Scallop: From Probabilistic Deductive Databases to
Scalable Differentiable Reasoning

Jiani Huang * Ziyang Li * Binghong Chen
University of Pennsylvania ~ University of Pennsylvania ~ Georgia Institute of Technology
jianih@seas.upenn.edu 1iby99@seas.upenn.edu binghong@gatech.edu

Karan Samel Mayur Naik
Georgia Institute of Technology University of Pennsylvania
ksamel@gatech.edu mhnaik@seas.upenn.edu
Le Song Xujie Si
Georgia Institute of Technology McGill University and CIFAR Al Chair, Mila
lsong@cc.gatech.edu xsi@cs.mcgill.ca
Abstract

Deep learning and symbolic reasoning are complementary techniques for an intelli-
gent system. However, principled combinations of these techniques are typically
limited in scalability, rendering them ill-suited for real-world applications. We pro-
pose Scallop, a system that builds upon probabilistic deductive databases, to bridge
this gap. The key insight underlying Scallop is a provenance framework that in-
troduces a tunable parameter to specify the level of reasoning granularity. Scallop
thereby 1) generalizes exact probabilistic reasoning, ii) asymptotically reduces
computational cost, and iii) provides relative accuracy guarantees. On synthetic
tasks involving mathematical and logical reasoning, Scallop scales significantly
better without sacrificing accuracy compared to DeepProbLog, a principled neural
logic programming approach. Scallop also scales to a newly created real-world
Visual Question Answering (VQA) benchmark that requires multi-hop reasoning,
achieving 84.22% accuracy and outperforming two VQA-tailored models based on
Neural Module Networks and transformers by 12.42% and 21.66% respectively.

1 Introduction

Integrating deep learning and symbolic reasoning in a principled manner into a single effective system
is a fundamental problem in artificial intelligence [[10]]. Despite great potential in terms of accuracy,
interpretability, and generalizability, it is challenging to scale differentiable reasoning in the combined
system while preserving the benefits of the neural and symbolic sub-systems [28]].

In this paper, we propose Scallop, a systematic and effective framework to address this problemE]
The key insight underlying Scallop is a principled relaxation of exact probabilistic reasoning via a
parameter k that specifies the level of reasoning granularity. We observe that scalability is primarily
hindered by reasoning about all proofs in computing the probability of each outcome. For a given k,
Scallop only reasons about the top-k most likely proofs, which asymptotically reduces computational
cost while providing formal accuracy guarantees relative to the exact instantiation. Scallop thereby
generalizes exact probabilistic reasoning and enables easy exploration of a rich space of tradeoffs.
This tradeoff mechanism allows to drastically speed up the stochastic training of the involved neural
components without sacrificing generalization ability.

*Jiani Huang and Ziyang Li contributed equally to this work.
2The source code of Scallop is available at https://github.com/scallop-lang/scallop-v1.

https://github.com/scallop-lang/scallop-v1

The main technical contribution of Scallop concerns computing the set of top-k proofs associated with
each discrete fact efficiently, during the evaluation of a logic program, and correctly, by maintaining
all and only the top-k proofs. Scallop achieves this goal by formulating the problem in the framework
of provenance for deductive databases [6]. The framework provides the theory and algorithms for
tagging discrete facts derived by a logic program with information—in our case the set of top-k proofs.
Concretely, Scallop targets Datalog [[1]], a syntactic subset of Prolog. Although not Turing-complete,
Datalog supports recursion and is expressive enough for a wide variety of applications.

Scallop inherits efficient algorithms and optimizations from the databases literature. In contrast,
efficiently computing top-k proofs for Prolog is an open problem, to our knowledge. Moreover, the
provenance framework enables Scallop to provide correctness guarantees. We leverage the theory of
provenance semirings [17], which allows us to define how to compute top-k proofs in a compositional
manner for each logic operation in Datalog, while ensuring that the computation is correct across
arbitrary combinations of these operations. This approach also makes Scallop easy to extend with
features such as additional logic operations, probabilistic rules, and foreign functions.

We evaluate Scallop on diverse tasks that involve combining perception with reasoning. On a
suite of synthetic tasks that involve mathematical and logical reasoning over hand-written digits,
Scallop scales significantly better without sacrificing accuracy compared to DeepProbLog [24], a
principled neural logic programming approach. We also create and evaluate on a real-world task called
VQAR (Visual Question Answering with Reasoning) which augments the VQA task with an external
common-sense knowledge base for multi-hop reasoning. The goal is to answer a programmatic
question with the correct subset of objects in a real-world image. Scallop takes 92 hours to finish 15
training epochs with £ = 10 and takes only 0.3 seconds on average per training sample. In contrast, a
difficult training sample can take DeepProbLog over 100 hours to compute, making it infeasible to
train on the whole dataset. Scallop’s differentiable symbolic reasoning pipeline enables it to achieve
84.22% test accuracy, outperforming two VQA-tailored neural models based on Neural Module
Networks and transformers by 12.42% and 21.66% respectively.

In summary, the main contributions of this paper are as follows:

1. We introduce the notion of top-k proofs which generalizes exact probabilistic reasoning, asymp-
totically reduces computational cost, and provides relative accuracy guarantees.

2. We design and implement a framework, Scallop, which introduces a tunable parameter k£ and
efficiently implements the computation of top-k proofs using provenance in Datalog.

3. We empirically evaluate Scallop on synthetic tasks as well as a real-world task, VQA with
multi-hop reasoning, and demonstrate that it significantly outperforms baselines.

2 Ilustrative Overview
We illustrate our approach using two tasks: a simple task called sum2 and the real-world VQAR task.

A Simple Task. The sum2 task from [24] concerns classifying sums from pairs of hand-written
digits, e.g., El -+ B = 10. As depicted in Figure[I] we specify this task using a neural and a symbolic
component, following the style of DeepProbLog [24]]. The neural component is a perception model
that takes in an image of hand-written digit [20] and classifies it into discrete values {0, ...,9}. The
symbolic component, on the other hand, is a logic program in Datalog for computing the resulting
sum. The interface between the neural and symbolic components is a probabilistic database which
associates each candidate output of the perception model with a probability. For instance, the fact
0.85 :: d(Ed, 3) denotes that image E is recognized to be the digit 3 with probability 0.85.

Evaluating the logic program on the probabilistic database yields a weighted boolean formula for
each possible result of the sum of two digits, i.e., values in the range {0, ..., 18}. Each clause of
such a formula represents a different proof of the corresponding result. For instance, the bottom left
of Figure [I] shows the formula representing all 9 proofs of the ground truth result 10. Each such
formula is input to an off-the-shelf weighted model counting (WMC) solver to yield the probability
of the corresponding result, e.g., 0.7261 :: sum(El, K, 10).

The scalability of this approach is limited in practice by WMC solving whose complexity is at least
#P-hard [31]. We observe that computing only the top-k most likely proofs bounds the size of each
formula to k clauses, thereby allowing to trade diminishing amounts of accuracy for large gains in
scalability. Moreover, stochastic training of the deep perception models itself can tolerate noise in

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

| Input | | Perception Model ‘ | Probabilistic Datab ‘
D 0.01::d(H,0); ©0.01::d(H,1); ©0.01::d(H,2); ©0.85::d(H,3); ©0.01::d(H,4);
0.05::d(H,5); ©0.01::d(H,6); 01::d(H,7); ©0.03::d(H,8); 0.01::d(H,9)

0.
D 0.05 d(®,0); ©0.01::d(H®,1); ©0.01::d(®,2); 0.01::d(H,3); ©0.01::d(H,4);
0.01::d(®,5); ©.01::d(®,6); 0.85::d(H,7); 0.01::d(H,8); 0.03::d(H,9)

| Logic Program ‘ l Expected Result ‘
sum(A, B, R) :- digit(A, M), digit(B, N), R =M + N. sum(El,F,10)

| Possible Results and Proofs |

Result sum(El,®,0) ... sum(El,H,4) ... sum(El,H,S8) sum(H,H,9) 7 sum(El,®,14) ... sum(El,H,618)
Most likely Bl o) -k g -] B-—f g c 4(H1,3), d(H,7)] 5] | 5] |
Proof 3] = = 73 =2 73 d(El,5), d(H,5) 3] 7]
3]] 5]] 3]] d(E,8), d(H,2) 5] n
3] 7] E 7] 3] 7] d(El,1), d(H,9) 3] 7]
B 7} EH 7] 3] d(H,9), d(H,1) H 7]
3] 7] 3] 7] d(B,7), d(H,3)
H 7] 3] 7} d(H,6), d(H,4)
3] 7] 3] 7] d(E,4), d(H,6)
Least likely H 7] 3]] d(H,2), d(H,8)
Proof 3] 7]
~T1
| Weighted Boolean Formula for sum(,,lt) | l Probability ofsum(,,la) ‘
k=1 | d(8,3)rd(m,7) (weights not shown for brevity) Pr (sum(El 10)) = 0.7225
k=1 o ’
= d(8,3)Ad(m,7 d(B,5)Ad(R,5 d(8,8)Ad(R,2
B=3 (@3 7))V (dE S A0 v (8,8 Ad(3,2) A 4 Pr (sum(ElL . 10)) = 0.7230
k> d(m,3)Ad(R,7) d(8,5)Ad(R,5) d(B,8)Ad(R,2) d(8,1)Ad(R,9) d(8,9)Ad(R,1) k=3
29 |(4(m,7)Ad(®,3)) v (d(8,6) Ad(R,4)) (d(E,4) Ad(,6)) v (d(E,2) Ad(R,8) [Lr (sum(El. B, 10)) = 0.7261

Figure 1: Illustration of our approach on the task [E] + | = 10 using different values of parameter k.

I Input Image and Objects Scene Graph Knowledge Graph Natural Language Question

—is—) "Identify the tall animal
G T on the left"

© — .
giraffe)—is «—>»{_mammal % ¢ »{ animal
L4

Zny,
4 bap,,
Bri

02 —atr—»{ tall _

Answer

|
012 J
|
J

[
|

||
{ Query Result
(

target(012)

isa—»

0.83::name(02, giraffe). 1.0::is_a(giraffe, mammal). Programmatic Query

0.84::attr(02, tall). 1.0::is_a(mammal, animal). target(0) :- name(0, animal),
0.85::1left(012, 02). name(0, N) :- name(0, N'), is_a(N', N). left(o, 0'),
. (53,118 facts in total) ««« (13,390 axioms and 6 rules in total) attr(0, tall).

