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Abstract

We consider the question of learning the natural parameters of a k-parameter
minimal exponential family from i.i.d. samples in a computationally and statistically
efficient manner. We focus on the setting where the support as well as the
natural parameters are appropriately bounded. While the traditional maximum
likelihood estimator for this class of exponential family is consistent, asymptotically
normal, and asymptotically efficient, evaluating it is computationally hard. In this
work, we propose a computationally efficient estimator that is consistent as well as
asymptotically normal under mild conditions. We provide finite sample guarantees
to achieve an (¢2) error of « in the parameter estimation with sample complexity
O(poly(k/a)) and computational complexity O(poly(k/«)). To establish these results,
we show that, at the population level, our method can be viewed as the maximum
likelihood estimation of a re-parameterized distribution belonging to the same class
of exponential family. Further, we show that our estimator can be interpreted as a
solution to minimizing a particular Bregman score as well as an instance of minimizing
the surrogate likelihood.

1 Introduction

We are interested in the problem of learning the natural parameters of a minimal
exponential family with bounded support. Consider a p-dimensional random vector

X = (x1,---,xp) with support X C RP. An exponential family is a set of parametric
probability distributions with probability densities of the following canonical form
fx(x;0) x exp (0T¢(x) + B(X)), (1)

where x € X is a realization of the underlying random variable x, @ € R¥ is the natural
parameter, ¢ : X — R is the natural statistic, k& denotes the number of parameters, and
B is the log base function. For representational convenience, we shall utilize the following
equivalent representation of (1):

fx(x:0) o exp (((97 @(X)>>) = exp <Zie[m,je[k2ue[ka} it qb“l(x)) @

where © = [0;5/] € RF1xk2xks i the natural parameter, ® = (@] : X — RF1xk2xks ig the
natural statistic, k1 X ko x k3 — 1 =k, and <<@, ‘1>(x)>> denotes the tensor inner product,
i.e., the sum of product of entries of © and ®(x). An exponential family is minimal if
there does not exist a nonzero tensor U € RF1>**2xk3 guch that <<U, ‘1>(x)>> is equal to a
constant for all x € X.
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The notion of exponential family was first introduced by Fisher [17] and was later
generalized by Darmois [12], Koopman [30], and Pitman [40]. Exponential families play an
important role in statistical inference and arise in many diverse applications for a variety
of reasons: (a) they are analytically tractable, (b) they arise as the solutions to several
natural optimization problems on the space of probability distributions, (c) they have
robust generalization property (see [5, 2| for details).

Truncated (or bounded) exponential family, first introduced by Hogg and Craig [20], is
a set of parametric probability distributions resulting from truncating the support of an
exponential family. Truncated exponential families share the same parametric form with
their non-truncated counterparts up to a normalizing constant. These distributions arise
in many applications where we can observe only a truncated dataset (truncation is often
imposed by during data acquisition) e.g., geolocation tracking data can only be observed
up to the coverage of mobile signal, police department can often monitor crimes only within
their city’s boundary.

The natural parameter © specifies a particular distribution in the exponential family. If
the natural statistic ® and the support of x (i.e., X') are known, then learning a distribution
in the exponential family is equivalent to learning the corresponding natural parameter ©.
Despite having a long history, there has been limited progress on learning natural parameter
© of a minimal truncated exponential family. More precisely, there is no known method
(without any abstract condition) that is both computationally and statistically efficient for
learning natural parameter of the minimal truncated exponential family considered in this
work.

1.1 Contributions

As the primary contribution of this work, we provide a computationally tractable method
with statistical guarantees for learning distributions in truncated minimal exponential
families. Formally, the learning task of interest is estimating the true natural parameter
©* from i.i.d. samples of x obtained from fx(-;©*). We focus on the setting where O*
and ® are appropriately bounded (see Section 2). We summarize our contributions in the
following two categories.

1. Computationally Tractable Estimator: Consistency, Normality, Finite
Sample Guarantees. Given n samples x(I) ... x(™ of x, we propose the following novel
loss function to learn a distribution belonging to the exponential family in (2):
1 n
£a(0) = = exp (= ((0,2(x1)))), (3)

t=1

where &(-) = ®(-) —Eyy, [®(+)] with Ux being the uniform distribution over X'. We establish
that the estimator ©,, obtained by minimizing £,,(0) over all © in the constraint set A,
ie.,

©, € argmin L,(0), (4)
O€eA

is consistent and (under mild further restrictions) asymptotically normal (see Theorem
4.2). We obtain an e-optimal solution ©,,, of the convex minimization problem in (4)
(i, Ln(Ocn) < Ln(0,) + €) by implementing a projected gradient descent algorithm
with O(poly(k1k2/€))! iterations (see Lemma 3.1). Finally, we provide rigorous finite
sample guarantees for O, (with ¢ = O(a?)) to achieve an error of a (in the tensor £

norm) with respect to the true natural parameter ©* with O(poly(kika/a)) samples

1We let k3 = O(1). See Section 2.



and O(poly(kiks/a)) computations (see Theorem 4.3). By letting certain additional
structure on the natural parameter, we allow our framework to capture various constraints
on the natural parameter including sparse, low-rank, sparse-plus-low-rank (see Section 2.1).

2. Connections to maximum likelihood estimation (MLE) of a re-parameterized
distribution. We establish connections between our method and the MLE of the
distribution fy(;©* — ©). We show that the estimator that minimizes the population
version of the loss function in (3) i.e.,

£(6) =E|exp (- ((6,2(x))))|.

is equivalent to the estimator that minimizes the Kullback-Leibler (KL) divergence between
Uy (the uniform distribution on X') and fx(-;0* — ©) (see Theorem 4.1). Therefore, at
the population level, our method can be viewed as the MLE of the parametric family
fx(-;0* — ©). We show that the KL divergence (and therefore £(©)) is minimized if and
only if © = ©*, and this connection provides an intuitively pleasing justification of the
estimator in (4).

1.2 Related Works

In this section, we look at the related works on learning exponential family. Broadly
speaking, there are two line of approaches to overcome the computational hardness of
the MLE : (a) approximating the MLE and (b) selecting a surrogate objective. Given
the richness of both of approaches, we cannot do justice in providing a full overview.
Instead, we look at a few examples from both. Next, we look at some of the related works
that focus on learning a class of exponential family. More specifically, we look at works
on (a) learning the Gaussian distribution and (b) learning exponential family Markov
random fields (MRFs). Finally, we explore some works on the powerful technique of score
matching. In Appendix A, we further review works on learning exponential family MRFs,
score-based methods (including the related literature on Stein discrepancy) and latent
variable graphical models (since these capture sparse-plus-low-rank constraints on the
parameters similar to our framework).

Approximating the MLE. Most of the techniques falling in this category approximate
the MLE by approximating the log-partition function. A few examples include : (a)
approximating the gradient of log-likelihood with a stochastic estimator by minimizing
the contrastive divergence [19]; (b) upper bounding the log-partition function by an
iterative tree-reweighted belief propagation algorithm [57]; (¢) using Monte Carlo methods
like importance sampling for estimating the partition function [43]. Since these methods
approximate the partition function, they come at the cost of an approximation error or
result in a biased estimator.

Selecting surrogate objective. This line of approach selects an easier-to-compute
surrogate objective that completely avoids the partition function. A few examples are
as follows : (a) pseudo-likelihood estimators [4] approximate the joint distribution with
the product of conditional distributions, each of which only represents the distribution
of a single variable conditioned on the remaining variables; (b) score matching [22, 21|
minimizes the Fisher divergence between the true log density and the model log density.
Even though score matching does not require evaluating the partition function, it is
computationally expensive as it requires computing third order derivatives for optimization;
(c) kernel Stein discrepancy [32, 9] measures the kernel mean discrepancy between a data
distribution and a model density using the Stein’s identity. This measure is directly



characterized by the choice of the kernel and there is no clear objective for choosing the
right kernel [61].

Learning the Gaussian distribution. Learning the Gaussian distribution is a special
case of learning exponential family distributions. There has been a long history of
learning Gaussian distributions in the form of learning Gaussian graphical models e.g.
the neighborhood selection scheme [36], the graphical lasso [18], the CLIME [6], etc.
However, finite sample analysis of these methods require various hard-to-verify conditions
e.g. the restricted eigenvalue condition, the incoherence assumption ([59, 24]), bounded
eigenvalues of the precision matrix, etc. A recent work [28] provided an algorithm
whose sample complexity, for a specific subclass of Gaussian graphical models, match
the information-theoretic lower bound of [60] without the aforementioned hard-to-verify
conditions.

Learning Exponential Family Markov Random Fields (MRFs). MRFs can be
naturally represented as exponential family distributions via the principle of maximum
entropy (see [58]). A popular method for learning MRFs is estimating node-neighborhoods
(fitting conditional distributions of each node conditioned on the rest of the nodes)
because the natural parameter is assumed to be node-wise- sparse. A recent line of
work has considered a subclass of node-wise-sparse pairwise continuous MRFs where the
node-conditional distribution of x; € A; for every ¢ arise from an exponential family as
follows:

Frapes(wilx—s = x_) oc exp ([0; + Z 0ijd(x5)] d(xs)), (5)

Jelpli#

where ¢(x;) is the natural statistics and 6; + > jelplji 0;j¢(x;) is the natural parameter.?
Yang et al. [62] showed that only the following joint distribution is consistent with the
node-conditional distributions in (5) :

f) ocexp (D 0i () + D 0:0(xi)6 () (6)
i€[p] J#i

To learn the node-conditional distribution in (5) for linear ¢() (i.e., ¢(x) = x), Yang et
al. [62] proposed an ¢; regularized node-conditional log-likelihood. However, their finite
sample analysis required the following conditions: incoherence, dependency (see [59, 24]),
bounded moments of the variables, and local smoothness of the log-partition function.
Tansey et al. [51] extended the approach in [62] to vector-space MRFs (i.e., vector natural
parameters and natural statistics) and non-linear ¢(-). They proposed a sparse group lasso
(see |45]) regularized node-conditional log-likelihood and an alternating direction method
of multipliers based approach to solving the resulting optimization problem. However, their
analysis required same conditions as [62].

