼𝑁
,
𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡 ,𝐸

𝐼𝐸
) (2)

for 𝐼𝑁 ≠ 0 and 𝐼𝐸 ≠ 0. If 𝐼𝑁 (or 𝐼𝐸) == 0, 𝐶𝑎
𝑁

(or 𝐶𝑎
𝐸
) = 0.

Proposition 2. For attacks on the same drone in the same
environment, 𝐶𝑎 keeps unchanged for any proper injection
size in any direction.

In this DPM attack, we choose the injection rate 𝐼 as a
fixed value in each GPS cycle, which results in nearly fixed
innovations in each EKF position estimation cycle, denoted as
Δ (because 𝐼 ≈ Δ). Since the Kalman gain 𝐾𝑘 usually quickly
becomes a constant in a steady state, the deviation of position
estimation 𝑉𝐸𝐾𝐹

𝑑𝑟𝑖 𝑓 𝑡
= 𝐾𝑘 · Δ becomes constant. Because the

deviation will be corrected in each cycle, 𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡

= −𝑉𝐸𝐾𝐹
𝑑𝑟𝑖 𝑓 𝑡

becomes a constant in the cycle as well. In addition, 𝐶𝑎 ≈
−𝐾𝑘 , which can be regarded as the same constant for attacks
on the same drone in the same environment.

We have further validated these propositions with ArduPilot
SITL simulations. Figure 4 shows the relationship between
the injection rate and the drift velocity observed during DPM
attacks on SITL. With the injection rate (x-axis) increasing
from 4 m/s to 40 m/s, we observe that the drift velocity
(y-axis) increases in the opposite direction proportionally to
the injection rate with coefficient 𝐶𝑎. Furthermore, we have
validated that Propositions 1 and 2 hold for injections in
any direction in the 2D plane, when we apply a feasible
constant injection rate. We measured that 𝐶𝑎

𝐸
≈ −0.0455 and

𝐶𝑎
𝑁
≈ −0.0491 in these simulations.

Proposition 3. When we apply a 2D injection rate 𝐼 =

(𝐼𝑁 , 𝐼𝐸), the effect is equivalent to the combined effects of
attacking only in the North direction with 𝐼1 = (𝐼𝑁 , 0) and
attacking only the East direction with 𝐼2 = (0, 𝐼𝐸).

Proposition 3 (Decomposition Proposition) holds because

Fig. 4. Relationship between the injection rate x-axis and the drift velocity
y-axis. As the injection rate increases, we can see the drift velocity increases
in the opposite direction proportionally, and the attack coefficient 𝐶𝑎 stays
roughly constant.



the drone state estimation algorithms usually decompose the
3D positions and velocities into North, East, and Down sub-
components [15]. Based on Propositions 2 and 3, we can
simplify the analysis of the attack result under an injection
rate 𝐼 in any direction in the 2D plane, by decomposing the
injection rate 𝐼 = (𝐼𝑁 , 𝐼𝐸) into 𝐼1 = (𝐼𝑁 , 0) and 𝐼2 = (0, 𝐼𝐸).
Using measured attack coefficients 𝐶𝑎

𝐸
and 𝐶𝑎

𝑁
, we can find the

drift velocities of the drone in the North and East directions:
𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡 ,𝑁

= 𝐼𝑁 · 𝐶𝑎𝑁 and 𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡 ,𝐸

= 𝐼𝐸 · 𝐶𝑎𝐸 ; then we can find
the attack result with the injection rate 𝐼 by combining the
drift velocities in the two directions.

B. DPM Attack

We illustrate how the DPM attack redirects a drone to a
specific destination in a 2D plane, as shown in Figure 5. Given
the redirected destination 𝑅 = (𝑅𝑁 , 𝑅𝐸), where we would like
to guide the drone to reach, we define a redirection vector
DR = (𝐷𝑅𝑁 , 𝐷𝑅𝐸) as ((𝑅𝑁 , 𝑅𝐸) − (𝐷𝑁 , 𝐷𝐸)), the vector
difference between the redirected destination (𝑅𝑁 , 𝑅𝐸) and the
original destination (𝐷𝑁 , 𝐷𝐸). Assume we perform a DPM
attack on a drone’s position for 𝑛 cycles to achieve DR; we
evenly distribute the required injection in each cycle, i.e., in
cycle 𝑡, we apply an injection 𝐼 (𝑡) = ( 𝐷𝑅𝑁