Figure 2: An instance of the VQAR task. The scene graph and knowledge base are shown graphically (above)
and in Scallop (below). The question and answer are shown in natural language (above) and in Scallop (below).

data. As we show later in our experiments, the additional noise introduced by the top-k approximation
can be well-compensated for by the stochastic training algorithm.

Scallop embodies this insight by introducing a parameter £ which can be task-dependent, and even
for a particular task, tuned differently for learning and inference. A higher k leads to slower inference,
but accelerates the convergence of learning, especially for complex or sparse feedback; thus, Scallop
enables to achieve the best of both worlds by employing a higher &k during training, and a lower k
thereafter. While Scallop’s inference time is under 0.1 second per task for the sum?2 task regardless
of the choice of k, the difference is much more pronounced for the sum3 task of adding three digits:
0.05 seconds for k = 1 versus 6.15 seconds for k = 15.

Visual Question Answering. We next illustrate applying Scallop to a complex real-world task,
Visual Question Answering (VQA) [2]], which is widely studied in the deep learning literature. The
task concerns answering a given question using knowledge from a given image of a scene. Since
we are interested in tasks that combine perception with reasoning, we extend the VQA task with
multi-hop reasoning over an external common-sense knowledge base. The resulting task, which we
call VOQAR, improves upon the VQA task in two important ways: it generalizes the VQA task by
allowing questions that require external knowledge, and it allows to precisely control the reasoning
complexity through the number of hops needed to answer them. EI We thereby develop a new dataset
consisting of real-world images of scenes and object identification questions that necessitate varying
hops of reasoning in a fixed external knowledge base.

3In contrast, prior works such as the GQA dataset [18] are limited to varying the reasoning complexity in the
question alone, which renders the question unweildy.

(Constant

) ¢ (Probabilit
i y) P
Variable) V _
((Termg PoVe (Prob. Input Fact) f p: f eF
; (Disjunction) j fi;...; fn cJ
(Predicate) a OQueny) O
(Atom) o« a(ti,...,tn) (Query a
(Fact) g alci,...,cn) cg (Query Result) ¢ g
r Y = (Program) P (F,R,Q)
(Input Fact) [g cF
(Rule) r a :— ai,...,am ER (Prob. Program) P (F,R,J,Q)

Figure 3: Abstract syntax of probabilistic Datalog programs.

It is natural to express the VQAR task using a combination of neural and symbolic modules akin to
the sum2 task. As Figure [J]illustrates, these modules are more complex, reflecting the real-world
nature of this task. The neural module is a perception model that takes the object feature vectors
(extracted by pre-trained vision models) and outputs a scene graph comprising the predicted name
and attribute distributions of each object, and relationships between the objects—all of which are
uniformly represented as a probabilistic database. For instance, the tuple 0.83 :: name(012, giraffe)
denotes that name of object 012 is classified as giraffe with probability 0.83.

Likewise, the symbolic module uniformly represents both the logic representation of the question
and the external knowledge base as a logic program in Datalog/*| Evaluating the program on the
probabilistic database yields the answer, e.g., target(012). The example in Figurehighlights the
need for external knowledge: although the question refers to the concept of an “animal” that is missing
in the scene graph, Scallop is able to derive the conclusion name(012, animal) without changing the
perception model. The derivation involves two-hop reasoning—two applications of the recursive rule
name(O, N) :— name(O, N’),is_a(N’, N) to facts from the scene and knowledge graphs:

name(o12, giraffe) is_a(giraffe, mammal)

name(o12, mammal) is_a(mammal, animal)

name(012, animal)

While more sophisticated models can learn the representation of concepts such as animal from a large
corpus, relying on such pretrained representation sacrifices the benefits of symbolic reasoning, such
as interpretability, data efficiency, and generalization to unseen concepts.

3 Background

We recap Datalog, the logic programming language that underlies Scallop, and present its probabilistic
extensions that we leverage for inference and training tasks.

Syntax of Datalog. As shown in Figure a Datalog program P consists of a set of input facts 7, a
set of rules R, and a query Q. The building block is an atom a(t1, . . ., t,) which consists of an n-ary
predicate a and a list of terms ¢4, . . ., ,, as arguments. A fact g is an atom which all the argument
terms are constants; it may be an input fact (EDB) or a derived fact (IDB). Datalog rules are of the
form o :(— a4, . .., o, meaning that atom « in the head is true if all atoms ¢; in the body are true.
Multiple rules sharing a single head predicate denote disjunction (or union).

Semantics of Datalog. Datalog programs can be executed using a bottom-up evaluation strategy.
Starting from the input facts F, we repeatedly apply the rules R in any order to derive new facts
until a fixed point is reached. Upon completion, we obtain all the output facts ¢ of the query Q.
For example, with F = {left(o1, 02), below(02,03)} and Q = left(o1, O), the execution of program
(F,0, Q) produces {left(o1,02)}. We denote the execution result as Exec(P) = {¢; } ;.

Probabilistic Extensions. To handle uncertain data, we introduce two probabilistic extensions to
Datalog, which are inspired by pD [15]] and ProbLog [11]. First, we specify probabilistic input facts
f by associating a probability p with f, declaring that Pr(f) = p. Deterministic input facts have
probability 1.0. Secondly, we allow disjunctions J among probabilistic input facts, denoted by
f1;-..; fm. For example, the disjunction

0.01 :: digit(Ed, 0);...; 0.82 :: digit(El, 3); . ..; 0.06 :: digit(Ed, 9).
states that the digit [E] is recognized to be 0 to 9 with their respective probabilities, but cannot be

more than one simultaneously. F and J form a probabilistic database. By combining the F, J with
‘R and Q, we obtain a probabilistic Datalog program P.

“We presume that the input question is in programmatic form because existing models for semantic parsing
achieve high accuracy in translating from natural language text to programmatic form [5].

1 2
name(o12, giraffe) is_a(giraffe, mammal)

S ={{A}} Sp, = {{f2}}

[AND]

g fs f1 : name(os, giraffe) f2 : name(os, tiger)
name(o12, mammal) is_a(mammal, animal) S ={{f}} Sp, = {{f2}} [oR)
Sy ={{f1. f2}} Sp, ={{fs}} AND q : target(o3)
¢ : name(o12, animal) (AND] Sq={{fi}.{f2}}
Sq={{f1, f2, fs}}
Figure 4: Proof constr. with conjunction. Figure 5: Proof constr. with disjunction.

Probability Calculation. Unlike discrete Datalog, which provides definite answers to queries, we
wish to compute the success probability of each query result ¢: Exec(P) = {(¢:, Pr(¢;))},. To
compute success probabilities, we first define a proof of any fact g as a minimal set of (probabilistic)
input facts f that can derive g. We denote a proof as F' € P(().F) where P() denotes power set. Since
a fact g may be explained by multiple proofs, we use S, to denote the complete set of proofs of g.
Given the set of proofs .S, for a query result g, the success probability Pr(q) is simply the likelihood
of S, denoted Pr(Sq), which can be computed using Weighted Model Counting (WMC) [19].

4 Framework

Scallop aims to solve the following two problems:

1. Inference (Section : Given a probabilistic Datalog program P = (F, R, 7, Q), efficiently
compute each query result ¢; with its set of proofs Sy, .

2. Learning (Section f.2)): Given a neural symbolic reasoning dataset D and a loss function L,
learn a perception model My which, for each (x,y) € D, transforms z into a probabilistic
database captured by Datalog program Pj. We aim to minimize the following objective: J(0) =

BT 2 (eyen £ (Exec(Pg), y).

4.1 Inference

Proof Construction. The goal of our proof construction is to construct the set of proofs S, for every
query result g. We can efficiently compute S, during the bottom-up execution of the Datalog program.
We initially tag each input fact f € F with Sy = {{f}} and propagate proofs during execution from
known facts to newly derived facts.

We illustrate proof propagation during conjunction in Figure[d When g is derived from a conjunction
on fi and fo, we combine the sets of proofs Sy, and S, to produce S,. The resulting S, contains a
single proof { f1, f2}, as both f; and f5 must be true for g to be true. More formally, we define a
binary operation ® corresponding to conjunction. Given two sets of proofs S7 and S2, we have

S1® Sy ={F|F=F UF,, (F, F;) € Sy x So, F contains no disjunction conflict}. (1)

We next illustrate proof propagation during disjunction in Figure[5] Consider a VQAR instance in
which the query concerns identifying a target object that is either a giraffe or a tiger. S, contains two
separate proofs, one containing only f; and the other containing only f,, as each can individually
explain q. We thereby define a binary operation & corresponding to disjunction, as set union:

S1® Sy =51 U 5.)
Equipped with @ and ®, we can show that the collection of sets of proofs S = P(()P(()F))
forms a semiring, which we call the proof semiring. Following [17], every derivable fact g can
be annotated with a corresponding algebraic formula representing the bottom-up construction of
Sg. Since the proof semiring is both commutative and distributive, we show in Appendix that

Sq = @F derives g (®feF Sf)~

However, the complexity of S, renders the computation infeasible. In principle, we have |S,| =

O(271), showing that |:S,| grows exponentially with the amount of input facts. The actual version
of our example shown in Figure [2| generates 2,619 proofs in total for all query results, and takes 14
minutes to execute. This scalability issue is further exacerbated when the system is used in a learning
setting, where we need to execute millions of such programs.