While node-conditional log-likelihood has been a natural choice for learning exponential
family MRFs, M-estimation [56, 55, 44] and maximum pseudo-likelihood estimator [39, 63,
10] have recently gained popularity. The objective function in M-estimation is a sample
average and the estimator is generally consistent and asymptotically normal. Shah et al.
[44] proposed the following M-estimation (inspired from [56, 55|) for vector-space MRFs
and non-linear ¢(-): with Uy, being the uniform distribution on &; and ¢(z;) = é(z;) —
Ly 6, (),

’
A

arg min % Z exp ( — [6id(xi) + Z 9z‘j¢~5(~"3z’)<l~5($j)])- (7)
i=1 jelli#i

2Under node-wise-sparsity, > |0:;] is bounded by a constant for every i € [p].

J€lpl.i#i



They provided an entropic descent algorithm (borrowing from [55]) to solve the
optimization in (7) and their finite-sample bounds rely on bounded domain of the variables
and a condition (naturally satisfied by linear ¢(-)) that lower bounds the variance of a
non-constant random variable.

Yuan et al. [64] considered a broader class of sparse pairwise exponential family MRFs
compared to [62]. They studied the following joint distribution with natural statistics ¢(-)

and ()
fx(x) oc exp ( > bip(ai) + > O (wi, wj))- (8)

i€[p] J#i

They proposed an £ 1 regularized joint likelihood and an /3 ; regularized node-conditional
likelihood.  They also presented a Monte-Carlo approximation to these estimators
via proximal gradient descent. Their finite-sample analysis required restricted strong
convexity (of the Hessian of the negative log-likelihood of the joint density) and bounded
moment-generating function of the variables.

Building upon [55] and [44], Ren et al. [41] addressed learning continuous exponential
family distributions through a series of numerical experiments. They considered unbounded
distributions and allowed for terms corresponding to multi-wise interactions in the joint
density. However, they considered only monomial natural statistics. Further, they assume
node-wise-sparsity of the parameters as in MRFs and their estimator is defined as a series
of node-wise optimization problems.

In summary, tremendous progress has been made on learning the sub-classes of
exponential family in (6) and (8). However, this sub-classes are restricted by the
assumption that the natural parameters are node-wise-sparse. For example, none of the
existing methods for exponential family MRFs work in the setting where the natural
parameters have a low-rank constraint.

Score-based method. A scoring rule S(x, Q) is a numerical score assigned to a realization
x of a random variable x and it measures the quality of a predictive distribution @
(with probability density ¢(-)). If P is the true distribution of x, the divergence D(P, Q)
associated with a scoring rule is defined as Ep[S(x, Q) — S(x, P)]. The MLE is an example
of a scoring rule with S(-, @) = —log ¢(+) and the resulting divergence is the KL-divergence.

To bypass the intractability of MLE, [22] proposed an alternative scoring rule with
S(-,Q) = Alogq() + 3||V1og q(-)||3 where A is the Laplacian operator, V is the gradient
and || - |2 is the f2 norm. This method is called score matching and the resulting
divergence is the Fisher divergence. Score matching is widely used for estimating
unnormalizable probability distributions because computing the scoring rule S(-, Q) does
not require knowing the partition function. Despite the flexibility of this approach, it
is computationally expensive in high dimensions since it requires computing the trace of
the unnormalized density’s Hessian (and its derivatives for optimization). Additionally, it
breaks down for models in which the second derivative grows very rapidly.

In [34], the authors considered estimating truncated exponential family using the
principle of score matching. They build on the framework of generalized score matching
[21] and proposed a novel estimator that minimizes a weighted Fisher divergence. They
showed that their estimator is a special case of minimizing a Stein Discrepancy. However,
their finite sample analysis relies on certain hard-to-verify assumptions, for example,
the assumption that the optimal parameter is well-separated from other neighboring
parameters in terms of their population objective. Further, their estimator lacks the useful
properties of asymptotic normality and asymptotic efficiency.



1.3 Useful notations and outline

Notations. For any positive integer ¢, let [¢t] = {1,---,t}. For a deterministic
sequence vy, - ,v, we let v := (vy,---,v;). For a random sequence vi,---,v, we let
v = (vi,---,v). For a matrix M € R*¥? we denote the element in " row and ;"
column by M;;, the singular values of the matrix by o;(M) for i € [min{u,v}|, the
matrix maximum norm by [[M||max = maxe[y] jefo) |Mij], the entry-wise L;; norm
by M1 = > icqujep 1 Mijl, the nuclear norm by [Mllx = > icininfupy 0i(M)-
We denote the Frobenius or Trace inner product of matrices M,N € R“*Y by
(M,N) =3 "cup,jef) MijNij- For a matrix M € R**”, we denote a generic norm on R**”
by R(M) and denote the associated dual norm by R*(M) := sup{(M,N)|R(N) < 1}
where N € R**”. For a tensor U € R**"** we denote its (i,7,1) entry by Usj, its
It slice (obtained by fixing the last index) by U.; or U () the tensor maximum norm
(with a slight abuse of notation) by [|[U|lmax = maxXje[y) jefo],icfw] |Uijil, and the tensor

norm by [|U||r = \/Zie[u],je[v],le[w] Ufjl. We denote the tensor inner product of tensors
U,V € R by ((U,V)) = > i jepliem) Vit Viji.  We denote the vectorization
of the tensor U € R“V*¥ by vec(U) € R“Y*! (the ordering of the elements is not

important as long as it is consistent). Let 0 € RF1XF2Xk3 denote the tensor with every
entry zero. We denote a p-dimensional ball of radius b centered at 0 by B(0,b).

Outline. In Section 2, we formulate the problem of interest, state our assumptions, and
provide examples. In Section 3, we provide our loss function and algorithm. In Section
4, we present our main results including the connections to the MLE of fx(-;0* — O),
consistency, asymptotic normality, and finite sample guarantees. In Section 5, we conclude,
provide some remarks, discuss limitations as well as some directions for future work. See
supplementary for organization of the Appendix.

2 Problem Formulation

Let x = (x1,--- ,Xp) be a p—dimensional vector of continuous random variables.® For any
i € [p], let the support of x; be X; C R. Define X = []_; X;. Let x = (z1,--- ,xp) € X
be a realization of x. In this work, we assume that the random vector x belongs to an
exponential family with bounded support (i.e., length of &; is bounded) along with certain
additional constraints. More specifically, we make certain assumptions on the natural
parameter © € R¥1X#2xk3 “and on the natural statistic ®(x) : X — RF*F2xks a5 follows.

Natural parameter ©. We focus on natural parameters with bounded norms. However,
instead of having such constraints on the natural parameter © as it is, we decompose ©
into k3 slices (or matrices) and have slice specific constraints. The key motivation for this
is to broaden the class of exponential family covered by our formulation. For example,
this decomposability allows our formulation to en-capture the sparse-plus-low-rank
decomposition of © in addition to only sparse or only low-rank decompositions of © (see
Section 2.1). This is precisely the reason for considering tensor natural parameters instead
of matrix natural parameters. Further, we assume k3 = O(1) i.e., it does not scale with p.
We formally state this assumption below.

Assumption 2.1. (Bounded norms of ©.) For every i € [ks|, we let R;(©W) < r;
where O € RF1>k2 45 the ¢ slice of ©, R; : RF*F2 — R is a norm and r; is a
known constant. This decomposition is represented compactly by R(©) < r where R(O) =
(R1(©OW), -+ Ry, (0%3))) and r = (r1,- -+ ,7k,)-

3Even though we focus on continuous variables, our framework applies equally to discrete variables.



We define A to be the set of all natural parameters satisfying Assumption
21 ie, A = {6 : R(©) < r}. For any 6,0 € A and t € [0,1], we have
RO+ (1-1)0) <tR(O)+(1-t)R(O) < tr+(1—t)r = r. Therefore, tO+(1—1)O € A

and the constraint set A is a convex set.

Natural Statistic ®. For mathematical simplicity, we center the natural statistic ®(-)
such that their integral with respect to the uniform density on X’ (i.e., Uy) is zero. Uy is
well-defined because the support X is a strict subset of R? i.e., X C RP.

Definition 2.1. (Centered natural statistics). The centered natural statistics are defined
as follows:

D(-) = () = Euy [2(x)].

In this work, we focus on bounded natural statistics which may enforce certain
restrictions on the length of support X. See Section 2.1 for examples. We define two
notions of boundedness. First, we make the following assumption to be able to bound the
tensor inner product between the natural parameter © and the centered natural statistic
&(-) (see Appendix B.1).

Assumption 2.2. (Bounded dual norms of @). For everyi € [ks] and norm R;, we assume
that the dual norm R} of the ith slice of the centered natural statistic i.e., &9 is bounded by
a constant d;. Formally, for any i € [ks] and x € X, R (®W(x)) < d;. This is represented
compactly by R*(H(x)) < d where R*($(x)) = (R3 (W (x)), - - s Ry (#*3)(x))) and d =
(d17 T 7dk3)'

Next, we assume that the tensor maximum norm of the centered natural statistic @(-)
is bounded by a constant ¢pax. This assumption is stated formally below.

Assumption 2.3. (Bounded tensor mazimum norm of ®). For any x € X, ||P(X)||max <

gbmax .

The Exponential Family. Summarizing, x belongs to a minimal truncated exponential
family with probability density function as follows

fx(x;0) x exp <<<®, ‘1>(x)>>) 9)

where the natural parameter © € RF1>**2X%s i such that R(©) < 7 and the natural statistic
Pd(x) : X — RFxk2xks i guch that for any x € X, R*(P(x)) < d and [|D(X)]||max < Pmax-

Let ©* denote the true natural parameter of interest and fyx(x;©*) denote the true
distribution of x. Naturally, we assume R(0*) < r. Formally, the learning task of interest
is as follows:

Goal. (Natural Parameter Recovery). Given n independent samples of x i.e.,
xW ... x(™ obtained from fx(x;©%), compute an estimate O of ©* in polynomial time
such that ||©* — || is small.

2.1 Examples

We will first present examples of natural parameters that satisfy Assumption 2.1. Next,
we will present examples of natural statistics along with the corresponding support that
satisfy Assumptions 2.2, and 2.3. See Appendix H and I for more discussion on these
examples.

Examples of natural parameter. We provide examples in Table 1 to illustrate the
decomposability of © as in Assumption 2.1. We will revisit these examples briefly in



Section 4 and in-depth in Appendix H. Assumption 2.1 should be viewed as a potential
flexibility in the problem specification i.e., a practitioner has the option to choose from a
variety of constraints on the natural parameters (that could be handled by our framework).
For example, in some real-world applications the parameters are sparse while in some other
real-world applications the parameters have a low-rank and a practitioner could choose
either depending on the application at hand. For the sparse-plus-low-rank decomposition,

Table 1: A few examples of natural parameter O.