𝑛·𝐶𝑎
𝑁

,
𝐷𝑅𝐸
𝑛·𝐶𝑎

𝐸

) on the
current position state 𝑃(𝑡) to build its position input 𝑃′(𝑡),
0 ≤ 𝑡 < 𝑛. As a result, the navigation algorithm observes
that the drone has drifted away from the track, and it will
make an adjustment to move it back to the track. After the
adjustment, the system considers the drone has returned to the
track at 𝑃(𝑡 + 1), but its real position is actually at 𝑃𝑟 (𝑡 + 1).
In this example, we only need 5 injection cycles to achieve
the required redirection; after 5 cycles, we stop injections and
the drone will fly towards the redirected destination in a path
parallel to the original track.

Similar to the above illustration, we introduce the main
steps of DPM in Algorithm 1. Given the flight track of a
drone, a redirected destination, and drone position states, the
attack builds a position injection in each cycle in order to
lead the drone away from its original track to achieve the
redirection, as explained in the above. The maximum injection
rate 𝐼𝑚𝑎𝑥 = (𝐼𝑚𝑎𝑥

𝑁
, 𝐼𝑚𝑎𝑥
𝐸
) per cycle can be determined based

on the parameters associated with the bad-data detector in
theory [16] and it also can be measured in practice. Attack
coefficient 𝐶𝑎 = (𝐶𝑎

𝑁
, 𝐶𝑎

𝐸
) is defined in Proposition 1, and

can be measured in advance. A video demonstration of a
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Fig. 5. Illustration for the DPM attack.

DPM attack on ArduPilot SITL is at Youtube, https://youtu.be/
kE0T4sFJZ7o, and we will evaluate the accuracy and feasible
redirection range of DPM in Section IV.

Algorithm 1: DPM Attack Algorithm.
input: Original track from (𝑂𝑁 , 𝑂𝐸 ) to (𝐷𝑁 , 𝐷𝐸 );

Redirected destination (𝑅𝑁 , 𝑅𝐸 );
Drone position state estimation 𝑃𝐸𝐾𝐹 (𝑡) .

1 Initialization: {𝐼 (𝑡) } ←− ∅, 𝑡 ←− 0;
2 𝑛0 = the remaining number of cycles on the original track;
3 DR = (𝐷𝑅𝑁 , 𝐷𝑅𝐸 ) ←− (𝑅𝑁 − 𝐷𝑁 , 𝑅𝐸 − 𝐷𝐸 );
4 𝑛←− 𝑚𝑎𝑥 ( ⌈ 𝐷𝑅𝑁

𝐼𝑚𝑎𝑥
𝑁

·𝐶𝑎
𝑁

⌉, ⌈ 𝐷𝑅𝐸
𝐼𝑚𝑎𝑥
𝐸

·𝐶𝑎
𝐸

⌉);
find the total no. of injection cycles;

5 while 𝑡 ≤ 𝑛0 do
6 if 𝑡 < 𝑛 then
7 𝐼 (𝑡) ←− ( 𝐷𝑅𝑁

𝑛·𝐶𝑎
𝑁

,
𝐷𝑅𝐸
𝑛·𝐶𝑎

𝐸

); injecting until 𝑡 ≥ 𝑛;

8 𝑃𝐺𝑃𝑆 (𝑡) = 𝐼 (𝑡) + 𝑃𝐸𝐾𝐹 (𝑡); build fake position inputs;

9 else
10 𝑃𝐺𝑃𝑆 (𝑡) = 𝑃𝐸𝐾𝐹 (𝑡); fly towards 𝑅, not add injection;

11 send 𝑃𝐺𝑃𝑆 (𝑡) as GPS position inputs;
12 𝑡 ←− 𝑡 + 1;

C. Feasible Range of Redirected Destination

Obviously, the above attack cannot redirect a drone to an
arbitrary destination due to many factors such as the attack
duration and the maximum redirection per cycle. Therefore,
we need to further figure out if a given redirected destination
is feasible. In the following, we will analyze such a feasible
range of the redirected destination to show the overall capa-
bility of DPM, which can help us determine if a redirected
destination is reachable or not.