Top-% Proof Construction. The probabilistic nature of our problem setting opens up room for
approximation. A key observation is that, when the inference system is used in a learning setting,
the probability of a ground truth fact should significantly outweigh other facts, forming a skewed
distribution. We can exploit this property by only including the “most likely” proofs in .S, with the
likelihood of a proof F' defined by Pr(F') =[] Pr(f).

name(O, animal) :- name(O, O"), is_a(O', animal). subgoal(O) :- left(O, O"), attr(O, tall)
0.83 0.08 0.02 0.77 0.71

T~ g ~. : ~
1.00::is_a(giraffe, animal) \ /1.00::is_a(tiger, animal) \ (1.00::is_a(wolf, animal) Top-3 / 0.92::/efi(02, ol) N\ / 085:lefi(02,03)) (082:lefi(o2, 08))
0.83 2, giraffe) 0 tiger) wolf) Natutal _ 08¢:aur(02, all))/ ‘\0 0.84::attr(02, tall))/
Join — S - —
S; name(02, animal) l M subgoal(02)
target(O) :- name(O, animal), left(O, O"), attr(O, tall).
0.64 0.59 0.57 0.06 0.01

1.00::is_a(giraffe, animal) 1.00::is_a(giraffe, animal) 1.00::is_a(giraffe, animal) 1.00::is_a(tiger, animal) 1.00::is_a(wolf, animal)

0.83::name(02, giraffe) 0.83::name(02, giraffe) 0.83::name(02, giraffe) 0.08::name(02, tiger) 0.02::name(02, wolf)
0.92::/efi(02, 01) 0.85::/ef1(02, 03) 0.82::/ef1(02, 04) 0.92::lef(02, o1) - 4 other proofs ... 0.82::left(02, 04)
0.84::attr(02, tall) 0.84::attr(02, tall) 0.84::attr(02, tall) 0.84::attr(02, tall) 0.84::attr(02, tall)
Sq=8;©78, target(o2)

Figure 6: Illustration of top-k natural join using k = 3. Each ellipse represents a proof of the fact shown in
the box. Given the top 3 proofs for each of “name (o2, animal)” and “subgoal(02)”, we wish to derive the top 3
proofs for their conjunction, “target(o2)”. The join yields 9 possible proofs. After computing the likelihood for
each of the 9 proofs, we keep the top 3 most likely ones (green ellipses) and discard the rest (white ellipses).

We thereby introduce a top-k proof inference algorithm. With a user-specified hyper-parameter £ > 1,
we perform top-k filtering at each step of the proof construction. We define two new operations, ®(*)
for conjunction, and &%) for disjunction:

S1 ®") Sy = Top,(S1®8s), S1@® Sy = Top,(S1 @ Sa). 3)
Intuitively, whenever ® or @ is performed, we rank proofs by their likelihood and preserve only the
top-k proofs. This allows us to discard the vast majority of proofs and thus make inference tractable.

An example run-through of top-3 natural join () is depicted in Figure El, where we perform a
normal ® operation followed by a top-3 filtering.

As before, we construct a top-k proof semiring (Appendix [A.2), with which we can express the
resulting approximated beam of proofs S, = @g)derives . (®§ck€) 7S f). Note that the size of S,

is bounded by £, S’q| = O(k), reducing the exponential complexity of exact inference to a near
constant one. As a comparison point, with top-3 proof inference, the full example shown in Figure 2]
only generates 39 proofs, taking only 0.5 seconds to execute. Formally, our approximation of the

success probability of a given query result ¢ can be written as Pr(q) = Pr(S;) =~ Pr(S,).

Discussion. We present some desirable properties of our top-k inference algorithm. The approxima-
tion error bound is given by | Pr(S;) — Pr(Sg)[< 3-p ¢ g\ 5, Pr(#), and we can tune k to control
the trade-off between scalability and accuracy. Furthermore, if no disjunctions are specified (7 = 0)),

then we have S'q = Top,,(S,), that is, the beam of proofs Sq contains the global top-k proofs. The
theorems and proofs are provided in Appendix [A-3]

We also note that our top-k inference algorithm is reminiscent of beam search. Both methods are
iterative and explore only the top-k elements at each step. However, there are two major differences
that distinguish us from beam search. First, while beam search is heuristic, our algorithm is backed
by Datalog semantics and the provenance semirings framework for its correctness. We also present
formal guarantees on its approximation error bound. Secondly, our algorithm operates over the beam

of proofs S'q for each derived fact ¢, while beam search is usually performed to search for an output.

4.2 Learning

At a high level, we want to train a perception model My that takes in an input = and produces a
probabilistic database (F,J), captured by program P, such that after execution, can derive the
ground truth y as the output. Note that the probability of the input facts in the probabilistic database
is generated by the perception model My. Therefore each input probability p; = Pr(f;) is also
associated with their gradients Vp, (s, with respect to the model parameters 6.

To back-propagate the gradients through the inference process, similar to DeepProbLog [24], Scallop
adopts a gradient semiring augmented WMC procedure, for which we use Sentential Decision
Diagram (SDD) [9]]. The beam of proofs .S, will be transformed into a weighted Conjunctive Normal
Form (CNF) formula, where for each variable, f;, we attach the dual number (Pr(f;), Vpy(s,))
as its weight. As a result, the associated differentiable probability of each query result g; will be
(Pr(gi), Vr(qg,))» as computed by WMC. With everything above, we define the execution of our

Scallop

Task Goal Predicate #0ut | Max #Proofs =1 =3 o =10 DPL
T1 sum2(El, M, 10) 19 10 | 97.46% | 96.90% | 96.67% | 96.29% | 96.82%
T2 sum3(El, B, 15) 28 75 | 95.31% | 95.43% | 95.76% | 95.76% | 95.56%
T3 sum4(EL M. B B8, 17) 37 670 | 47.11% | 95.47% | 95.31% | 95.07% -
T4 | sort2(El M, 0,1) 2 55 | 80.43% | 91.55% | 91.75% | 95.49% | 98.04%
T5 sort3(d, Y, El, 1, 2,0) 6 220 | 70.34% | 93.20% | 96.15% | 97.09% | 95.50%
T6 | sort4(Wd El. B, BY.3,1,2,0) 24 715 | 68.67% | 87.90% | 92.02% | 91.87% | 89.96%

Table 1: Testing accuracy of Scallop and DeepProbLog (DPL) on a suite of 6 synthetic tasks. All numbers
except k = 1 have a standard deviation of < 2%.

10 0.0150
Scallop k=1

— Scallop k=3
0.0125 — scallop k=5
—— Scallop k=10

=10

0.0100

0.0075

— DoPL

Scallop k=1
—— Scallop k=3
— Scallop k=5

0.0050

0.0000 / \W
_—————— ~0.0025

0 500 1000 1500 2000 2500 3000 3500 4000 2500 5000 7500 10000 12500 15000 17500 20000
Training Time (s) Number of Training Datapoints

Accuracy

Accuracy Difference with k

Figure 7: Training runtime (in seconds) vs. valida- Figure 8: Difference in accuracy of varying K, com-
tion accuracy for task T2 (sum3). pared to kst = 10 for task T2 (sum3).

probabilistic Datalog program as

§ = Exec(P) = {(ai, (Pr(¢i), Vi(g)) }icr-)
The results of the execution g, along with the ground truth y is passed to the given loss function L.
Lastly, the loss is back-propagated to update 6, the parameters of the perception model My.

For example, the ground truth label y for the task sum(El, B, R) is a binary vector of dimension 19,
conceptually representing the set:

{0.0 :: sum(El,H,0),...,1.0 :: sum(Ed, |, 10),...,0.0 :: sum(Ed, ., 18) }.
and the predicted 7 is a set of the 19 results associated with their predicted probabilities, represented
as a probability vector of dimension 19. In our experimental setup, we apply the binary cross entropy
loss function on the two vectors. In practice, however, the loss function is fully customizable.

5 Evaluation

We evaluate Scallop on a suite of synthetic tasks and VQAR. All experiments are conducted on a
machine with two 20-core Intel Xeon CPUs, four GeForce RTX 2080 Ti GPUs, and 768 GB RAM.
Experimental details such as hyperparameter selection and dataset splits are provided in Appendix [C]
and implementation details of the Scallop framework are explained in Appendix D]

5.1 Synthetic Tasks

We extend the synthetic tasks from DeepProbLog (DPL) to demonstrate that (1) Scallop is much
more scalable, (2) Scallop does not sacrifice accuracy, and (3) how different levels of reasoning
granularity during training and testing phases can affect model performance.

Table[T]shows 6 synthetic tasks and their corresponding sample goal predicates. Each task takes as
input multiple MNIST [20]] images and requires performing simple arithmetic (T1-T3) or sorting
(T4-T6) over digits depicted in the given images. The difficulty of each task is reflected by third and
fourth columns, which show the size of the output space and the maximum number of proofs per
output, respectively. Our goal is to train a digit classifier end-to-end with the combined perception +
reasoning pipeline. We elaborate on individual tasks further in Appendix [E]

Accuracy. We show accuracy comparison with DPL in Table[I| All models are trained under the
same learning setting. Scallop is able to achieve on par accuracy as DPL, despite using far fewer
proofs. It also shows that in general, larger k implies better accuracy. Note that we are unable to
collect result for DPL on T3, as DPL takes 24 hours only to complete 100 out of the 15,000 training
samples. In contrast, Scallop with k = 3 finishes 5 epochs (75,000 training samples) within 4 hours.

S —e— LXMERT NMNs Scallop
Test Dataset || LXMERT | NMNs | Scallop o 1001, ‘ ‘ !
1000 C2 66.75% | 79.32% | 85.17% &
1000 C3 61.69% | 61.98% | 82.82% §
1000 C4 63.82% | 71.17% | 83.25% € 60
1000 C5 64.05% | 74.62% | 85.53% S 40
1000 C6 56.51% | 72.04% | 84.30% s ‘ ‘ ‘ ‘ ‘
5000 Cun 62.56% 71.80% | 84.22% 8 0 5 10 15 20
Epoch
Table 2: Testing accuracy (in Recall@5) of Figure 9: Results of training on 50K Cly;; tasks and
Scallop, NMNs, and LXMERT on VQAR dataset. testing on 5000 tasks of different clause lengths.