Decomposition ks Convex Relaxation

Sparse decomposition (0* = (©*(1))) 1o W)y <n
Low-rank decomposition (0* = (©*1)) 1 ||, <

Sparse-plus-low-rank decomposition 2 H@*(l)Hl,l <7y and |©* @), <y
(9* _ (®>k(1)7 @*(2)))

it is more natural to think about the minimality of the exponential family in terms of
matrices as opposed to tensors. See Appendix I for details.

Examples of natural statistic. The following are a few example of natural statistics

(along with the corresponding support) that fall in-line with Assumptions 2.2 and 2.3.

1. Polynomial statistics: Suppose the natural statistics are polynomials of x with maximum
degree [, ie., []icp xil such that l; > 0 Vi € [p] and > ;e i < 1. If & = [0,0] for
b € R, then ¢ = 20'. If ©* has a sparse decomposition and X = [0,b] for b € R,
then R*(®(x)) < 2bF. Further, if ©* has a low-rank decomposition, I = 2, and X =
B(0,b) for b € R, then R*(®(x)) < 2(1 + b?). Finally, if ©* has a sparse-plus-low-rank
decomposition, [ = 2, and X = B(0,b) for b € R, then R*(P(x)) < (22,2 + 2b%).

2. Trigonometric statistics: Suppose the natural statistics are sines and cosines of x with
 different frequencies, i.e., sin(}_;cp, lizi) U cos(} ¢, Lizi) such that [; € [I[JU{0}. For
any X C RP| ¢ppax = 2. If OF has a sparse decomposition, then R*(®(x)) < 2 for any
X C RP.

Our framework also allows combinations of polynomial and trigonometric statistics (see

Appendix I).4

3 Algorithm

We propose a novel, computationally tractable loss function drawing inspiration from the
recent advancements in exponential family Markov Random Fields [56, 55, 44].

The loss function and the estimator. The loss function, defined below, is an
empirical average of the inverse of the function of x that the probability density fx(x;©O)
is proportional to (see (9)).

Definition 3.1 (The loss function). Given n samples xW ... x() of x, the loss function
maps © € RF*F2xks 4o £ (©) € R defined as

£,(0) = %Zexp (= (0, B(xD)))). (10)

t=1

4We believe that for polynomial and /or trigonometric natural statistics, Assumptions 2.2 and 2.3 would
hold whenever the domain of X is appropriately bounded.



The proposed estimator ©,, produces an estimate of ©* by minimizing the loss function
L,(0) over all natural parameters © satisfying Assumption 2.1 i.e.,

N

O, € argmin £, (0). (11)
(SIS

For any € > 0, (:)E,n is an e-optimal solution of ©,, if ﬁn(ég,n) < En(@n) + €. The
optimization in (11) is a convex minimization problem (i.e., minimizing a convex function
L, over a convex set A) and has efficient implementations for finding an e-optimal solution.
Although alternative algorithms (including Frank-Wolfe) can be used, we provide a
projected gradient descent algorithm below.

Algorithm 1: Projected Gradient Descent
Input: 7,7, A
Output: @E,n
Initialization: ©) =0
1 fort=0,---,7do
2 | Oy ¢ argminge, [0 —nVL(O) — Ollr

3 é)e,n < ®(T+1)

The following Lemma shows that running sufficient iterations of the projected gradient
descent in Algorithm 1 results in an e-optimal solution of ©,,.

Lemma 3.1. Let Assumptions 2.1, 2.2 and 2.8 be satisfied. Let n =
1/k1koksg? . exp(rTd). Then, Algorithm 1 returns an e-optimal solution O, as long

max
as

[CH[ES (12)

2 T
> 2k1k2k3¢max GXp(’f‘ d)
€

Further, ignoring the dependence on k3, ¢pmax, T and d, 7 in (12) scales as O(poly(kl—e]”)),

The proof of Lemma 3.1 can be found in Appendix B. The proof outline is as follows : (a)
First, we prove the smoothness property of £,,(©). (b) Next, we complete the proof using
a standard result from convex optimization for the projected gradient descent algorithm
for smooth functions.

4 Analysis and Main results

In this section, we provide our analysis and main results. First, we focus on the connection
between our method and the MLE of fy(-;©* — ©). Then, we establish consistency and
asymptotic normality of our estimator. Finally, we provide non-asymptotic finite sample
guarantees to recover O*.

1. Connection with MLE of f(-; 0*—0). First, we will establish a connection between
the population version of the loss function in (10) (denoted by £(©)) and the KL-divergence
of the uniform density on X with respect to fx(x;0* — ©). Then, using minimality of the
exponential family, we will show that this KL-divergence and £(0©) are minimized if and
only if © = ©*. This provides a justification for the estimator in (11) as well as helps us
obtain consistency and asymptotic normality of On.

For any © € A, £(©) = E{exp( — <<@,sl5(x)>>)] The following result shows that

the population version of the estimator in (11) is equivalent to the maximum likelihood
estimator of fx(x;©* — ).



Theorem 4.1. With D(- || -) representing the KL-divergence,

argmin £(0) = argmin D(Ux(-) || fx(-; 0" — O)).
0cA (SIS

Further, the true parameter ©* is the unique minimizer of L(©).

The proof of Theorem 4.1 can be found in Appendix C. The proof outline is as follows
: (a) First, we express fx(-;©* — 0) in terms of £(0) (b) Next, we complete the proof by
simplifying the KL-divergence between Ux(-) and fx(-;©* — O).

2. Consistency and Normality. We establish consistency and asymptotic normality
of the proposed estimator 6, by invoking the asymptotic theory of M-estimation. We
emphasize that, from Theorem 4.1, the population version of ©,, is equivalent to the
maximum likelihood estimate of fx(-;©* —©) and not fx(-; ©). Moreover, there is no clear
connection between ©,, and the finite sample maximum likelihood estimate of x(:0)
or fx(;©* — ©). Therefore, we cannot invoke the asymptotic theory of MLE to show
consistency and asymptotic normality of O,.

Let A(©*) denote the covariance matrix of vec(®(x)exp ( — ((©*,9(x))))). Let
B(©*) denote the cross-covariance matrix of vec(®(x)) and vec(®(x) exp (— ((0*,d(x))))).
Let N(p,X) represent the multi-variate Gaussian distribution with mean vector p and
covariance matrix 3.

Theorem 4.2. Let Assumptions 2.1, 2.2, and 2.3 be satisfied. Let ©,, be a solution of (11).
Then, as n — oo, O, & ©*. Further, assuming ©* € interior(A) and B(©*) is invertible,

~

we have \/n x vec(©, — O%) 4 N (vec(0), B(©*)"1A(0")B(©*)~1).
The proof of Theorem 4.2 can be found in Appendix D. The proof is based on two key

N

observations : (a) ©,, is an M-estimator and (b) £(©) is uniquely minimized at ©*.

3. Finite Sample Guarantees. To provide the non-asymptotic guarantees for recovering
©*, we require the following assumption on the smallest eigenvalue of the autocorrelation
matrix of vec(®(x)).

Assumption 4.1. (Positive eigenvalue of the autocorrelation matriz of @.) Let Apin denote
the minimum eigenvalue of Ex[vec(®(x))vec(@(x))T]. We assume Amin is strictly positive
i.e., Amin > 0.

We also make use of the following property of the matrix norms.

Property 4.1. For any norm R :RF>*k2 5 R and matric M € RF%F2 | there exists g
such that R(M) < gkikz2|| M| max-

For most matrix norms of interest including entry-wise L, , norm (p,q > 1), Schatten
p-norm (p > 1), and operator p—norm (p > 1), we have g = 1 as shown in Appendix J.

Let g = (91, ,gk;) Where Vi € [k3], g; is such that RY(M) < g;k1k2||M||max with
R} being the dual norms from Assumption 2.2.

Theorem 4.3 below shows that, with enough samples, the e-optimal solution of 0, is
close to the true natural parameter in the tensor norm with high probability.

Theorem 4.3. Let é&,n be an e-optimal solution of ©,, obtained from Algorithm 1 for € of
the order O(a*A\min). Let Assumptions 2.1, 2.2, 2.8, and 4.1 be satisfied. Recall Property
4.1. Then, for any 6 € (0,1), we have ||O,, — O*||T < a with probability at least 1 — ¢ as
long as

k3k3 1k
n20<a4)\2 10g( 5 > . (13)

min
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The computational cost scales as O<k1k2 max (k‘lkzgn,c(A))) where c¢(A) is the cost of

a2
projection onto A. Further, ignoring the dependence on &, Amin, and c¢(A), n in (13) (as
well as the associated computational cost) scales as O(poly(%)).

The proof of Theorem 4.3 can be found in Appendix G. The proof is based on two
key properties of the loss function £,(0) : (a) with enough samples, the loss function
L,(0) naturally obeys the restricted strong convexity with high probability and (b) with
enough samples, ||VL,,(©*)|max is bounded with high probability. See the proof for the
dependence of the sample complexity and the computational complexity on k3,7, d, g and
(bmax-

The computational cost of projection onto A i.e., ¢(A) is typically polynomial in kiks.
In Appendix H, we provide the computational cost for the example constraints on the
natural parameter © from Section 2.1 i.e., sparse decomposition, low-rank decomposition,
and sparse-plus-low-rank decomposition.

4. Comparison with the traditional MLE. To contextualize our method, we compare
it with the MLE of the parametric family fx(-;©). The MLE of fx(-;©) minimizes the
following loss function

min—%z«@,@(x(ﬂ)»—i—log/x exp (((©, B(x)))dx. (14)

ex

The maximum likelihood estimator has many attractive asymptotic properties : (a)
consistency (see [16, Theorem 17]), i.e., as the sample size goes to infinity, the bias in
the estimated parameters goes to zero, (b) asymptotic normality (see [16, Theorem 18]),
i.e., as the sample size goes to infinity, normalized estimation error coverges to a Gaussian
distribution and (c) asymptotic efficiency (see [16, Theorem 20]), i.e., as the sample size
goes to infinity, the variance in the estimation error attains the minimum possible value
among all consistent estimators. Despite having these useful asymptotic properties of
consistency, normality, and efficiency, computing the maximum likelihood estimator is
computationally hard [52, 26].