Eq. 1 is commonly used for EKF-based bad data detection.
Since (𝑣𝑎𝑟 𝑖𝑛𝑛

𝑁
+ 𝑣𝑎𝑟 𝑖𝑛𝑛

𝐸
) · 𝜏 can be regarded as a constant 𝜆

in a steady state, and 𝑖𝑛𝑛𝑁 and 𝑖𝑛𝑛𝐸 are roughly equal to 𝐼𝑁
and 𝐼𝐸 . Plugging them into Eq. 1, we have

𝐼2𝑁 + 𝐼2𝐸 = 𝜆. (3)

Then, based on Eq. 2 on the previous page, we have

(
𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡 ,𝑁

𝐶𝑎
𝑁

)2 + (
𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡 ,𝐸

𝐶𝑎
𝐸

)2 = 𝜆, (4)

or

(𝑉𝑟𝑑𝑟𝑖 𝑓 𝑡 ,𝑁 )
2 + (

𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡 ,𝐸

𝐶𝑎
𝐸
/𝐶𝑎

𝑁

)2 = 𝜆 · (𝐶𝑎𝑁 )2. (5)

Eq. 5 shows the feasible range of the redirected destination
in one attack cycle is an ellipse with its center at the original

destination and eccentricity
√︂

1 − (𝐶
𝑎
𝐸
)2

(𝐶𝑎
𝑁
)2 (close to 0 in prac-

tice). After 𝑛 attack cycles, the feasible range of the redirected
destination will be

( 𝑅𝑥 − 𝐷𝑥
𝐶𝑎
𝑁

)2 + (
𝑅𝑦 − 𝐷𝑦
𝐶𝑎
𝐸

)2 = 𝑛2 · 𝜆, (6)

We will show concrete feasible ranges in Section IV.



IV. PERFORMANCE EVALUATION

A. System Instrumentation

We have conducted extensive analysis and testing of
ArduPilot Copter code to understand the state estimation and
navigation control algorithms. Our evaluation is performed on
the SITL module of ArduPilot. For system control, the SITL
module runs the same code as a real firmware to simulate
a flight with a large set of common parameters. As a SITL
drone runs in the same way as a real drone, it can take different
types of GPS input formats, e.g., popular UBLOX and NMEA
formats. In its default setting, it simply uses the simulated
(physical) position of a drone as its GPS position input. So,
we can perform covert GPS spoofing by switching its GPS
input to take MAVLink 𝐺𝑃𝑆_𝐼𝑁𝑃𝑈𝑇 messages, in the same
way as it receives GPS messages from a GPS-capable device.

We uploaded a video of a covert DPM attack on the above
platform at Youtube (https://youtu.be/kE0T4sFJZ7o). With the
source location as (0, 0), the drone’s destination is set to the
waypoint of (500 meters, 500 meters) in the Northeast with
a velocity of 4 meter/second. Waiting for 20 seconds into the
mission after the system entered a steady state, we started to
covertly spoof GPS inputs with an injection of 4.07 meter/per
GPS cycle to the North. (It takes less than 20 seconds for the
drone to enter a steady state.) As shown in Figure 6.(b), we
then saw that the drone state (shown as the upper drone icon)
is still on its original track (in pink) to the Northeast; but its
real position (shown as the lower drone icon) is shifted down
to the South, below its original track. The drone continued
with its mission, without noticing its real position is gradually
away from its original track. When the drone position state
is close to the original destination, the real drone position is
about 100 meters South to the original destination, as shown
in Figure 6.(c).

With significant efforts in the past years, we were able to
build this in-depth instrumentation platform for examining the
control algorithms and the proposed attacks in details, which
also facilitated the evaluation presented in the following.

B. Evaluation of DPM

1) Simulation Settings: In each attack simulation, to show
the pure attack effect, we did not launch the attack until the
system entered a steady state, i.e., we waited for 20 seconds
after it reached the takeoff altitude and began to fly to a
preset waypoint. We used the common settings of consumer
drones as key parameters in the evaluation, e.g., a GPS update
cycle is set to 0.1 second; the horizontal position accuracy of
GPS input is 0.1 meter; the velocity accuracy of GPS input
is 0.1 meter/second; a default drone starting velocity is 4
meter/second. We have repeated the simulations many times to
observe and measure the coefficients for our model presented
in Section III: for example, we used linear regression to find
the attack coefficients 𝐶𝑁𝑎 = −0.0491, and 𝐶𝐸𝑎 = −0.0455.