Runtime vs. Accuracy. We next evaluate the tradeoff between the training runtime vs. testing
accuracy in Scallop. Figure[7|shows the results for the sum3 task. With k = 1, Scallop learns the
fastest in the beginning, but it has high variance and potential of failing to converge to an optimal
solution. On the other hand, with k£ = 5, it has much less variance and converges the fastest despite
being slower in the beginning. We compare with DPL trained under the same setting. It achieves the
same accuracy (95.56%) at the end of the 3rd epoch, but due to its long runtime (14 hours), we omit
showing the whole curve in this figure.

Decoupling Reasoning Granularity. Scallop enables using different k¥ during training and testing
phases. The key idea is that a larger £ will help faster convergence in training, whereas a smaller k
suffices during testing since less probable proofs have minimal impact on the reasoning result. In
Figure[8] we fix a kyain = 10 on the sum3 task. Taking accuracy with kg = 10 as a baseline, we
compute the difference in testing accuracy on ks € {1,3,5}. The figure shows that as the training
progresses, the difference converges to 0%. This suggests we can tune ki, and ke, individually for
better training as well as faster test time inference.

5.2 Visual Question Answering

We next evaluate Scallop on the VQAR task described in Section 2] Besides DPL, we compare with
two neural methods: Neural Module Network (NMN) and LXMERT, a transformer based approach.

Dataset. The VQAR dataset contains (a) 80,178 images, (b) object feature vectors + bounding boxes,
(c) scene graphs with 500 object names, 609 attributes, and 229 relationships, (d) a shared knowledge
graph with 6 rules and 3K knowledge triplets, and (e) 4M programmatic queries and answer pairs.
The images and scene graphs are from the GQA [|18] dataset and the knowledge graph is from the
CRIC [16] dataset. The object feature vectors and bounding boxes are then obtained by passing the
images through pre-trained fixed-weight Mask RCNN and ResNet models. Using random walk on
combined scene graph and external knowledge graph, we generate object identification questions
in the form of programmatic queries. We further categorize these queries into different levels of
difficulty by the number of occurring clauses from C2 to C6, where C2 is the simplest and C6 is the
hardest. For each image, we generate 10 different question and answer pairs for each clause length
2 to 6, to obtain 4 million data points in total. We split the images randomly into training (60%)
validation (10%), and testing (30%) sets. Further details of this dataset are provided in Appendix [B]

We formulate VQAR as a multi-label classification task. For each datapoint (z,y) in our VQAR
dataset, the input x consists of (a) the entire knowledge graph K G, (b) a programmatic query, and (c)
the object feature vectors and bounding boxes. The ground truth y is the set of objects that the given
programmatic query identifies. All of our evaluated models share this same set of input and output
(except LXMERT, which takes in natural language questions instead of programmatic queries). The
accuracy is measured by Recall @5.

Setup of Scallop. We use a perception module consisting of three MLP-classifiers, My =
(MG, MG, M), which predict names, attributes, and relations respectively. All predictions are
transformed into probabilistic facts in a database. The outputs of M form disjunctions because
each object has only one name. With K'G as part of the probabilistic database, we perform Datalog
execution on the given programmatic query to obtain the set of identified objects. Note that the
entire knowledge graph is used in every Datalog execution. We use binary cross entropy as our loss
function to compare the predicted set of objects and the ground truth set. The goal is to train the three
classifiers in Scallop end-to-end, and identify the correct objects according to the question.

Baseline 1: DeepProbLog. It is prohibitively slow to train with DPL from scratch—a regular
training sample from C6 can take DPL more than 100 hours to run. Therefore, instead of training

[l LxmerT [11 DataLoa-RL [T NMNs [[1 Scallop [1 171 LxmeRrT [1 DataLoG-RL [[NMNs [] 11 Scallop

80 — 80 _
\u; 60 |- — [To) 60 |- L
® ®
© ‘©
S [| o
g € 40| .

20 | ﬂ . J F(

c2 C3 C4 C5 C6 10 100 1000 10000
Test Dataset Training Data Size

Figure 10: Generalizability to harder questions when Figure 11: Data efficiency given training data size
trained on 10K C2. from 10 to 10,000 C2.

with DPL, we use the perception model My trained with Scallop to test DPL’s inference capability.
With 10 seconds timeout, DPL times out on 68.66% of the testing samples, while Scallop finishes all
with an average running time under 0.3 seconds per sample.

Baseline 2: Neural Module Network. We compare against RVC [16], a Neural Module Network
approach for VQA with external common-sense knowledge. This method first pretrains a TransE
embedding [3] for the knowledge graph. Then, to mimic the reasoning process, it trains a set of
neural modules that perform knowledge retrieval, scene graph traversal, and logical operations. The
modules are assembled according to the programmatic query and can leverage object-based features.

Baseline 3: LXMERT. We also compare to LXMERT [33]], a recent transformer based approach that
emphasizes its transfer learning ability. LXMERT takes in a natural language question corresponding
to the given programmatic query. Similar to other baselines, the object features and bounding boxes
are taken as input. Since this model cannot explicitly use a knowledge base, we leverage the implicit
relations learned through pre-training over a variety of image-language tasks: MS COCO [22], Visual
Genome [2]], and GQA [18]]. Finally, we fine-tune LXMERT on our VQAR training samples.

Ablation Study: Datalog Reinforcement Learning (DATALOG-RL). In this study, we remove the
differentiability in Scallop’s learning pipeline. Instead, we sample a discrete scene graph, run it
through the standard Datalog execution, and use the overlap in predicted objects as a reward to
estimate the gradient using REINFORCE [35]]. This method does not scale with the training dataset
of 50K tasks, so we only perform the generalizability experiments (Figure [I0).

Results. Table 2] and Figure 0] compares the performance of Scallop, NMNs, and LXMERT based on
50K training tasks. Scallop significantly outperforms both in terms of accuracy and data efficiency.
Figure[I0]shows that Scallop generalizes to answer more difficult questions (1K from each of C2-C6)
even when trained on only the easiest ones (10K C2). Figure|l 1} on the other hand, shows the testing
accuracy (on 1K C2) when trained on varying dataset sizes (10, 100, 1000, and 10,000 C2). We
observe that Scallop has the best data efficiency. Finally, with DATALOG-RL we observe that the
addition of differentiable reasoning is crucial to Scallop’s learning performance.

6 Discussion and Limitations

Top-k hyper-parameter selection. The hyper-parameter k is much easier to tune than a traditional
one due to its deterministic behavior. At training time, a lower k means faster inference time, and
a higher k means higher inference accuracy. Note that sometimes a higher k may lead to faster
convergence than a lower k. That is because the higher k means more proofs will be considered
during the weighted model counting process. Subsequently, more gradients will be back-propagated
to the source, resulting in faster convergence of learning. At testing time, k merely affects whether
we consider certain low probability proofs. Therefore it will likely have less impact on the prediction
result. For both the synthetic tasks and the VQAR task we performed, we found k=5 to be a suitable
default value that balances accuracy and training cost. In practice, the user may start with k = 5, then,
increase or decrease this value to achieve higher accuracy or lower training cost, respectively.

Scaling to large knowledge bases. In the real world, incorporating a larger knowledge base is helpful
to avoid failures due to incomplete knowledge base and vocabulary. We estimate the efficiency of
Scallop with regards the sizes of the knowledge base. For the knowledge base with 3K triplets,

it takes Scallop 0.2 seconds on average to process one query. When we use a subset of the
ConceptNet knowledge base comprising 250K triplets with the same Scallop implementation, the
time consumption per query increased to 2 seconds. Although Scallop runs fast with non-trivial-sized
knowledge bases, to incorporate an even larger knowledge base such as the entire ConceptNet (34M)
or WikiData (94M) will require system-level optimizations and is beyond the scope of this paper.

Programming interface. The Scallop framework provides a generic interface for performing differ-
entiable logical inference. The input to our interface is (1) a probabilistic relational database (F, J)
consisting of tuples with associated probabilities (with gradients) that encodes the output of the neural
components, and (2) a set of Datalog rules R that specifies the logic reasoning components. The
output is the probabilistic query results, which can be either used to calculate the loss directly or as
the input to subsequent neural components. The Scallop framework is able to capture a variety of
machine learning tasks such as the examples shown in Appendix

Natural language questions. In our VQAR task, the query is given in its programmatic form.
However, in the generic setup of the visual question and answering (VQA) task, a question is usually
provided in its natural language form. To convert a natural language question into its programmatic
form, the user may need to train a separate model for semantic parsing. Automatically generating
such a program with end-to-end reasoning using program synthesis, semantic parsing, or inductive
logic programming techniques is an interesting but orthogonal future direction.

7 Related Work

Neural symbolic methods. Neural symbolic methodology aims to disentangle low-level perception
from high-level reasoning systematically. Generically speaking, there are three classes of the neural
symbolic method. (1) Logic regularization term. Whenever the network fails to obey the logic
constraint, it will receive a penalty [32,136]. (2) Soft logic program execution. The primitive operations
in a logic program are mapped to differentiable mathematical operations or neural components
[14}29]. (3) Proof-guided probability calculation. Approaches like exact probability calculation and
abductive reasoning first execute the logic program and then map the generated proof constructs into
differentiable expressions [I8 121} 24].

Using logic constraints as regularization terms can scale, but does not guarantee the reasoning
correctness. Substituting logic reasoning steps by differentiable components fails to preserve the
original semantics of logic reasoning. Exact probability calculation, on the other hand, maintains
the purity of the logic reasoning pipeline, but has significant scalability limitation. Most application-
specific neural symbolic approaches fall in categories (1) and (2) due to their high-efficiency demand.

Scaling reasoning algorithms. Other neural symbolic methods have explored optimization strategies
for their reasoning algorithms. Neural Theorem Prover (NTP) [30]] considers all reasoning paths in
the inference procedure. Due to its high computation cost, subsequent works focus on improving its
scalability. For instance, Greedy NTP [26] keeps a beam of proof states using nearest neighbor search.
Another notable example is Conditional Theorem Prover [27] which applies soft proof selection by
training a neural network to select the rules, deriving proofs individually.

Forward and backward chaining. Methods such as Scallop and TensorLog [7] apply forward
chaining, a reasoning method that derives conclusion from known facts and rules. In particular,
Scallop employs Datalog and a probabilistic deductive database to derive all possible query results.
This is as opposed to backward chaining methods, such as (Deep)ProbLog and NTP, which start from
the goals and work backwards to determine if any data supports the goal.