Our method can be viewed as a computationally efficient proxy for the MLE. More
precisely, our method is computationally tractable as opposed to the MLE while retaining
the useful properties of consistency and asymptotic normality. However, our method misses
out on asymptotic efficiency. This raises an important question for future work — can
computational and asymptotic efficiency be achieved by a single estimator for this class of
exponential family?

5 Conclusion, Remarks, Limitations, Future Work

In this section, we conclude, provide a few remarks, discuss the limitations of our work as
well as some interesting future directions.

Conclusion. In this work, we provide a computationally and statistically efficient method
to learn distributions in a minimal truncated k-parameter exponential family from i.i.d.
samples. We propose a novel estimator via minimizing a convex loss function and obtain
consistency and asymptotic normality of the same. We provide rigorous finite sample
analysis to achieve an a-approximation to the true natural parameters with O(poly(k/«))
samples and O(poly(k/a)) computations. We also provide an interpretation of our
estimator in terms of a maximum likelihood estimation.
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Node-wise-sparse exponential family MRFs vs general exponential family. We
highlight that the focus of our work is beyond the exponential families associated with
node-wise-sparse MRFs and towards general exponential families. The former focuses on
local assumptions on the parameters such as node-wise-sparsity and the sample complexity
depends logarithmically on the parameter dimension i.e., O(log(k)). In contrast, our
work can handle global structures on the parameters (e.g., a low-rank constraint) and
there are no prior work that can handle such global structures with sample complexity
O(log(k)). Similarly, for node-wise-sparse MRFs there has been a lot of work to relax the
assumptions required for learning (see the discussion on Assumption 4.1 below). Since our
work focuses on global structures associated with the parameters, we leave the question
of relaxing the assumptions required for learning as an open question. Likewise, the
interaction screening objective [56] and generalized interaction screening objective [55, 44]
were designed for node-wise parameter estimation i.e., they require the parameters to be
node-wise-sparse and are less useful when the parameters have a global structure. On the
contrary, our loss function is designed to accommodate global structures on the parameters.

Assumption 4.1. For node-wise-sparse pairwise exponential family MRFs (e.g., Ising
models), which is a special case of the setting considered in our work, Assumption 4.1
is proven (e.g., Appendix T.1 of [44] provides one such analysis for a condition that is
equivalent to Assumption 4.1 for sparse continuous graphical model). However, such
analysis typically requires (a) a bound on the infinity norm of the parameters and a bound
on the degree of each node or (b) a bound on the ¢; norm of the parameters associated
with each node. Since the focus of our work is beyond the exponential families associated
with node-wise-sparse MRFs, we view Assumption 4.1 as an adequate condition to rule
out certain singular distributions (as evident in the proof of Proposition E.1 where this
condition is used to effectively lower bounds the variance of a non-constant random
variable) and expect it to hold for most real-world applications. Further, we highlight that
the MLE in (14) remains computationally intractable even under Assumption 4.1. To see
this, one could again focus on node-wise-sparse pairwise exponential family MRFs where
Assumption 4.1 is proven and the MLE is still known to be computationally intractable.

Sample Complexity. We do not assume p (the dimension of x) to be a constant
and think of k1 and ko as implicit functions of p. Typically, for an exponential family,
the quantity of interest is the number of parameters i.e., k and this quantity scales
polynomially in p e.g., k = O(p?) for Ising model, k = O(p') for t-wise MRFs over binary
alphabets. Therefore, in this scenario, the dependence of the sample complexity on p
would also be O(poly(p)). Further, the 1/a* dependence of the sample complexity seems
fundamental to our loss function. For learning node-wise-sparse MRFs, this dependence is
in-line with some prior works that use a similar loss function [44, 55| as well as that do not
use a similar loss function [29]. While it is known that for learning node-wise-sparse MRFs
[56] and truncated Gaussian [13] one could achieve a better dependence of 1/a?, it is not
yet clear how the lower bound on the sample complexity would depend on « for the general
class of exponential families considered in this work (which may not be sparse or Gaussian).

Practicality of Algorithm 1. While the optimization associated with Algorithm 1 is a
convex minimization problem (i.e., (11)) and the computational complexity of Algorithm
1 is polynomial in the parameter dimension and the error tolerance, computing the
gradient of the loss function requires centering of the natural statistics (see (26)). If the
natural statistics are polynomials or trigonometric, centering them should be relatively
straightforward (since the integrals would have closed-form expressions). In other cases,
centering them may not be polynomial-time and one might require an assumption of
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computationally efficient sampling or that obtaining approximately random samples of x
is computationally efficient [14].

Limitations and Future Work. First, in our current framework, we assume
boundedness of the support. While, conceptually, most non-compact distributions could
be truncated by introducing a controlled amount of error, we believe this assumption could
be lifted as for exponential families: P(|x;| > dlog~y) < e¢y~? where ¢ > 0 is a constant and
v > 0. Alternatively, the notion of multiplicative regularizing distribution from [41] could
also be used. Second, while the population version of our estimator has a nice interpretation
in terms of maximum likelihood estimation, the finite sample version of our estimator
does not have a similar interpretation. We believe there could be connections with the
Bregman score and this is an important direction for immediate future work. Third, while
our estimator is computationally efficient, consistent, and asymptotically normal, it is not
asymptotically efficient. Investigating the possibility of a single estimator that achieves
computational and asymptotic efficiency for this class of exponential family could be an
interesting future direction. Lastly, building on our framework, empirical study is an
important direction for future work.
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Appendix

Organization. In Appendix A, we provide additional discussion on exponential family
Markov random fields, score-based methods, as well as review the related literature
on Stein discrepancy and latent variable graphical models. In Appendix B, we state
and prove the smoothness property of the loss function as well as provide the proof of
Lemma 3.1. In Appendix C, we provide the proof of Theorem 4.1. In Appendix D,
we provide the proof of Theorem 4.2. In Appendix E, we provide the restricted strong
convexity property of the loss function. In Appendix F, we provide bounds on the
tensor maximum norm of the gradient of the loss function evaluated at the true natural
parameter. In Appendix G, we provide the proof of Theorem 4.3. In Appendix H, we
provide the computational cost for the example constraints on the natural parameter
©. In Appendix I, we provide a discussion on the examples of natural parameter and
natural statistics from Section 2.1. In Appendix J, we provide a discussion on Property 4.1.

Additional Notations. We denote the ¢, norm (p > 1) of a vector v € R by

Ivll, = i, |vilP)YP and its fo norm by v max;ep [vg|. For a matrix
M € R**?, we denote the spectral norm by |[M] = max;cmin{u,w} 0i(M) and the
Frobenius norm by [[Mllp = /> ;ci e MZQJ For a tensor U € R"*"*"  we let

U110 = > sequ e iequ Uit

A Related Works

In this Section, we review additional works on exponential family Markov random fields,
score-based methods, as well as the related literature on Stein discrepancy and latent
variable graphical models.

A.1 Exponential Family Markov Random Fields

Having reviewed some of the works on sparse exponential family MRFs in Section 1.2, we
present here a brief overview of a few other works on the same.

Following the lines of [62], the authors in [48] proposed an ¢; regularized
node-conditional log-likelihood to learn the node-conditional density in (5) for non-linear
#(-). They used an alternating minimization technique and proximal gradient descent
to solve the resulting optimization problem. However, their analysis required restricted
strong convexity, bounded domain of the variables, non-negative node parameters, and
hard-to-verify assumptions on gradient of the population loss.

In [63], the authors introduced a non-parametric component to the node-conditional
density in (5) while focusing on linear ¢(-). More specifically, they focused on the following
joint density:

fx(x) o< exp < Z ni(zi) + Z Hijxixj>,
i€[p] 37

where 7;(-) is the non-parametric node-wise term. They proposed a node-conditional
pseudo-likelihood (introduced in [39]) regularized by a non-convex penalty and an
adaptive multi-stage convex relaxation method to solve the resulting optimization problem.
However, their finite-sample bounds require bounded moments of the variables, sparse
eigenvalue condition on their loss function, and local smoothness of the log-partition
function. In [49], the authors investigated infinite dimensional sparse pairwise exponential
family MRFs where they assumed that the node and edge potentials lie in a Reproducing
Kernel Hilbert space (RKHS). They used a penalized version of the score matching
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objective of [22].  However, their finite-sample analysis required incoherence and
dependency conditions (see [59, 24|). In [31], the authors considered the joint distribution
in (8) restricting the variables to be non-negative. They proposed a group lasso regularized
generalized score matching objective [21] which is a generalization of the score matching
objective [22] to non-negative data. However, their finite-sample analysis required the
incoherence condition.

A.2 Score-based and Stein discrepancy methods

Having mentioned the principle behind and an example for the score-based method in
Section 1.2, we briefly review a few other score-based methods in relation to the Stein
discrepancy.

Stein discrepancy is a quantitative measure of how well a predictive density ¢(-) fits the
density of interest p(-) based on the classical Stein’s identity. Stein’s identity defines an
infinite number of identities indexed by a critic function f and does not require evaluation
of the partition function like the score matching method. By focusing on Stein discrepancy
constructed from a RKHS, the authors in [32] and [9] independently proposed the kernel
Stein discrepancy as a test statistic to access the goodness-of-fit for unnormalized densities.
The authors in [32] and [3] showed that the Fisher divergence, which was the minimization
criterion used by the score matching method, can be viewed a special case of the kernel
Stein discrepancy with a specific, fixed critic function f. In [3|, the authors showed that
a few other methods (including the contrastive divergence by [19]) can also be viewed as
a kernel Stein discrepancy with respect to a different class of critics. Despite the kernel
Stein discrepancy being a natural criterion for fitting computationally hard models, there
is no clear objective for choosing the right kernel and the kernels typically chosen (e.g.
[49, 47, 46, 50] ) are insufficient for complex datasets as pointed out by [61].

In [11], the authors exploited the primal-dual view of the MLE to avoid estimating the
normalizing constant at the price of introducing dual variables to be jointly estimated.
They showed that many other methods including the contrastive divergence by [19],
pseudo-likelihood by [4], score matching by [22] and minimum Stein discrepancy estimator
by [32], [9], and [3]| are special cases of their estimator. However, this method results
in expensive optimization problems since they rely on adversarial optimization (see [42]
for details). In [33], the authors proposed an inference method for unnormalized models
known as discriminative likelihood estimator. This estimator follows the KL divergence
minimization criterion and is implemented via density ratio estimation and a Stein operator.
However, this method requires certain hard-to-verify conditions.