2) Accuracy of DPM: As our goal is to divert a drone
to a redirected destination, we first evaluated the accuracy
of DPM, i.e., the difference between the expected redirected

destination and the actual destination. For easy illustration,
we first set the injection direction to the East and the total
attack duration to 50 seconds. Consider the home position as
the original point (0, 0), the original destination was set to
(500 meters, 500 meters) in the Northeast in a local frame. To
evaluate the accuracy under different attack sizes, we varied
the size of DR (the vector difference between the redirected
destination (𝑅𝑥 , 𝑅𝑦) and the original destination (𝐷𝑥 , 𝐷𝑦))
from 20 to 100 meters. Table I shows the attack error rates
under different injection rates. The 1st row shows the size
of intended redirection vector from 20 to 100 meters. The
2nd row is the corresponding injection size derived based
on the size of redirection vector using Algorithm I. The 3rd
row is the size of the actual redirection vector obtained from
the simulation. In the 4th row, we can see that: for different
redirection sizes, the DPM attack achieved very small errors
(under 1.5%), i.e., it can accurately redirect a drone to the
intended destination.

TABLE I
DPM ATTACK ERROR UNDER DIFFERENT INJECTION RATES.

expected DR size (m) 20 40 60 80 100
Injection (m/GPS-cycle) 0.88 1.76 2.64 3.52 4.40

Actual DR size (m) 20.22 39.81 60.01 81.14 100.36
Error Rate 1.10% -0.475% 0.017% 1.425% 0.36%

Next, keeping the same source and destination as the
above, we evaluated the DPM’s accuracy in eight directions:
North, Northeast, East, Southeast, South, Southwest, West,
Northwest. The total attack duration is set to 50 seconds as
the above, and the redirection vector is set to 100 meters.
In Table II and Table III, the 1st row shows the injection
direction; the 2nd and the 3rd row show the injection sub-
components in the North and the East directions; the 4th
and the 5th row show the errors in the North and the East
directions; the 6th and 7th row show the error rates in the
North and the East directions. We can see the attack errors
for these cases are still very small (under 0.9% in a sub-
component), which shows the DPM attack can accurately
redirect the drone to different directions.

TABLE II
DPM ATTACK ERROR UNDER DIFFERENT ATTACK DIRECTIONS (1).

Injection direction E W N S
Injection: North (m/GPS-cycle) 0 0 5 -5
Injection: East (m/GPS-cycle) 5 -5 0 0

Error: North (m) / / -0.23 -0.29
Error: East (m) 0.06 -0.13 / /

Error Rate: North / / -0.19% -0.24%
Error Rate: East 0.053% -0.11% / /

TABLE III
DPM ATTACK ERROR UNDER DIFFERENT ATTACK DIRECTIONS (2).

Injection direction NE NW SE SW
Injection: North (m/GPS-cycle) 5 5 -5 -5
Injection: East (m/GPS-cycle) 5 -5 5 -5

Error: North (m) 0.16 0.02 -1.1 -0.59
Error: East (m) 0.62 0.14 0.23 -0.05

Error Rate: North 0.13% 0.016% -0.90% -0.48%
Error Rate: East 0.55% 0.12% 0.20% -0.044%



(a) Before attack. (b) Under attack. (c) Reached Destination.

Fig. 6. DPM Demo in ArduPilot SITL.

3) Injection limitation and Feasible range: Although we
have shown that the DPM can redirect a drone to any direction
with high accuracy, the maximum size of the redirection is
limited by the maximum injection allowed in each cycle that
is limited by the bad data detector of the drone. To find the
maximum injection rate allowed in a direction, we gradually
increased the injection rate until the system detects the large
error term and raises GPS-fail alarms. We repeated these
simulations to confirm the maximum injection rate for DPM in
each direction, which will then give us the largest redirection
size DR for a given attack duration in the direction. Then we
can combine the maximum redirection size in all directions
to outline the feasible range of the DPM attack, i.e., we can
redirect the drone to any point within this range under this
attack duration. In Table IV and Table V, the attack duration
was 50 seconds, and we tested in 8 directions to outline the
feasible redirection range for attacking 50 seconds. The 1st
row shows the redirection directions; the 2nd row shows the
maximum injection rate in a direction; the 3rd row shows the
maximum size of redirection. The maximum injection rate for
each direction varies from 7.09 to 7.65 meter/GPS cycle; the
maximum redirection size in each direction varies from 169.28
meters to 177.03 meters for the attack duration of 50 seconds.