8 Conclusion and Future Work

We proposed Scallop, a framework for scaling differentiable reasoning based on Datalog, motivated by
real-world applications that necessitate combining perception and reasoning. The key idea underlying
Scallop is to relax exact probablistic reasoning via a tunable parameter that specifies the level of
reasoning granularity. We demonstrated the effectiveness of Scallop on diverse tasks including a
newly created Visual Question Answering benchmark that requires multi-hop reasoning. In future, we
plan to develop expressive extensions to Scallop, target more challenging neuro-symbolic applications,
and optimize the end-to-end pipeline on modern hardware.

Acknowledgements. We thank our anonymous reviewers for valuable feedback. This research was
supported by grants from ONR (#N00014-18-1-2021), NSF (#2107429 and #1836936), and the
Canada CIFAR AI Chair Program.

10

References

[1] ABITEBOUL, S., HULL, R., AND VIANU, V. Foundations of Databases: The Logical Level,
1st ed. Pearson, 1994.

[2] ANTOL, S., AGRAWAL, A., LU, J., MITCHELL, M., BATRA, D., ZITNICK, C. L., AND
PARIKH, D. Vqa: Visual question answering. In Proceedings of the IEEE international
conference on computer vision (2015), pp. 2425-2433.

[3] BORDES, A., USUNIER, N., GARCIA-DURAN, A., WESTON, J., AND YAKHNENKO, O.
Translating embeddings for modeling multi-relational data. In Neural Information Processing
Systems (NIPS) (2013), pp. 1-9.

[4] CHEN, D., BOLTON, J., AND MANNING, C. D. A thorough examination of the cnn/daily mail
reading comprehension task. CoRR abs/1606.02858 (2016).

[5] CHEN, W., GAN, Z., L1, L., CHENG, Y., WANG, W., AND L1U, J. Meta module network
for compositional visual reasoning. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (2021), pp. 655-664.

[6] CHENEY, J., CHITICARIU, L., AND TAN, W.-C. Provenance in databases: Why, how, and
where. Foundations and Trends in Databases 1, 4 (Apr. 2009).

[7] CoHEN, W. W. Tensorlog: A differentiable deductive database. CoRR abs/1605.06523 (2016).

[8] DA1, W.-Z., XU, Q., YU, Y., AND ZHOU, Z.-H. Bridging machine learning and logical
reasoning by abductive learning. In NeurIPS 2019 (2019).

[9] DARWICHE, A. Sdd: A new canonical representation of propositional knowledge bases. In
Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence -

Volume Volume Two (2011), IICAT’ 11, AAAI Press, p. 819-826.

[10] D’AVILA GARCEZ, A., GORI, M., LAMB, L. C., SERAFINI, L., SPRANGER, M., AND TRAN,
S. N. Neural-symbolic computing: An effective methodology for principled integration of
machine learning and reasoning, 2019.

[11] DE RAEDT, L., KIMMIG, A., AND TOIVONEN, H. Problog: A probabilistic prolog and its
application in link discovery. pp. 2462-2467.

[12] DEUTCH, D., GILAD, A., AND MOSKOVITCH, Y. Efficient provenance tracking for datalog
using top-k queries. The VLDB Journal 27 (2018), 245-269.

[13] DEVLIN, J., CHANG, M., LEE, K., AND TouTANOVA, K. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018).

[14] EVANS, R., AND GREFENSTETTE, E. Learning explanatory rules from noisy data. Journal of
Artificial Intelligence Research 61 (2018), 1-64.

[15] FUHR, N. Probabilistic datalog—a logic for powerful retrieval methods. In Proceedings
of the 18th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (New York, NY, USA, 1995), SIGIR °95, Association for Computing
Machinery, p. 282-290.

[16] GAO, D., WANG, R., SHAN, S., AND CHEN, X. From two graphs to n questions: A vqa dataset
for compositional reasoning on vision and commonsense. arXiv preprint arXiv:1908.02962
(2019).

[17] GREEN, T.J., KARVOUNARAKIS, G., AND TANNEN, V. Provenance semirings. In Proceedings
of the ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS)
(2007).

[18] HUDSON, D. A., AND MANNING, C. D. GQA: a new dataset for compositional question
answering over real-world images. CoRR abs/1902.09506 (2019).

11

[19] KIMMIG, A., DEN BROECK, G. V., AND RAEDT, L. D. Algebraic model counting. CoRR
abs/1211.4475 (2012).

[20] LECUN, Y., BoTTOU, L., BENGIO, Y., AND HAFFNER, P. Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86, 11 (1998), 2278-2324.

[21] L1, Q., HUANG, S., HONG, Y., CHEN, Y., WU, Y. N., AND ZHU, S.-C. Closed loop neural-
symbolic learning via integrating neural perception, grammar parsing, and symbolic reasoning.
In International Conference on Machine Learning (2020), PMLR, pp. 5884-5894.

[22] LIN, T., MAIRE, M., BELONGIE, S. J., BOURDEV, L. D., GIRSHICK, R. B., HAYS, J.,
PERONA, P., RAMANAN, D., DOLLAR, P., AND ZITNICK, C. L. Microsoft COCO: common
objects in context. CoRR abs/1405.0312 (2014).

[23] MAHDAVI, M., ZANIBBI, R., MOUCHERE, H., VIARD-GAUDIN, C., AND GARAIN, U. Icdar
2019 crohme + tfd: Competition on recognition of handwritten mathematical expressions and
typeset formula detection. pp. 1533-1538.

[24] MANHAEVE, R., DUMANCIC, S., KIMMIG, A., DEMEESTER, T., AND RAEDT, L. D. Deep-
problog: Neural probabilistic logic programming. In NeurIPS 2018 (2018).

[25] MARINO, K., RASTEGARI, M., FARHADI, A., AND MOTTAGHI, R. Ok-vqa: A visual question
answering benchmark requiring external knowledge. In Conference on Computer Vision and
Pattern Recognition (CVPR) (2019).

[26] MINERVINI, P., BOSNJAK, M., ROCKTASCHEL, T., RIEDEL, S., AND GREFENSTETTE, E.
Differentiable reasoning on large knowledge bases and natural language. CoRR abs/1912.10824
(2019).

[27] MINERVINI, P., RIEDEL, S., STENETORP, P., GREFENSTETTE, E., AND ROCKTASCHEL,
T. Learning reasoning strategies in end-to-end differentiable proving. CoRR abs/2007.06477
(2020).

[28] RAEDT, L. D., MANHAEVE, R., DUMANCIC, S., DEMEESTER, T., AND KIMMIG, A. Neuro-
symbolic = neural + logical + probabilistic. In International Workshop on Neural-Symbolic
Learning and Reasoning (2019).

[29] ROCKTASCHEL, T., AND RIEDEL, S. End-to-end differentiable proving. CoRR abs/1705.11040
(2017).

[30] ROCKTASCHEL, T., AND RIEDEL, S. End-to-end differentiable proving. arXiv preprint
arXiv:1705.11040 (2017).

[31] SANG, T., BEAME, P., AND KAUTZ, H. A. Performing bayesian inference by weighted model
counting. In AAAI (2005), vol. 5, pp. 475-481.

[32] SERAFINI, L., AND D’ AVILA GARCEZ, A. S. Logic tensor networks: Deep learning and
logical reasoning from data and knowledge. CoRR abs/1606.04422 (2016).

[33] TAN, H., AND BANSAL, M. Lxmert: Learning cross-modality encoder representations from
transformers. arXiv preprint arXiv:1908.07490 (2019).

[34] WANG, P., WU, Q., SHEN, C., HENGEL, A., AND DIcK, A. Explicit knowledge-based
reasoning for visual question answering.

[35] WILLIAMS, R. J. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning 8, 3-4 (1992), 229-256.

[36] XU, J., ZHANG, Z., FRIEDMAN, T., LIANG, Y., AND VAN DEN BROECK, G. A semantic loss
function for deep learning with symbolic knowledge. In Proceedings of the 35th International
Conference on Machine Learning (10—15 Jul 2018), J. Dy and A. Krause, Eds., vol. 80 of
Proceedings of Machine Learning Research, PMLR, pp. 5502-5511.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We have future work to improve
our method.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] In appendix [A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] In supplemental
material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In supplemental material

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] At the beginning of evaluation
section.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
In supplemental material.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We generate synthetic dataset.

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] We generate synthetic dataset.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

A Theoretical Guarantee

A.1 Proof Semiring
Definition A.1 Given a program P = (F, R, J, Q), the collection of sets of proofs S is defined to
be
{818 eP(O)P(()F)),YF € S, F is a proof}.
Note that F being a proof implies that there is no disjunction conflict in F. That is,
ViLheFjeJ fiej = fo¢]

Definition A.2 The two binary operators ® and @: S x S — S are defined as
S1 8 S =51 U8y,
S1® 85, = {F | F=F UF27(F17F2) €5 x 52,
F contains no disjunction conflict}.

Theorem A.3 (S, ®,®,0,{0}) forms a commutative semiring, which we call Proof Semiring.

Proof We show that (1). 0 is a & identity, (2). {0} is a ® identity, (3). ¢ and ® are commutative
and associative, (4). multiplication is distributive, and (5). multiply by @) annihilates the operand.