A.3 Literature on Latent Variable Graphical Models

In recent years, sparse-plus-low-rank matrix recovery has received considerable attention
in machine learning and statistical inference, e.g., robust PCA [7], latent variable graphical
models [8]. Latent variable graphical models has a variety of applications including
assessing the functional interactions between neurons recorded from two brain areas |54, 38|.
In latent variable graphical models, there are variables not present in observations. The
presence of such variables leads to a challenge in learning the graphical model. The
graphical model corresponding to the conditional distribution of the observed variables
conditioned on the latent variables is in general different from the graphical model
corresponding to the marginal distribution of the observed variables. The marginal
graphical model consists of dependencies that are induced due to marginalization over
the latent variables and typically consists of many more edges than the conditional
graphical model. In [8], authors considered latent variable Gaussian graphical models
and exploited the observation that the precision matrix of the marginal graphical model
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can be decomposed into the superposition of a sparse matrix and a low-rank matrix. They
provided a tractable convex program based on regularized maximume-likelihood to estimate
the precision matrix. While the authors in [8] focused on simultaneous model selection
consistency of both the sparse and low-rank components, the authors in [37] focused
on estimating the precision matrix of latent variable Gaussian graphical model. They
consider a regularized MLE estimator and utilize the almost strong convezity 27| of the
log-likelihood to derive non-asymptotic error bounds under the restricted Fisher eigenvalue
and Structural Fisher Incoherence assumptions. Compared to [37], our tensor norm error
bounds are derived under mild condition. Additionally, our framework captures various
constraints on the natural parameters in addition to the sparse-plus-low-rank constraint.

B Smoothness of the loss function and proof of Lemma 3.1

In this Section, we will prove the smoothness of £, () as well as prove Lemma 3.1. However,
before either of this, we provide bounds on the absolute tensor inner product between ©
and @ i.e., |<<@,@(x)>>| for © € A and x € X.

B.1 Bounds on the absolute tensor inner product between © and .

We have

k3 k3 ¢ k3

(0. 2600 D[S (00,60(0)| € 3 |09, 80| € 3 Ri(@) x R (@ ()
=1 =1 =1

ra, (15)

where (a) follows from the definitions of a slice of a tensor, tensor inner product, and
Frobenius inner product, (b) follows from the triangle inequality, (c) follows from the
definition of a dual norm, and (d) follows from Assumptions 2.1 and 2.2.

B.2 Smoothness of the loss function

Now, we will state and prove our result for smoothness of £, (0©).

Proposition B.1. Under Assumptions 2.1, 2.2 and 2.3, L,(0) is a k1koksp? . exp(rld)
smooth function of ©.

Proof of Proposition B.1. To show kikaoks¢2,,. exp(rTd) smoothness of £,(0), we will
show that the largest eigenvalue of the Hessian® of L£,(©) is upper bounded by
kil kﬁg k3¢r2nax exp(er) .

First, we simplify the Hessian of £, (0) i.e., V2£,(©). The component of the Hessian
of £,,(0©) corresponding t0 Oy, pyw; and Oy, for ul, us € [k1], v1,v9 € [ka] and wq, we €

[k3] is given by

2 n
e oy = 1 2 s e (— ((0,06)))). 16

t=1

From the Gershgorin circle theorem, we know that the largest eigenvalue of any matrix
is upper bounded by the largest absolute row sum or column sum. Let Apax(V2L,(0))

®Ideally, one would consider the Hessian of L, (vec(©)). However, for the ease of the exposition we
abuse the terminology.
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denote the largest eigenvalue of V2L£,,(©). We have the following

2 (a)
MV La(0) € e 3 | TEO D S g2 expeTa)

U2,v2,W2 w1 w; OO usvows | U2V2,w2
u1,01,w1 1v1W1 2V2W2

u1,v1,w1

< kikoks @y exp(r’ d),

where (a) follows from (16), (15), and Assumption 2.3.  Therefore, £,(©) is a
k1kok3 @2, exp(rTd) smooth function of ©. O

max

B.3 Proof of Lemma 3.1

Next, we restate the Lemma 3.1 and provide the proof.

Lemma 3.1. Let Assumptions 2.1, 2.2 and 2.3 be satisfied. Let n =
1/k1koksg? . exp(rTd). Then, Algorithm 1 returns an e-optimal solution O, as long

max
as

2 T
- 2 2k1/€2k3¢max exp(r d)
€

[CHES (12)

Further, ignoring the dependence on k3, ¢max, 7 and d, T in (12) scales as O(poly(kll”)).

€

Proof of Lemma 3.1. Let us recall Theorem 10.6 from [35].

[35, Theorem 10.6]: Let L be a c-smooth convex function of a parameter vector 6 € A.
Consider the following constrained optimization problem

Iglei/{l L(6). (17)

Let 6* be an optimal solution of (17). Let 9 ... 01 denote the iterates of the projected
gradient descent algorithm with step size n = 1/c. Let 0 denote the initialization of 0 in
the projected gradient descent algorithm. Then,

2
L(OW) = L(6) < [0 — 073 (18)

We will make direct use of this theorem in our proof. From Proposition B.1, £,(0) is
c1 = kikoks? .. exp(r?d) smooth. Using (18), we have

A 2c A

2

max

- le k2 k3 ¢r2nax eXp(TTd)
€

Plugging in ¢; = kikoksd?,, exp(r’d), T ||@n\|2T, and ©) = 0

we have

L1(00) — Ln(0y) < e.

Therefore, O(;) is an e-optimal solution.

We will now upper bound [|©,|/%. First let us upper bound this tensor norm in terms
of tensor maximum norm and therefore the matrix maximum norms. We have

max*

[Onlf: < ukoks|[Onl3e = Fakohs ma 64
1elR3

Now, observe that most matrix norms of interest including the entry-wise L, , norm (p,q >
1), the Schatten p-norm (p > 1), and the operator p-norm (p > 1) are bounded from below
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by the matrix maximum norm i.e., the matrix maximum norm is upper bounded if either
of these matrix norms are upper bounded. Suppose Vi € [k3], R; is either the entry-wise
L, 4 norm (p,q > 1), the Schatten p-norm (p > 1), or the operator p-norm (p > 1). Then,

Vi € [ks], H@?Hmax < R,(é)ﬁ?) We have RZ(@S)) < 7; from Assumption 2.1 because
@S) € A. Therefore, we have

16, < kikoks max r2.
i€ks]

Summarizing and using the fact that ¢max, 7, d, ks are O(1), we have

k1 kok3 @2 . exp(rTd) 16,2 < 2k3k3k3 2 . exp(rld) 2 O(k%k%)

€ = € iclks]

C Proof of Theorem 4.1

In this Section, we prove Theorem 4.1. We restate the Theorem below and then provide
the proof.

Theorem 4.1. With D(- || -) representing the KL-divergence,

argmin £(0) = argmin D(Ux () || fx(;©* — ©)).
SISV O€eA

Further, the true parameter ©* is the unique minimizer of L(0©).

Proof of Theorem 4.1. We will first express fx(-; ©* — O) in terms of £(0). We have

fxor @)= PO -6.2() @ e ({60 2(x))

Jyexexp (((©F = ©,2(y))))dy  [,crexp (((©* - O,2(y))))dy
® K0 e (- ((0,9(x))))
Jyex fu(x:0%) exp (= ((©,2(v))))dy

(
© Jx6 07 exp (— ((0,2(x))))
£(©)

(19)

where (a) follows because Ey, [®(x)] is a constant, (b) follows by dividing the numerator
and the denominator by the constant fye/’\.’ exp (<<@*, @(y)> >) dy and using the definition of
fx(x;©%), and (c) follows from definition of £(©). We will now simplify the KL-divergence
between Uy () and fx(-; 0% — ©).

DUx () || (0" - ©)) 2 Ux()L(O) )]

- [bg <fx(-; o) exp (- ((©,2())))

b g <fb<{X(@)>> +Euy[((0.2()))] +1o5.£(6)

9 By, :1og (%) +{(0.Bu[2()))) +105£(0)

@ Eefs _log (szX(@)*)> +log L(©),

where (a) follows from (19) and the definition of KL-divergence, (b) follows because
log(abc) = loga + logb + logc and L£(O) is a constant, (c¢) follows from the linearity
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of the expectation and (d) follows because Ey, [@(x)] = 0 from Definition 2.1. Observing
that the first term in the above equation is not dependent on ©, we can write

argmin D(Ux(-) || fx(-;0" —©)) = argmin log £(O) @) arg min £(0),
ocA ocA (SIS

where (a) follows because log is a monotonic function. Further, the KL-divergence between
Ux(-) and fx(;©* — O) is minimized when Uy (-) = fx(; ©* — O). Recall that the natural
statistic are such that the exponential family is minimal. Therefore, Ux(-) = fx(-;©* — O)
if and only if © = ©*. Thus, ©* € argmingc, £(0), and it is a unique minimizer of
L(©). O

D Proof of Theorem 4.2

In this Section, we prove Theorem 4.2 by using the theory of M-estimation. In particular,
observe that @n is an M-estimator i.e., @n is a sample average. Therefore, we invoke
Theorem 4.1.1 and Theorem 4.1.3 of [1] to prove the consistency and normality of 0,.. We
restate the Theorem below and then provide the proof.

Theorem 4.2. Let Assumptions 2.1, 2.2, and 2.3 be satisfied. Let ©,, be a solution of (11).
Then, as n — 00, ©,, % ©*. Further, assuming ©* € interior(A) and B(©*) is invertible,
we have \/n x vec(©,, — ©*) 4 N (vec(0), B(©*)"1A(0")B(©*)~1).

Proof of Theorem 4.2. We divide the proof in two parts.

Consistency. We will first show that 0, is asymptotically consistent. In order to
show this, let us recall Theorem 4.1.1 of [1].

[1, Theorem 4.1.1]: Let z1,--- , z, be i.i.d. samples of a random variable z. Let g(z;6)
be some function of z parameterized by 8 € Y. Let 6* be the true underlying parameter.
Define

n

1 R
Qn(0) =— Zq(zi; 0) and 0, € argmin Q,, ().
n.= fer

Let the following be true.