Furthermore, to show the feasible ranges of redirected
destinations under different attack duration, we varied the
attack duration from 20 to 100 seconds, and determined
the corresponding maximum redirection sizes in 8 directions.
We then outlined the feasible ranges under different attack
durations in Figure 7. In this 2D plane, the center location (0,
0) is the original destination; the smallest circle-like range is
the feasible range under an attack duration of 20 seconds; the
largest circle-like range is the feasible range under an attack
duration of 100 seconds. It is easy to see that the attack feasible
range expands as the attack duration increases.

V. RELATED WORK

As the flow chart of an autopilot system shown in Figure 2,
attacking a drone may happen at three levels:

TABLE IV
DPM MAXIMUM REDIRECTION SIZE (1).

Injection Direction E W N S
Max Injection (m/GPS-cycle) 7.56 7.6. 7.09 7.14

Max DR size (m) 171.58 173.32 171.32 173.00

TABLE V
DPM MAXIMUM REDIRECTION SIZE (2).

Injection Direction NE NW SE SW
Max Injection (m/GPS-cycle) 7.24 7.48 7.50 7.37

Max DR size (m) 169.28 176.77 177.03 173.28

(1) Sensor-level attacks. Different from mission-critical
systems, consumer drones are usually equipped with low-end
sensors with limited protection to reduce costs, which leaves
many opportunities for hardware or software attacks.

Hardware attacks include selectively jamming GPS and
radio control channels [21]–[23], or compromising drone
hardware components (such as MEMS sensors) via acoustic
approaches to disturb its normal operation [1], [2], [24],
[25]. In particular, a high-accuracy covert spoofer was built
by manipulating the signal delays in the physical layer to
spoof GPS signals arriving at a drone GPS receiver [1]. The
spoofer measures relevant delays to the receiver within a few
nanoseconds, and compensates for these delays by generating
a slightly advanced version of the official GPS signals that the
spoofer receives. Then, it gradually increases power to win the
signal acquisition on the receiver over the official signals. This
covert GPS spoofer is a pioneer work that can also help us
implement our attack to manipulate GPS signals at the physical
layer.

(2) Attacks on State Estimation. Compromising system
states is a common method to cause serious errors in control
systems. The proposed drone position manipulation utilizes a
type of False Data Injection (FDI) attack to exploit the small
tolerance ranges of common bad-data detection schemes in
order to compromise drone state estimation to achieve accurate
position manipulation. Common FDI attacks aim to manipulate
state estimations via modifying corresponding measurements



Fig. 7. Feasible ranges of redirected destinations under different attack
durations in DPM.

without being detected by bad data detectors [26]. Based on
existing research on state estimation algorithms [3], in this
paper, we are able to determine the GPS spoofing signals that
can pass the bad data detection and also manipulate the system
states based on our needs to make the navigation to adjust
drone positions.

(3) Attack Drone Navigation Controls. By analyzing the
practical navigation code of ArduPilot, we identified weak-
nesses in the most popular path-following algorithms [19]
as introduced in Section II-B. In this paper, we utilize the
vulnerability in the state estimation and exploit the weakness
of navigation to accurately manipulate a drone’s position in
order to guide it to a redirected destination. Another project [5]
focused their attack on the navigation control on an earlier
version ArduPilot 3.3. They provided a taxonomy of GPS fail-
safe mechanisms on consumer drones, and investigated the
attack strategy for each mechanism. In contrast, we develop
complete algorithms on how to guide an invading consumer
drone to a redirected destination, and we also determined
the feasible range of the redirected destination relative to an
original destination.

VI. CONCLUSIONS

In this paper, we have examined the entire control stack
in the control loop of consumer drones, and identified the
vulnerabilities at each level of the stack; we then developed
the DPM attack. Our analysis and evaluation have shown that
DPM can accurately guide an invading drone to a redirected
location. We have also analyzed the maximum feasible range
of the redirected destination for a given original destination.
We believe this is the first work that is able to guide a
consumer drone accurately to a feasible destination.

This work is supported by NSF-1662487 and ONR No.
N000142012049 and No. N000142112168. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the NSF or ONR.
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