1. (is a @ identity. Given S € S,
Sed=SuUp=5S=0US=0aS.
2. {0} is a ® identity. Given S = {F, I, ..., F,} € S, we have
S@{@}:{F1U®7F2U®7...,F2U®} =5
3. @ is commutative: Given S7 and S5,
S16 85 =5US=5US;, =5 &5.
® is commutative: Given S and So,
Sl®52:{F11UF12,...}:SQ®Sl
@ is associative: Given S, 52,95 € S,
S1 P (SQ D 53) =5 U (SQ U 53) = (Sl U Sg) U Ss.
® is associative: Given Sy, S2, S5 € Sand S; = {F}, Fj, ..., F\ }. We denote
Fyye = { é’; UFJUF? ifno disjunction conflict
otherwise,
wherex € 1...n1,y €1...n9,z € 1...n3. We then have
S1 ® (S2 ® S3) = {F111, Fii2,- .. ,Fn1n2n3}
= (51 ®S2) ®S3

4. Distributive. Given S7, S5, and S35 € S similar to above, we have

S1® (S2® S3) =51 ® (S2US3) (5)
= (51 ®S52)U (51 ®S3) (6)
= (51 ® S2) ® (81 ® S3) (7N
5. Multiplying () annihilates the operand:
S1®0=0.
Therefore (S, ®, ®, 0, {0}) forms a semiring. |

Theorem A.4 S is naturally ordered and w-complete [17]].
Proof We define a partial order < such that S; < .Sy <= 57 C S5. Therefore our S is naturally

ordered. In addition, our chain has a strict upper bound which is P(()F), as VS € S, S C P(()F).
Hence S is also w-complete.]

14

Theorem A.5 The end result Sy can be expressed as

So= P (@Sf).

F derives q feF

Proof Under the provenance semiring framework [17]], we define a S-Relation R : G — S, such that

R(f) = {f}1} =S5 vfeF.
With S being a commutative w-continuous semiring, Q being a datalog query, and our S-Relation R,
by Definition 5.1 [[17]], we have

amm= P (® &),

T yields t t’Eleaves(T)

where 7 ranges over all Q-derivation trees for ¢. In our case, we seek the result ¢ = ¢, which is,
Sq = Q(R)(q). At the same time, we know that 7 is a derivation tree for ¢ and its leaf nodes ¢’ are
from our input facts F. Note that leaves(7) is simply a proof F in our case and each t’ € leaves(7) is
an input fact f € F. Therefore we know that ¢’ € F and R(t') = Sy. At last, we can express S, as

Si=om= B (Qsr).

F derives ¢ f€F
as expected. |

Proposition A.6 |S,| = O(217).

Proof (Sketch) Theoretically, 2! is the absolute upper bound as there could be at most 2| proofs,
given by that each input fact f € F can be in or not in a proof. |

In reality, this upper bound can rarely be achieved. The actual size of S, is always determined by
various factors including input facts, rules, and disjunctions.

A.2 Top-k Proof Semiring
We repeat our definitions of ©*) and @*) here:

Definition A.7 With a Top,, : S — S defined as keeping the top-k proofs, we define
S1 @™ Sy = Top, (S1 ® Sa),
S1 @(k) Sy = TOpk(Sl (&) SQ)

Proposition A.8 The approximated set of proofs Sq can be expressed as
(k) (k)

S= B (®s).

F derives q f€F

Proof (Sketch) First show that S still form a semiring under @) and ®(*) with the exact same
proof as in Theorem A.3. Then follow Theorem A.5 to show that this expression still holds.]

Proposition A.9 |S,| = O(k).
Proof (Sketch) This follows directly from the definition of &(*) and ®(*) as at each step the size of

the resulting set of proofs is capped by k. |

A.3 Approximation Analysis

Proposition A.10 We give an approximation error bound
| Pr(Sy) —Pr(Sy)| <> pc S\Gy Pr(F).

15

This is a loose bound given by the difference between S, and §q. Equality happens when all the
proofs in S, are disjoint.

Proposition A.11 For a program P = (F, R, T, Q), if T = 0, then we have S’q = Top,,(S¢).

The proof of this proposition can be found in Theorem 1 of [12]. Under that setting, there is no J
and therefore 7 = (). At the same time the top-k derivation tree is equivalent to our top-% proof.

16

Category Function Name
Scene Graph INITIAL, FIND NAME, FIND ATTR, RELATE, RELATED REVERSE
Knowledge Graph FIND KG, FIND HYPERNYM
Logic Operators AND, OR

Table 3: Basic functions used to generate questions in VQAR.

B VQAR Dataset Collection

B.1 Dataset Generation

We focus on the task of multi-hop VQA with external common-sense knowledge. For this purpose,
we generate an object retrieval VQA dataset, called VQAR, by building upon two existing datasets,
GQA [18] and CRIC [16]. These datasets comprise real-world images from the Visual Genome and
have complementary qualities necessary for our task. In particular, we use curated scene graphs of
the images from the GQA dataset, and we use curated knowledge graphs related to visual questions
from the CRIC dataset.

Scene and Knowledge Graphs. Starting with the image and scene graph pairs from the GQA
dataset, we further pre-process the scene graphs to generate cleaner questions, as follows. We only
include the top 500 most frequently occurring object names, which covers more than 88% of all
object occurrences. We retain 609 attributes and 229 relationships after normalizing their names.
Finally, we ensure that every image has more than 5 objects so that its scene graph is complex enough.
After pre-processing, we are left with 80,178 images with their scene graphs.

The knowledge graph provided by the CRIC dataset comprises triplets of the form (ej, r, e2), where
e; and e, are two entities, and r describes a relationship between them, e.g., (giraffe, is_a, animal).
We represent each type of relationship as a separate binary relation. There are 10 different types
of relationships, such as is_a, used_for, and capable_of. We considered two alternatives to CRIC:
OK-VQA [25] and KB-VQA [34]. OK-VQA includes common-sense knowledge as part of the
question itself, and thus precludes multi-hop reasoning.

KB-VQA comprises over 160M probabilistic common-sense knowledge triplets drawn from Wik-
ilinks, but is noisy.

Programmatic Query Generation. Existing programmatic VQA questions typically seek aggre-
gated results which makes them liable to exploitable bias. For instance, a binary choice question
may be answered by an educated guess without using reasoning. We therefore generate object
identification queries that require reasoning to varying degrees. Such queries are harder to exploit,
since objects vary from scene to scene.

We use GQA’s domain specific language to generate programmatic queries for our purpose. Such
a query is composed of a functions sequence that successively identify a set of objects, where the
final set of objects are the targets to our query. We define a suite of 9 such functions as shown
in Table 3] Consider for instance the RELATE function. Viewing the scene graph as a relation
(subject, predicate, object), this function identifies the object, given the subject and predicate. Then,
the natural language question in Figure [2] corresponds to the following programmatic query:

[INTTIAL, RELATE(left), FIND HYPERNYM(animal), FIND ATTR(tall)]

The number of clauses n determines the degree of multi-hop reasoning in the query, which we call
a query of type Cn. Thus, the above example is a query of type C4. Furthermore, such queries are
straightforward to translate into Datalog, allowing them to be executed using Scallop. The Datalog
counterpart of the above query is also shown in Figure 2}

Our query generation procedure always starts with the INITIAL function which refers to all objects in
the scene graph. It then traverses through the scene graph and the knowledge graph to identify valid
clauses to append to the query. Lastly, we execute the resulting query using Scallop to obtain the
ground truth answer. We control the difficulty of the query by the number of its clauses.

Since we are not targeting the natural language questions, we only generate these questions in
functional program form. For each image, we generate 10 different question and answer pairs for
each clause length 2 to 6, to obtain 4 million data points in total. We split them into training (60%),

17

validation (10%), and testing (30%) sets, and ensure that all the questions about the same image occur
within the same split to test generalizability.

18

C Experiments

C.1 Synthetic Experiment Setup

Models. Our perception model uses two convolutional layers and two fully connected layers, which
takes in the MNIST image as input, and output a distribution on 10 possible numbers, 0-9. This
model is trained from scratch in an end-to-end fashion.

Training Hyper-parameters. The learning rate for both DeepProbLog and Scallop is 0.01; the batch
sizes for Scallop is 64, and 2 for DeepProbLog, as batch size 64 for DeepProbLog converges too
slow. We set the epoch size to 20, where both of the methods converge before 5 epochs.

Evaluation Metric. Our evaluation metric is accuracy. If the predicted outcome is the same as the
correct one, the accuracy is 1, otherwise, the accuracy is O.

C.2 VQAR Experiment Setup

Models. Our perception model uses pre-trained fixed-weight Mask RCNN and ResNet models, which
take as input an image and produces feature vectors (along with bounding boxes). Then, input facts
representing names, attributes, and object relationships are extracted by 3 separate trainable MLP
classifiers. We note that these classifiers integrated with our reasoning engine are trained from scratch
in an end-to-end fashion. We also note that to ensure a fair comparison, the visual input (features +
bounding boxes) we feed to all baselines (including LXMERT) are the same.

Baselines. We use three baselines that are representative of different state-of-the-art approaches
to combining perception and reasoning: (1). Neural Module Network (NMNs), which uses a set
of neural modules, one per basic function, (2). DATALOG-RL, a reinforcement learning approach
supervised by a discrete logic reasoning engine, (3). DeepProbLog, a probabilistic logic programming
approach, and (4). LXMERT, a transformer based approach.

Dataset. To evaluate performance, we sample 50K tasks from the training split, SK from the
validation split, and 5K from the testing split. To measure generalizability and sample complexity,
we sample 10 to 10K tasks of type C2 for training, and 1K tasks each of type C2 to C6 for testing.

Training Hyper-parameters. All the models converge under 20 training epochs. The learning rate is
tuned and is 0.0001 for Scallop, NMN, and DPL, 0.00001 for LXMERT. We select the loss function
to be binary cross-entropy loss, except DPL that only supports cross-entropy loss. With batch size 16
and k = 10, Scallop achieves the best accuracy in reasonable training time. All the optimizers are
Adam.

Model Size Comparison. The model for Scallop, datalog-RL and DeepProbLog are the same, so
they share the same model size: 10.91MB for attribute classification, 14.67MB for name classification,
17.78 MB for relation classification. The neural modular networks method contains 8 modular network.
The and and or modules are 0.02MB, the find_name and find_attribute modules are 9.63MB,
the find_hypername and find_KG are 8.61MB, the relate and relate_reverse modules are
18.06MB. The LXMERT method uses a large pretrained module, which is 836MB.

Evaluation Metric. Since our tasks essentially involve object retrieval, any ground truth label is a
set of object IDs that satisfy the constraints stated in the question. For set comparison, we select the
recall@5 rate as the evaluation metric. It assesses the recall on the top 5 probable predictions.