T is compact,

n(0) converges uniformly in probability to a non-stochastic function Q(0),

(
(

0) is continuous, and

0) is uniquely minimized at 6*.
Then, 0,, is consistent for 0* ie., 0, & 0* as n — oco.

Letting z .= x, 0 := ©, 0, := ©,,, 0* == 0*, T = A, q(2;0) := exp (- ((8,9(x)))), and
Qn(0) == L,(0), it is sufficient to show the following:

(a) A is compact,

(b) L,(©) converges uniformly in probability to a non-stochastic function £(©),
(¢) L£(©) is continuous, and

(d) £(©) is uniquely minimized at ©*.

Let us show these one by one.
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(a) We have A = {0 : R(0) < r} which is bounded and closed. Therefore, A is compact.

(b) Recall [25, Theorem 2|: Let z1,--- ,z, be i.i.d. samples of a random variable z. Let
9(z;0) be a function of § parameterized by 6§ € Y. Then, n=13", g(z,6) converges
uniformly in probability to E[g(z, 0)] if

(i) Y is compact,

g(z,0) is dominated by a function G(z) i.e., |9(z,0)| < G(z), and
(iv) E[G(2)] < oo.

)
(i) g(z,0) is continuous at each § € T with probability one,
(iii)

)

Using this theorem with z = x, § = ©, T = A, ¢(z,0) = exp( — <<@,d5(x)>>),
G(z) = exp(rTd) and (15), we conclude that £, (©) converges to £(0) uniformly in
probability.

(c) exp (— ((©,P(x)))) is a continuous function of © € A. Further, fx(x;©*) does not
functionally depend on ©. Therefore, we have continuity of £(©) for all © € A.

(d) From Theorem 4.1, £(0) is uniquely minimized at ©*.

Therefore, we have asymptotic consistency of O,

Normality. We will now show that 0, is asymptotically normal. In order to show
this, let us recall Theorem 4.1.3 of [1].

[1, Theorem 4.1.3]: Let z1,--- , 2z, be i.i.d. samples of a random variable z. Let ¢(z;8)
be some function of z parameterized by 8 € T. Let 6* be the true underlying parameter.
Define

n

Qn(0) = % Zq(zi; 0) and 0, € argminQ,(6).

p fer
Let the following be true.

a is consistent for 6*,

O,
Eb; 0* lies in the interior of the parameter space T,
(©) @n
(d)
)

is twice continuously differentiable in an open and convex neighborhood of 6%,

d) VAV Qu(®)lo=o- > N(0, A(6)), and
(e) V2Qn(0 No—g., 2 B(#*) with B(6) finite, non-singular, and continuous at 6*,

Then, 6, is normal for 6* i.e., /n(6, — 6*) LN N(0, B~L(6*)A(6*)B~1(6%)).

Letting z .= x, 0 := ©, 0, .= O, 0* == 0*, T = A, q(2;0) = exp (- ((©,9(x)))), and
Qn(0) == L,(0), it is sufficient to show the following:

(a
(b

) ©, is consistent for ©*,

) ©

(¢) L, is twice continuously differentiable in an open and convex neighborhood of ©*,
)
)

* lies in the interior of the parameter space A,

(d) VRV Ln(vec(®))]o—or 4 N(0, A(O7)), and
(e) V2L, (vec(© Nle—s, 2 B(©*) with B(0) finite, non-singular, and continuous at ©*,

Let us show these one by one.

(a) We have established that ©,, is consistent for ©* in the first half of the proof.
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(b)
()

The assumption that ©* € interior(A) is equivalent to ©* belonging to the interior of

A.
Fix uy,ug € [k1], v1,v2 € [k2], and wy, we € [k3]. We have

92L,,(©)
a@ul V1wl 8611421}2 w2

- % Z Puronion (X)) Pz (x) exp (- (e, QS(X(t))>>)'
t=1

Thus, 82L£,,(0)/00y, 1w, 0Ousuew, exists. Using the continuity of &(-) and exp ( —
((0,9(-)))), we see that 9*L,(0)/0Ou,v,w, 0Ouguew, 18 continuous in an open and
convex neighborhood of ©*.

For any u € [k;], v € [k2] and w € [k3], define the random variable

Xuvw = _éuvw(x) exXp ( - <<®*’ @(X)>>)

The component of the gradient of £,,(vec(®)) corresponding to ©,,,, evaluated at ©*
is given by

8£n O* " t * t
o) = 1 S ) e (- (0 #)))

Each term in the above summation is distributed as the random variable x,,,. The
random variable X, has zero mean (see Lemma F.1). Using this and the multivariate
central limit theorem [53], we have

VAV Ly (vee(O)) oo % N(0, A(OF)),

where A(©*) is the covariance matrix of vec(®(x)exp (— ((©*,D(x))))).
We will start by showing that the following is true.

V2L (vec(9))lg_g. = V2L(vee(0))|o—o- (20)

To begin with, using the uniform law of large numbers |25, Theorem 2| for any © € A
results in

V2L, (vec(0)) & V2L (vec(0)). (21)
Using the consistency of ©,, and the continuous mapping theorem, we have
V2L (vec(9))lg_g, = V2L(vec(0))|o—o- (22)

Let uy,ug € [k1], v1,v2 € [ke], and wy,wy € [k3]. From (21) and (22), for any ¢ > 0,
for any § > 0, there exists integers ny, ng such that for n > max{ni,ns} we have,

P(|0% L£1(On)/0Ou; 01101 0Ousvsu, — 0°L(On)/0Ous 01, 0Oussun| > €/2) < 5/2
and

P(|0?L(0n) /0O w1010, 0Ouzv; — P L(O%) /0O w1010, 0Ouzupun| > €/2) < 5/2.
Now for n > max{ni, na}, using the triangle inequality we have

P(10°L1(On)/0Ou1 010, 0Ouzvaws — 9*L(07)/0Ou; 0101 0Ousvgws| > €) < 6/246/2 = 6.
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Thus, we have (20). Using the definition of £(0), we have

625(9*)/a@uw1w169u2v2w2 = E[qsuwwn (X)Puyvpw, (X) €xp ( - <<®*’ @(X)>>)}

(2 E[@uwwn (x)@uwaQ (X) exXp ( - <<@*7 @(x)>>)}

B[ @uyusn (%) | E| P (¥) exp (= ((67,2(x))))]

= Ccov (¢u1v1w1 (X), @UQUQU)Q (X) eXp ( - <<®*’ @(X)>>)>,

where (b) follows because E [@y,u,u, (x) exp (— ((0%,8(x))))] = 0 for any uy € [k1],
vy € [ko], and wq € [k3] from Lemma F.1. Therefore, we have
V2L, (vec(©))

o6, — B(©),

where B(©*) is the cross-covariance matrix of vec(®(x)) and vec(®(x)exp ( —
((©*,9(x))))). Finiteness and continuity of #(x) and &(x) exp (—((©*, &(x)))) implies
the finiteness and continuity of B(©*). By assumption, the cross-covariance matrix of

vec(P(x)) and vec(P(x) exp (— ((©*,(x))))) is invertible.

Therefore, we have the asymptotic normality of 6, ]

E Restricted strong convexity of the loss function

In this Section, we will show that, with enough samples, the loss function obeys the
restricted strong convexity property with high probability. This result will in turn allow
us to prove Theorem 4.3 in Appendix G

We will first state the main result of this Section (Proposition E.1). Next, we will
introduce the notion of correlation for the centered natural statistics and provide a
supporting Lemma wherein we will bound the deviation between the true correlation and
the empirical correlation. Finally, we will prove Proposition E.1.

Consider any © € A. Let A = © — ©*. Define the residual of the first-order Taylor
expansion as

Proposition E.1. Let Assumptions 2.1, 2.2, 2.3 and 4.1 be satisfied. For any d3 € (0,1),
the residual defined in (23) satisfies

Amin exp(—er)
41 +rTd)

0Ln(A,07) > 1A,

with probability at least 1 — d3 as long as

e
n > 2 log< 5 )

min
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E.1 Correlation between centered natural statistics

For any uj,us € [ki], vi,v2 € [k2], and wy,wy € [k3], let Hyjvpwiugvow, denote the
correlation between @y, 4,4, (X) and Py,4,w, (X) defined as

HU1v1w1U2v2UJ2 =E [dsuwwu (X)@U2v2w2 (X)] ’ (24)
and let H = [Hy o, wiusvpw,] € REUXE2Ix ksl xk]x[ka]x[ks] he the corresponding correlation
tensor. Similarly, we define H based on the empirical estimates of the correlation

1 n
Huyorwiugvaws = " Z Py viw; (X(t))@uzvzwz (X(t))- (25)
The following lemma bounds the deviation between the true correlation and the
empirical correlation.

Lemma E.1. Consider any uy,uz € [k1], v1,v2 € [ka], and wy,wy € [k3]. Let Assumption
2.8 be satisfied. Then, we have for any eg > 0,

|HU1U1U)1U2U2U)2 - HU1U1U)1U2U2U)2| < 62’

with probability at least 1 — o as long as

n >

2¢max o <2k%k%k§ )

62 09

Proof of Lemma E.1. Fix uy,uy € [k1], vi,v2 € [k2], and wy,ws € [k3]. The random
variable defined as Y vwiusvaws = Puiviw; (X)Pusvows (X) satisfies |Yiivrwiugvpws| < 2iax
(from Assumption 2.3). Using the Hoeffding inequality we get

2
A 62
]:[D (’Hu11}1’w1u2v2’w2 - Hu1’l}1w1u21)2’w2‘ > 62) < 2€Xp < 2 > .
(bmax

The proof follows by using the union bound over all uy,us € [k1], v1,v2 € [ko], and
wy, W € [kg] ]
E.2 Proof of Proposition E.1

Proof of Proposition E.1. First, we will simplify the gradient of £,(©)® evaluated at ©*.
For any u € [ki], v € [ko] and w € [k3], the component of the gradient of L, (©)
corresponding to O, evaluated at ©* is given by

ageuvw = - Z SZSuvw exp ( <<(“)*, @(X(t))>>) . (26)

We will now provide the desired lower bound on the residual. Substituting (10) and
(26) in (23), we have

FE8,0) = e (=0 HN)) [ (~ (4 #0))) =1+ (8, 0]

2 exp(ord) x L3 [exp (= (A 0(0))) — 1+ (8,060

t=1

®Ideally, one would consider the gradient of £, (vec(®)). However, for the ease of the exposition we
abuse the terminology.
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g exp(—rTd) x li ({4, >>‘

2+ 1<<A 2(x1))))]

(C)exp t)
Zm Z‘” 2l

1 2 3 1 2
2 e;qu 27~Td Z Z Z Z Z Z Aurvror Hugorwnuzezs Duzvzws

ur=1lvi=1wi=1us=1ve=1wa=1
k‘l k‘z k‘3 k‘l k:2 k‘S

= e;qi e kD JD ID DD DD B PR VIR

ur=1lvi=1wi=1us=1v2=1wa=1

[Hulvlwlu2v2w2 + ﬁUIUIU)l'lLQUQ'UJQ - HUIUIU)IUQUQUJQ:IAUQUQU)Q’
where (a) follows because —((0©,P(x))) > —r’d from (15), (b) follows because
—14+z> 2+\  for any z € R, (¢ ) follows from (15), and (d) follows from (25).

Let the number of samples satisfy

8¢maxk2k2k3 lo <2k%k%k§)
A2 5 )

min

Using Lemma E.1 with e = 2,3‘2;“163 and Jo = d3, and the triangle inequality, we have the
following with probability at least 1 — d3

eXp k1 ko ks k1 ko ks
OLn(A,07) 2 m [Z PO DD D DD DYV S —
ur=lvi=1wi=1us=1v2=1wo=1
A
_ min A 2
o I8
(a) k1 ko ks k1 ko ks
Z m |:Z Z Z Z Z Z Aulvlwl ulvlwlugvgngugvgwg
ur=1lvi=1wi=1us=1vo=1ws=1
)\min
- Ay
(b) exp(—rTd) T 7 Amin 9
= St orTd X [Vec(A)E[Vec(@(x))vec(é(x)) Jvec(A) 5 |A]F
(e) eXp(—’I‘Td) 2 )\min 2
>  — 7 . _
> g X Punlvec()[5 — T5IANR]
(d) exp(—er) )\min 2
p— A

where (a) follows because [|All11,1 < Vkikaks||Allr, (b) follows from (24), (c) follows from
the Courant-Fischer theorem (because E[vec(®(x))vec(®(x))7] is a symmetric matrix) and
Assumption 4.1, and (d) follows because |[vec(A)|l2 = ||A]|T. O

F Bounds on the tensor maximum norm of the gradient of
the loss function
In this Section, we will show that, with enough samples, the tensor maximum norm of the

gradient of the loss function evaluated at the true natural parameter is bounded with high
probability. This result will allow us to prove Theorem 4.3 in Appendix G.
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We will first state the main result of this Section (Proposition F.1). Next, we will
provide a supporting Lemma wherein we show that the expected value of a random variable
of interest is zero. Finally, we will prove Proposition F.1.

Proposition F.1. Let Assumptions 2.1, 2.2 and 2.3 be satisfied. For any d4 € (0,1), any
€4 > 0, the components of the gradient of the loss function L£,(©)7 evaluated at ©* are
bounded from above as

VLA (O7)|max < €4,
with probability at least 1 — 4 as long as

2¢max eXp(Q’I‘Td) log <2/€1 kQ /{?3 >
04 '

n >
64

F.1 Supporting Lemma for Proposition F.1
Lemma F.1. For any u € [k1], v € [ka] and w € [k3], define the random variable
Xuvw = —Puvw (X) exp (= ((67,2(x)))). (27)
We have
Exuow] = 0,
where the expectation is with respect to fx(x;0*).

Proof of Lemma F.1. Fix any u € [ki], v € [ko] and w € [k3]. Using (27), we have

p% = — x; ©* x)exp ( — * x & ~ Jxex Puvw (x)x
Ebun] == | 0607 Pun () exp (= (67, 200)))dx = =0 e oy )y

O

where (a) follows from the definition of fx(x;0*), and because Ey, [®(x)] is a constant,
and (b) follows because [, ., @(x)dx = 0 from Definition 2.1 O

F.2 Proof of Proposition F.1

Proof of Proposition F.1. Fix u € [k1], v € [kz] and w € [k3]. We will start by simplifying
the gradient of the £,(©) evaluated at ©*. The component of the gradient of L£,(©)
corresponding to O, evaluated at ©* is given by

o = X Pl e (—((0.2x1)).

Each term in the above summation is distributed as the random variable Xy, (see
(27)). The random variable Xy, has zero mean (see Lemma F.1) and satisfies |xypw| <
Gmax exp(r’d) (from Assumption 2.3 and (15)). Using the Hoeffding’s inequality, we have

0L, (0%) nel
P(‘ o] > 1) <20 (~g—itary ) (#)

The proof follows by using (28) and the union bound over all u € [ki], v € [ko] and
(NS [k‘g] O

"Ideally, one would consider the gradient of £, (vec(©)). However, for the ease of the exposition we
abuse the terminology.
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G Proof of Theorem 4.3

In this Section, we will prove Theorem 4.3. We restate the Theorem below and then provide
the proof.

Theorem 4.3. Let (:)E,n be an e-optimal solution of ©,, obtained from Algorithm 1 for € of
the order O(a? \min). Let Assumptions 2.1, 2.2, 2.8, and 4.1 be satisfied. Recall Property
4.1. Then, for any ¢ € (0,1), we have ||Oc,, — O*||T < a with probability at least 1 —§ as
long as

at)\2

min

k2 k3 1k
nZO( log( 5 >> (13)

The computational cost scales as O<k1k2 max (k‘lkzgn,c(A))) where c¢(A) is the cost of

042
projection onto A. Further, ignoring the dependence on §, Amin, and c(A), n in (13) (as
well as the associated computational cost) scales as O(poly(%)).

Proof of Theorem 4.83. Let the number of samples satisfy

Sk kI3 AN
> —"max 1 29 1 49
n_max{ N 10g< 5 ),
2 Grakiki (r’g)*(1 + 77 d)* exp(dr’d) | <4k1kzk3>
a4)\12nin & 0
(o) k2k2 kikay\ k1ka
= 0o, e (55)) =0l (5))

where (a) follows because k3, pmax, T, g,d = O(1).
Let A = ©., — ©*. Define the residual of the first-order Taylor expansion as

5£n(A7 @*) = ['n(@* + A) - ['n(@*) - <<v£n(@*)7 A>> (29)

Let VL) (©*) denote the i*" slice of VL, (©*). From the definition of an e-optimal solution
of ©,,, we have

W (VLA (0%), 0 — O9) + 6L (A, O%)

ks
YOS wed(er),00), — 0y 1 5L, (A,0%)

=1
(e I3 o A
> =Y RI(VLY(©%) x R(OY), — 0*W) +6L,(A,0%)

=1
@ = .
> =2 RI(VLID(0%)) x i + 6L, (A, OF)
=1

© ks .
> —2k1ky | gi X X[|VLY (O |lmax X i + 0La(A, )

=1
) ks
> —2k1ka|| VLo (O lmax Y i X 7i + 5L (A, %),
=1
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where (a) follows from (29), (b) follows from the definitions of a slice of a tensor, tensor
inner product, and Frobenius inner product, (¢) follows from the definition of a dual norm,
(d) follows because 72((:)&)1 — o)) < R(é)&l,l) + R(©*®) < 2r; from Assumption 2.1,
(e) follows from Property 4.1 in Section 4, and (f) follows because HVng)(@*)HmaX <
van(g*)nmax Vi e [k?3]

Using Proposition E.1 with §3 = g, and Proposition F.1 with §4 = g, we have the
following with probability at least 1 — 4.

Amin exp(—er)

> —2kk T 2.
€ > 1K2€4 X 77 g + 41+ r7d) [A[lT
This can be rearranged
+ 2k1koeq x T
A2 < € 1;6_4 9w 4(1 + vTd) exp(rTd). (30)
Now, let
2)\ . 2)\ .
A~ Amin and €4 = Q~ Amin (31)

" 8(1+r7d) exp(rid) 16k1ks x 77g x (1 + rZd) x exp(rld)

Plugging in € and ¢4 from (31) in (30), we obtain that
[Allr < e

The computational cost of the operation Oy — VL, (O)) — © in Algorithm 1 is of the
order kikgn (because k3 = O(1)). Therefore, the computational cost of the step © (1)
argmingep [|©@) — NVLL(Oy)) — O of Algorithm 1 is of the order max{kikan,c(A)}.
From Lemma 3.1, with € = O(a2)\min), Algorithm 1 returns an e-optimal solution @Qn
as long as 7 = O(poly< L >) Therefore, the total computational cost scales as
O(algiff? max (k‘lkzgn,c(A))). Whenever the cost of projection onto A is O(poly(kzlkg)),

we have the total computational cost scaling as O<poly<k1k2>) U

H Computational cost for the example constraints on the
natural parameters

In this Section, we provide Corollary H.1, Corollary H.2, and Corollary H.3. These
Corollaries provide the computational cost to produce an e-optimal solution of 0, for sparse
decomposition of ©, low-rank decomposition of ©, and sparse-plus-low-rank decomposition
of ©. respectively. Recall the convex relaxations of these constraints from Section 2.1.

H.1 Sparse Decomposition

Corollary H.1. (Sparse decomposition) Suppose ©* has a sparse decomposition i.e., ©* =
(©*M) and ||©*W|y 1 < ry. Let Assumptions 2.1, 2.2, 2.3, and 4.1 be satisfied. Let

nzO( ]ji\k; o (k:15k2>>.

min

Letn = 1/kikaoks@? .. exp(ridi) and 0O = 0. Then, Algorithm 1 is guaranteed to produce
an e-optimal solution O, such that ||O, — ©*||r < «, with probability at least 1 —§ and
with number of computations of the order

o (1)

min

30



Proof of Corollary H.1 . The computational cost of projecting on the Lj 1 ball is O(k;k2)
(see [15] and note k3 = O(1)). The computational cost of the operation © ;) —nV L, (O 4)) —
© is O(k1k2n) (because k3 = O(1)). Therefore, the computational cost of the step © ;1) <
argmingey O — VL (O)) — O of Algorithm 1 is O(k1kan).