C.3 VOQAR Topk

We compare the performance of Scallop under different choices of k: 1, 5, 10, and 15. We train on
10K C2 tasks and test on 1K tasks of varying clause length. As shown in Figure[I2] We observe that
the recall @5 score increases as k grows, as expected. However, the larger the &, the longer it takes to
process a single task at training time. Our running time increases modestly from £ = 1 to £ = 10,
and more dramatically when & = 15. We thus confirm that Scallop can strike a balance between
efficiency and accuracy by tuning the k value, and that exact probabilistic reasoning is not required to
obtain good performance on VQAR tasks.

19

lok=10k=511k=10[l k=15

—0— k=1 k=5 k=10 —0— k=15
82 [~ - @
x 1 1
9 8
& 80 p
o [B 9]
© o
© S - _
3 78 ~ F 05
o c
>
(o
76 L [O 5’ —o—o0—°—°
c2 C3 C4 C5 (6]3] c2 C3 C4 C5 C6
Test Dataset Test Dataset

(b) Results of training on 10000 C2 tasks and testing on 1000 tasks

(a) Results of training on 10000 C2 tasks and testing on 1000 tasks of types C2-C6. Running time grows as k increases from 1 to 15.

of types C2-C6. The recall rate grows as k increases from 1 to 15.

Figure 12: Comparison of Scallop across different choices of k.

Dataset (Clause-n) | 2 | 3 | 4 | 5 | 6
Timeout rate (%) | 54.5% | 69.7% | 74.4% | 70.7% | 74.0%

Table 5: DeepProbLog timeout rate on 1000 tasks of types C2-C6.

C.4 DeepProbLog

We give a more fine-grained analysis of the DeepProbLog performance. In particular, we investigate
the relation between timeout rate and query complexity. Again, our timeout is set to 10 seconds.

Test Dataset | Timeout Rate w/ KG | Timeout Rate w/ Rela

1000 C2 100% 21.43%
1000 C3 91.55% 73.09%
1000 C4 88.79% 70.74%
1000 C5 88.54% 62.27%
1000 C6 87.85% 75.20%

Table 4: Success Rates of DeepProbLog

Table[5] In the above table, column 2 shows DeepProbLog’s timeout rate when at least one KG-related
clause is presented in the programmatic query. It is worth noting that DeepProbLog performs the
worst on the C2 dataset. In C2, the KG-related clause is the only clause in the programmatic query
other than the first INITIAL clause. This implies that there is no constraint posed around the KG
clause, leading to a huge amount of possible proofs, and in turn causing the timeout.

Column 3 shows DeepProbLog’s timeout rate when at least one relation-related clause is presented in
the programmatic query. As one would expect, the more relation is included in the query, the deeper
the reasoning will need to be. The table clearly shows that DeepProbLog, without approximation
strategy, suffers from handling deep reasoning chain, as that would lead to an exponential amount of
proofs.

20

D Implementation Details

The Scallop implementation is composed of compilation, runtime, and weighted model counting.
The compilation part takes in a Datalog program and compiles it into a positive relational algebra
form. Then, the runtime executes the generated relational algebra expression and generates the query
output with its top-k proofs. Last, the weighted model counting process takes in the query output with
the fact probability and calculates the corresponding output probability with gradients. We implement
Scallop in Rust for better efficiency.

D.1 Compilation

The compilation process takes in the high-level datalog program and compiles it into an executable
form. First, the compiler preprocesses the program, ensures no parsing errors and type errors
occur in the given program. Then, it analysis the datalog program and convert it into a mid level
positive relational algebra form, which contains empty, union, projection, selection, natural join
and renaming. These mid-level relational algebra forms will be further compiled into join and
disjunction, which are directly executable by the runtime.

D.2 Runtime

The runtime execution adopts a bottom-up evaluation strategy with a tagging system for the prove-
nance semiring. It starts with all the input facts tagged with themselves as proofs and keeps applying
the rules in the join and disjunction form until a fixpoint is reached. Whenever a join happens on
tuple ¢; tagged with F7i, and tuple ¢ tagged with F5, the generated tuple is tagged with F} ® F5,
where the ® is easily configurable. The story is similar for disjunction case. In terms of optimization,
we adopt the leap join strategy rather than the naive join to increase the evaluation efficiency.

D.3 Weight Model Counting

The weighted model counting algorithm is the same as DeepProbLog. We depend on the sentential
decision diagram to realize the weighted model counting process. To realize the gradient calculation,
we also implemented a semiring system to carry the additional information during weighted model
counting.

Weighted Model Counting v.s. DNF counting. Weighted model counting is a systematical way to
calculate the probability of a boolean formula holds, where each variable in the formula is associated
with a probability; DNF counting calculates the probability of a DNF formula being true. Since
performing DNF counting is less expensive than WMC, it is a promising way to further optimize for
the scalability of Scallop. However, we have not incorporated this optimization yet because (a) we
are using an off-the-shelf WMC solver and (b) supporting richer forms of reasoning such as negation
and aggregation will necessitate WMC. Nevertheless, we acknowledge this optimization possibility,
which could be incorporated into the WMC solver to further improve the overall efficiency of Scallop
on tasks for which weighted DNF counting is sufficient.

21

E Synthetic Task Details

E.1 Sum n numbers

The sum n numbers task is an extension from the original MNIST digit recognition task. Instead of
recognizing a single digit from the image, this task takes in n images, and recognizes the sum of all
the input images. For example, sum(El, |, 10) is corresponding to a sum?2 task. In a scallop program,
we have the rule sum(l1, 12, DA + DB) - digit(I1, DA), digit(12, DB), where I; are the image ids in the MNIST
dataset. This rule propagates the probability from low level perception in digit(Ed, 3) and digit{@, 7) to
the high level answer sum(El, |, 10). We list the code for sum n digit tasks below.

Sum2 {

decl digit(Symbol, Int).

decl sum(Symbol, Symbol, Int).

sum(imgA, imgB, DA + DB) :- digit(imgA, DA), digit(imgB, DB).
}

Figure 13: sum 2 numbers.

Sum3 {
decl digit(Symbol, Int).
decl sum(Symbol, Symbol, Symbol, Int).
sum(imgA, imgB, imgC, DA + DB + DC) :-
digit(imgA, DA), digit(imgB, DB), digit(imgC, DC).

Figure 14: sum 3 numbers.

Sumé4 {
decl digit(Symbol, Int).
decl sum(Symbol, Symbol, Symbol, Symbol, Int).
sum(imgA, imgB, imgC, imgD, DA + DB + DC + DD) :-
digit(imgA, DA), digit(imgB, DB), digit(imgC, DC), digit(imgD, DD).

Figure 15: sum 4 numbers.

E.2 Sort-n-numbers

The sort n numbers task is another extension from the original MNISTT digit recognition task. In
this task, the input are n images in the MNIST dataset, and the desired output is to sort them in
order. For example, sort2(E]Ji.0,1) means the given input [E] and i has the order 0, 1 from small to
large. In the scallop program to sort two numbers, we have the corresponding rules: sort(imgA, imgB,
0, 1) - digitimgA, DA), digit(imgB, DB), DA <= DB. sort(imgA, imgB, 1, 0) :- digit(0, DA), digit(1, DB), DA > DB. This means,
if the first number is smaller or equal to the second number, then we given them the order (0, 1),
else we give them the order (1, 0). We manually assign the order if two numbers are the same. The
corresponding scallop programs are shown below:

Sort2 {
decl digit(Symbol, Int).
decl sort_2(Int).
sort_2(0) :- digit(0, DA), digit(1l, DB), DA <= DB.
sort_2(1) :- digit(0, DA), digit(1, DB), DA > DB.

Figure 16: sort 2 numbers.

22

Sort3 {

decl digit(Symbol, Int).
decl sort_3(Int).
decl digit_abc(Int, Int, Int).
digit_abc(DA, DB, DC) :- digit(0, DA), digit(1, DB), digit(2, DC).
sort_3(0) :- digit_abc(DA, DB, DC), DA <= DB, DB <= DC. // 0, 1, 2
sort_3(1) :- digit_abc(DA, DB, DC), DA <= DC, DC < DB. // 0, 2, 1
sort_3(2) :- digit_abc(DA, DB, DC), DB < DA, DA <=DC. // 1, 0, 2
sort_3(3) :- digit_abc(DA, DB, DC), DB <= DC, DC < DA. // 1, 2, O
sort_3(4) :- digit_abc(DA, DB, DC), DC < DA, DA <=DB. // 2, 0, 1
sort_3(5) :- digit_abc(DA, DB, DC), DC < DB, DB < DA. // 2, 1, 0
}
Figure 17: sort 3 numbers.
Sort4 {

decl digit(Symbol, Int).
decl sort_4(Int).

decl digits(Int, Int, Int, Int).

dlgltS(DO D1, D2, D3) :- digit(0, DO), digit(1, D1), digit(2, D2), digit(3, D3
sort_4(0) :- digits(DO, D1, D2, D3), DO <= D1, D1 <= D2, D2 <= D3. // 0, 1, 2,
sort_4(1) digits(DO, D1, D2, D3), DO <= D1, D1 <= D3, D3 < D2. // 0, 1, 3,
sort_4(2) digits(DO, D1, D2, D3), DO <= D2, D2 < D1, D1 <=D3. // 0, 2, 1,
sort_4(3) digits(DO, D1, D2, D3), DO <= D2, D2 <= D3, D3 < D1. // 0, 2, 3,
sort_4(4) digits(DO, D1, D2, D3), DO <= D3, D3 < D1, D1 <= D2. // O, 3, 1,
sort_4(5) digits(DO, D1, D2, D3), DO <= D3, D3 < D2, D2 < D1. // 0, 3, 2,
sort_4(6) digits(DO, D1, D2, D3), D1 < DO, DO <= D2, D2 <= D3. // 1, 0, 2,
sort_4(7) digits(DO, D1, D2, D3), D1 < DO, DO <= D3, D3 < D2. // 1, 0, 3,
sort_4(8) digits(DO, D1, D2, D3), D1 <= D2, D2 < DO, DO <= D3. // 1, 2, O,
sort_4(9) :- digits(DO, D1, D2, D3), D1 <= D2, D2 <= D3, D3 < DO. // 1, 2, 3,
sort_4(10) :- digits(DO, D1, D2, D3), D1 <= D3, D3 < DO, DO <= D2. // 1, 3, O,
sort_4(11) :- digits(DO, D1, D2, D3), D1 <= D3, D3 < D2, D2 < DO. // 1, 3, 2,
sort_4(12) :- digits(DO, D1, D2, D3), D2 < DO, DO <= D1, D1 <= D3. // 2, 0, 1,
sort_4(13) :- digits(DO, D1, D2, D3), D2 < DO, DO <= D3, D3 < Di1. // 2, O, 3,
sort_4(14) :- digits(DO, D1, D2, D3), D2 < D1, D1 < DO, DO <= D3. // 2, 1, O,
sort_4(15) :- digits(DO, D1, D2, D3), D2 < D1, D1 <= D3, D3 < DO. // 2, 1, 3,
sort_4(16) :- digits(DO, D1, D2, D3), D2 <= D3, D3 < DO, DO <= D1. // 2, 3, O,
sort_4(17) :- digits(DO, D1, D2, D3), D2 <= D3, D3 < D1, D1 < DO. // 2, 3, 1,
sort_4(18) :- digits(DO, D1, D2, D3), D3 < DO, DO <= D1, D1 <= D2. // 3, 0, 1,
sort_4(19) :- digits(DO, D1, D2, D3), D3 < DO, DO <= D2, D2 < D1. // 3, 0, 2,
sort_4(20) :- digits(DO, D1, D2, D3), D3 < D1, D1 < DO, DO <= D2. // 3, 1, O,
sort_4(21) :- digits(DO, D1, D2, D3), D3 < D1, D1 <= D2, D2 < DO. // 3, 1, 2,
sort_4(22) :- digits(DO, D1, D2, D3), D3 < D2, D2 < DO, DO <= D1. // 3, 2, O,
sort_4(23) :- digits(DO, D1, D2, D3), D3 < D2, D2 < D1, D1 < DO. // 3, 2, 1,

Figure 18: sort 4 numbers.

23

F VQAR Dataset Details

F.1 VQAR Stats

100 % O Find kG
O Find_Hypernym
80% 10 Find_Name
B Find_At
60% | ind_Attr
Relate_Reverse
40% | Relate
O And
20% 10 Or
0%

v o > & &

Figure 19: This is the distribution of functions in queries. We only introduce AND and OR for the questions with
more than 5 clauses.

100 %
80% |- [I 1 |Okae_o
— - [1kaG 1
60% | | |Oka2
40% |- | |:| KG_3
- BkG 4
20% |- -+ |Mke.s
0%

v o S8 & &

Figure 20: This is the distribution of knowledge graph related function number in queries. FIND_HYPERNAME
and FIND_KG are the two basic functions that requires look into the knowledge graph. When the question has
more clauses, it is more likely include knowledge base related clauses.

100 %
80% |- N rela_0
rela_1
60 % - - -
rela_2
40% |- N rela_3
rela_4
20% [~ n rela_5
0%

v > > o3 o

Figure 21: This is the distribution of relation related function number in queries. RELATE and RELATE_REVERSE
are the two basic functions that requires look into the knowledge graph. When the question has more clauses, it
is more likely include knowledge base related clauses.

F.2 VQAR Examples

We show 6 images in our VQAR dataset in Figures 22} 23] 24} 23] [26] and 27} each paired with 2
question and answer pairs. For each question, we show its original Programmatic Query as well as
the transformed Datalog Query. The object IDs are shown on the bounding boxes (in white) on the
image.

Then the program is Pj = (KGr U F,, U F, U F,., KGR, J,,, Q). Note the universal knowledge
graph K G is the same across different tasks.

24

Programmatic Query

[INITIAL, RELATE_REVERSE(left), HYPERNYM_FIND(vehicle), HYPERNYM_FIND(thing)]

Datalog Query

target(O) :— left(O, O”), name(O, vehicle), name(O, thing).

Answer

{1630226, 1630228}

Programmatic Query

[INITIAL, FIND_ATTR(parked), FIND_NAME(truck), RELATE_REVERSE(right)]

Datalog Query

target(O) :— attr(O, parked), name(O, truck), right(O, 0").

Answer

{3642007}

Figure 22: VQAR Example 1

1000

Programmatic Query

[INTTIAL, FIND_KG(can, hold flowers), RELATE_REVERSE(left), RELATE(left)]

Datalog Query

target(O) :— name(O, N), can(N, holdflowers), left(O, O,), left(O3, O).

Answer

{4458161, 4458148}

Programmatic Query

[INITIAL, RELATE_REVERSE(left), INITIAL, FIND_ATTR(blue), RELATE_REVERSE(right), OR]

Datalog Query

target(0) :— left(0, O').
target(O) :— attr(O, blue), right(0, O’).

Answer

{4458150, 4458153, 4383115, 4458156, 4383118, 4458159, 4458161, 4383122, 4458165}

Figure 23: VQAR Example 2

Programmatic Query

[INITIAL, FIND_ATTR(cloudy), RELATE_REVERSE(in)]

Datalog Query

target(O) :— attr(O, cloudy), in(O, O").

Answer

{999665, 999666, 999660}

Programmatic Query

[INTTIAL, FIND_ATTR(black), INITIAL, FIND_KG(can be, opened or closed), AND]

Datalog Query

target(O) :— attr(O, black), name(O, N), can_be(N, opened or closed).

Answer

{999674, 999675, 999676, 999677, 999678}

Figure 24: VQAR Example 3

25

Programmatic Query

[INITIAL, FIND_ATTR(grey)]

Datalog Query

target(O) :— attr(O, grey).

Answer

{3981862, 4133398, 3981863}

Programmatic Query

[INITIAL, HYPERNYM_FIND(odd-toed ungulate), HYPERNYM_FIND(herbivore)]

Datalog Query

target(O) :— name(O, odd-toed ungulate), name(O, herbivore).

Answer

{3981865, 4133447}

Figure 25: VQAR Example 4

Programmatic Query

[INTTIAL, FIND_KG(can, hold water)]

Datalog Query

target(O) :— name(O, N), can(N, hold water).

Answer

{831745}

Programmatic Query

[INITIAL, FIND_NAME(bottle), INITIAL, RELATE(standing by), FIND_KG(can, grow branches), OR]

Datalog Query

target(O) :— name(O, bottle).
target(O) :— standing_by(0O’, O), name(O, N), can(N, grow branches).

Answer

(831745, 831764}

Figure 26: VQAR Example 5

0 100 200 300 400

Programmatic Query

[INITIAL, FIND_HYPERNYM(aircraft), FIND_ATTR(black), FIND_NAME(propeller)]

Datalog Query

target(O) :— name(O, aircraft), attr(O, black), name(O, propeller).

Answer

{776649}

Programmatic Query

[INITIAL, FIND_ATTR(neon), INITIAL, RELATE_REVERSE(by), OR]

Datalog Query

target(O) :— attr(O, neon).
target(O) :— by(O, 0").

Answer

{776674,776661, 776677, 776664, 776666, 776654 }

Figure 27: VQAR Example 6

26

G Framework Details

As noted in Section[6} the programming interface for Scallop is composed of a probabilistic relational
database (F, J), and a set of Datalog rules R. This Scallop framework is able to capture a variety of
learning tasks, including but not limited to MNIST calculation and VQAR:

a. Addition and sorting over MNIST digits. JF represents the output of the MNIST digit recognition
network as tuples of the form 0.89: :digit (El,3); 0.02::digit(El,4); R represents
the logic rules for addition/sorting. For example, the rule for addition is sum(imgA, imgB) :-
digit(imgA, DA), digit(imgB, DB).

b. The VQAR task. F represents the facts in the knowledge graph and the output of the three MLP
classifiers, My = (./\/lf,?, g /\/lg), which predict names, attributes, and relations respectively.
These predictions are transformed into probabilistic facts. For example, the Mj classifier
takes in the bounding box and feature vector of the object o1l and produces a distribution of
the classified names: 0.81: :name(ol, tiger); 0.15::name(ol, giraffe); ... Onthe
other hand, My takes in two bounding boxes and feature vectors from, say, object ox and oy.
It produces a distribution of classified relations between ox and oy: 0.15: :rela(‘on’, ox,
oy). 0.05::rela(‘behind’, ox, oy). ... R represents the rules in the knowledge base
and the programmatic query.

c. Formula parsing and evaluation [23]]. In this task, a vision model takes an image of a hand-written
formula (e.g. 2+3 x4), and predicts the evaluation result. F encodes its output using probabilistic
relations of the form constant (2, 2) and binary_op(2+3x4, ‘+’, 2, 3x4), R con-
tains rules for formula evaluation, such as eval (F, LY + RY) :- binary_op(F, ‘+’, L,
R), eval(L, LY), eval(R, RY).

d. Natural language reading comprehension [4,[13]]. In this task, a language model takes as input
a natural language article (e.g. "Tom kicks the ball") and a natural language question (e.g.
"Who kicks the ball?"), and Scallop generates the answer to the question. F encodes its output
using probabilistic relations of the form subject_verb(tom, kicks), verb_object (kicks,
ball), and event (kicks, tom, ball). R represents the programmatic query target (W)
:- event (kicks, W, ball), which is obtained using a semantic parsing model.

27

	Introduction
	Illustrative Overview
	Background
	Framework
	Inference
	Learning

	Evaluation
	Synthetic Tasks
	Visual Question Answering

	Discussion and Limitations
	Related Work
	Conclusion and Future Work
	Theoretical Guarantee
	Proof Semiring
	Top-k Proof Semiring
	Approximation Analysis

	VQAR Dataset Collection
	Dataset Generation

	Experiments
	Synthetic Experiment Setup
	VQAR Experiment Setup
	VQAR Topk
	DeepProbLog

	Implementation Details
	Compilation
	Runtime
	Weight Model Counting

	Synthetic Task Details
	Sum n numbers
	Sort-n-numbers

	VQAR Dataset Details
	VQAR Stats
	VQAR Examples

	Framework Details