From Lemma 3.1, Algorithm 1 returns an e-optimal solution @e,n as long as

S 2k1 ko2, exp(rd)
- €

1017

Also, [|©,]3% = H(Q)S)H% < H(:)S)H%l < 72. Combining everything, the computational cost
21.2

scales as O(@) Using Theorem 4.3, and plugging in n = O< IZ/\ISQ log <k1k2)) and

¢ = O(a?Amin) completes the proof. O

H.2 Low-rank decomposition

Corollary H.2. (Low-rank decomposition) Suppose ©* has a low-rank decomposition i.e.,
0* = (0*W) and ||©*|, < r1. Let Assumptions 2.1, 2.2, 2.3, and 4.1 be satisfied. Let

n20< ]zi]f o (kl(ng))‘

min

Let n = 1/kykoksd?,.. exp(ridi) and 0O = 0. Then, Algorithm 1 is guaranteed to produce
an e-optimal solution O, such that ||O, — O*||r < «, with probability at least 1 —§ and
with number of computations of the order

(o o2 (%57))

min

Proof of Corollary H.2 . The computational cost of projecting on the nuclear ball is
O(ki1ko min{k;, ko}) (see [23] and note k3 = O(1)). The computational cost of the
operation O — nVL,(Oy)) — O is O(kikan) because (k3 = O(1)). Therefore, the
computational cost of the step © ;1) +— argmingey [|© ) —nV L, (O)) — O of Algorithm
1 is O(k1ke max{min{k;, ko},n}).

From Lemma 3.1, Algorithm 1 returns an e-optimal solution (L)em scales as

2k1 kag? .. exp(r?d)

€

[CHS

Also, |6,z < [|6,]? < r}. Combining everything, the computational cost is of the order
21.2 : 21.2
O(klk2 max{mln{kl’kQ}’n}>. Using Theorem 4.3, and plugging in n = O<al:§\];? log <%)>

€

and € = O(a®A\pin) completes the proof. O

H.3 Sparse-plus-low-rank decomposition

Corollary  H.3. (Sparse-plus-low-rank  decomposition)  Suppose ©*  has a
sparse-plus-low-rank decomposition i.e., ©* = (0*1) 0*@)) such that ||©*M|11 < r; and
10*@)|, < ro. Let Assumptions 2.1, 2.2, 2.3, and 4.1 be satisfied. Let

nZO( If)ff lo (k16k2>>.

min

Let ) = 1/k1koks @2 exp(ridy + rads) and ©©) = 0. Then, Algorithm 1 is guaranteed to
produce an e-optimal solution @En such that H@en — Ot < a, with probability at least
1 — 6§ and with number of computations of the order

o M (12

min
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Proof of Corollary H.3 . The proof follows directly from the proofs of Corollary H.1 and
Corollary H.2. O

I Examples

In this Section, we provide a more elaborate discussion on the examples of natural
parameters and statistics from Section 2.1.

I.1 Sparse-plus-low-rank decomposition

The natural statistic ® of an exponential family is such that for any i; # is € [k1],j1 #
J2 € [kal, 11 # 1o € [k3], ®i 511, # Pigjol,- Further, an exponential family is minimal if there
does not exist a non-zero tensor U € RF1xk2xks gych that Zze[kl I, j€ ka] 1€ ks] U, Pi5(x) is
equal to a constant for all x € X. However, for the sparse-plus-low-rank decomposition,
it is desirable to let ®1) = &) (see [8, 37]). In this scenario, there exists a non-zero
tensor U € RF1xk2xks guch that Zie[kl},je[kg},le[kg] U;ji®ij(x) = 0 for all x € & for e.g.,
this is true if UM = —U® | In this situation, we say an exponential family is minimal if
there does not exist a non-zero tensor U € R’“Xk?x’“?’ such that > e, ]U # 0 as well
as Zze[kl J.j€lkal i€ ks] U;;1®;5(x) is equal to a constant for all x € X. Therefore it is often
convenient to represent the tensor U in terms of a matrix and define minimality of an
exponential family in terms of this new matrix.

I.2 Assumptions 2.1 and 2.2

While we expect the constants r in Assumption 2.1 and d in Assumption 2.2 to be O(1) for
most applications, the sample complexity and the computational complexity in Theorem

4.3 would still be O<poly(%>) as long as r and d are O<log(kzlk2)).

I.3 Polynomial natural statistic

Suppose the natural statistics are polynomials of x with maximum degree [, i.e., Hz‘e[p] xil
such that l; > 0 Vi € [p] and 3,1l < 1.
e Let X = [0,b] for b € R. We will first show that ¢ax = 2b'. We have
d(x max — max éuvw X
|96 s = max [P0
(@) ‘
= max wow (X) — Eg [Povw (X
ue[kl],ve[kg],we[kg] ( ) MX[ ( )]
< 0] + By 100,
max X max wow (X
T u€lki]welka],weks) u€lki],v€[ka],welks] Ux

< 2max max
XEX u€lki],v€lke],we[ks]

@uvw(x)‘ < 9.

where (a) follows from Definition 2.1 and (b) follows from the triangle inequality.

e Suppose ©* has a sparse decomposition i.e., ©* = (0*1)) and |©*"||;; < ry. The
dual norm of the matrix L;; norm is the matrix maximum norm. Then, if X = [0, §]
for b € R,

Ri(@W (x)) = 1€ (%) [lmax = [B(x)lmax < Gmax = 20"
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e Suppose O* has a low-rank decomposition i.e., ©* = (©*(1)) and ||©*||, < r1. The dual
norm of the matrix nuclear norm is the matrix spectral norm. Then,

Ri(@Y(x)) = |2 (x)]].

Let I = 2, and X = B(0,b). Observe that by writing &) (x) = xx” where X =
(1,x1,--+,xp), we have

[V )| < 2(1+ 3" %) <201+ 8.
i€[p]

e Suppose ©* has a sparse-plus-low-rank decomposition i.e., ©* = (@*(1),@*(2)) such
that ||©*M{];; <7y and [|©*?)||, < ry. The dual norm of the matrix L; ; norm is the
matrix maximum norm and the dual norm of the matrix nuclear norm is the matrix
spectral norm. Let [ = 2, and X = B(0,b). Then,

R @(x)) < (|80 (%) fmax, 62 X)) < (26,2 + 262).

1.4 Trigonometric natural statistic

Suppose the natural statistics are sines and cosines of x with [ different frequencies, i.e.,
SN ey liwi) U cos(Y ey lizi) such that [; € [I] U {0}

e Let X C RP. We will first show that ¢max = 2. We have

D(x)||max = ma; Dvw (X
()l ue[kﬂ,ve[kz(],we[kg]’ (x)]

= max
uE[kl],vE[kngE[k‘g,]

Dy (X) - EZ/IX [(I)uvw (X)] ‘

max

E q)uvw
u€lk1],v€lka],welks] Un | (x)]

D ow (x)‘ + max
uE[kﬂ,UE[kngG[kS}

< 2max max
XEX u€lk1],v€[ke],weE[ks]

Py (X) ‘ <2

where (a) follows from Definition 2.1 and (b) follows from the triangle inequality.

e Suppose ©* has a sparse decomposition i.e., 0* = (0*(1)) and ||©*M||;; < r;. The dual
norm of the matrix L ; norm is the matrix maximum norm. Then, for any X C RP,

Ri(@W(x)) = 1€ (%) llmax = [D(x)[lnax < Gimax = 2.

I.5 Combinations of polynomial and trigonometric statistics

Suppose the natural statistics are combinations of polynomials of x with maximum degree
lie, [Tiep xil such that [; > 0 Vi € [p] and } .1, i < 1 as well as sines and cosines of x

with [ different frequencies, i.e., Sin( ;e liwi) U €os(D;epy) lii) such that [; € [1] U {0}.

e Let X =10,b] for b € R. From Appendix 1.3 and Appendix 1.4, it is easy to verify that
Gmax = max{2,2b'}.

e Suppose ©* has a sparse decomposition i.e., ©* = (0*)) and |©*(||;; < ry. The
dual norm of the matrix L;; norm is the matrix maximum norm. Then, if X = [0, ]
for b € R, it is easy to verify that

Ri(@W(x)) = 181 () lhnax = [€(x)lhmax < dmax = max{2,2b'}.
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J Property 4.1 for norms of interest

In this Section, we show that the g defined in Property 4.1 in Section 4 is 1 for the entry-wise
L, 4 norm (p,q > 1), the Schatten p-norm (p > 1), and the operator p-norm (p > 1).

J.1 The entry-wise L,, norm

Let 7%() denote the entry-wise L, , norm for some p,q > 1. We will show that for any
matrix M € RF1xk2

1 1

R(M) < [|M]|max X k] ks
By the definition of the entry-wise L, , norm, we have

Rov) = (X (Z MyP)’ >3§ (3 (3 i)’ )

j€[ka] “i€[k1] j€lke] “i€lk]

11
= kjlp k2q ||M||max < k1k2||M||max-

J.2 The Schatten p-norm

Let R(-) denote the Schatten p-norm for some p > 1. We will show that for any matrix
M € RF1xk

R(M) < ||M||max % /min{ki, ko } k1 k.

Let the rank of M be denoted by r and the singular values of M be denoted by o;(IM) for
i € [r]. By the definition of the Schatten p-norm, we have

ROM) = ( ) af<M>) TS ) € s M

i€[r] i€[r]

(¢)
< /min{ky, ko Y1 k2| M| max < k1k2[|M||max

where (a) follows because of the monotonicity of the Schatten p-norms, (b) follows because

IM||, < Vrkika||M|/max, and (c) follows because r < min{ky, ko }.

J.3 The operator p-norm
Let 7?,() denote the operator p-norm for some p > 1. We will show that for any matrix
M € RF1xk2

1

~ 1491
R(M) < Ml x KRy 7.

Let ¢ = L For i € ki, let [M]; denote the i*" row of M. By the definition of the operator
p-norm, e have

- (a)
R(M) = max HMYHp</<7” max_ ||Myl|o

yillyllp=1 yillyllp=1

< k{ max maXll[ Jillgllyllp
y:llyllp=1i€[k1]

<k?
£ e (M
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() 1 1
< ki kg max [|[[M];]|o
1€[k1]

141
= k{ky 7|IMlmax < krk2[[M|lmax

1
where (a) follows because ||v||, < mP?|v|« for any vector v.€ R™ and p > 1, (b) follows
from the definition of the infinity norm of a vector and using the Holder’s inequality, and

(¢) follows because ||v|, < m%HvHOO for any vector v.€ R™ and ¢ > 1.
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