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Figure 1: Our approach learns a shape generator from a collection of deformable shapes. The shape generator is trained with
a novel as-rigid-as-possible regularization (ARAPReg) loss that promotes the preservation of multi-scale shape features.

Abstract

This paper introduces an unsupervised loss for training
parametric deformation shape generators. The key idea
is to enforce the preservation of local rigidity among the
generated shapes. Our approach builds on an approxi-
mation of the as-rigid-as possible (or ARAP) deformation
energy. We show how to develop the unsupervised loss
via a spectral decomposition of the Hessian of the ARAP
energy. Our loss nicely decouples pose and shape vari-
ations through a robust norm. The loss admits simple
closed-form expressions. It is easy to train and can be
plugged into any standard generation models, e.g., varia-
tional auto-encoder (VAE) and auto-decoder (AD). Experi-
mental results show that our approach outperforms exist-
ing shape generation approaches considerably on public
benchmark datasets of various shape categories such as hu-
man, animal and bone. Our code and data are available at
https://github.com/GitBoSun/ARAPReg.

1. Introduction

This paper considers learning a parametric mesh gener-
ator from a deformable shape collection with shapes that
exhibit the same topology but undergo large geometric vari-
ations (see examples below of a deforming human, animal,
and bone). This problem arises in numerous visual comput-
ing and relevant fields such as recovery of neural morpho-
genesis, data-driven shape reconstruction, and image-based
reconstruction, to name just a few (c.f. [54]).

Deformable shapes differ from many other visual objects
(e.g., images and videos) because there are natural con-
straints underlying the shape space. One such example is
the local rigidity constraint; namely, corresponding surface
patches among neighboring shapes in the shape space un-
dergo approximately rigid transformations. This constraint
manifests the preservation of geometric features (e.g., fa-
cial features of humans and toes of animals) among local
neighborhoods of the underlying shape space. An inter-
esting problem thus is the use of this constraint to train
shape generators from a collection of training shapes, where

ar
X

iv
:2

10
8.

09
43

2v
2 

 [c
s.C

V
]  

21
 S

ep
 2

02
1

https://github.com/GitBoSun/ARAPReg


the local rigidity constraint accurately and efficiently propa-
gates features of the training shapes to new synthetic shapes
produced by the generator.

In this paper, we study how to model the local rigidity
constraint as an unsupervised loss functional for genera-
tive modeling. The proposed loss can be combined with
standard mesh generators such as variational auto-encoders
(VAEs) [44, 28, 39, 7] and auto-decoders (ADs) [59, 61].
A key property of our loss functional is that it is consistent
with other training losses. This property offers multiple ad-
vantages. For example, the learned generator is insensitive
to the tradeoff parameters among the loss terms. As another
example, the training procedure converges faster than the
setting where loss terms may compete against each other.

Our approach, called ARAPReg, builds on the es-
tablished as-rigid-as-possible (or ARAP) deformation
model [43, 49, 55] that measures the non-rigid deforma-
tion between two shapes. Its key ingredients include use
oof the Hessian of the ARAP deformation model to de-
rive an explicit regularizer for the Jacobian of the shape
generator and a robust norm on the Hessian to model
pose and shape variations of deformable shapes. The out-
come is a simple closed-form formulation for training mesh
generators. ARAPReg differs from prior works that en-
force ARAP losses between synthetic shapes and a base
shape [17, 27, 63], that may introduce competing losses
when the underlying shape space has large deformations.

We have evaluated ARAPReg across a variety of pub-
lic benchmark datasets such as DFAUST [5], SMAL [66],
and an in-house benchmark dataset of Bone. The evalua-
tions include both generator settings of VAE and AD. Ex-
perimental results show that ARAPReg leads to consider-
able performance gains across state-of-the-art deformable
shape generators both qualitatively and quantitatively. As
shown in Figure 1 for example, the interpolated shapes us-
ing ARAPReg greatly preserve the local geometric details
of the generated shapes and avoids unrealistic shape poses.

2. Related Works
This section organizes the relevant works into three

groups, namely, 3D generative models, regularization for
generative modeling, and shape space modeling.
3D generative models. Learning 3D generative models re-
lies on developing suitable 3D representations to encode 3D
models into vectorized forms. Examples include volumet-
ric grid [53, 45, 12, 34, 32, 19], implicit surfaces [35, 9],
point clouds [1, 57, 56, 25], meshes [22, 28, 14], paramet-
ric surfaces [16, 31], spherical representations [10, 13, 8],
geometric arrangements [47, 62], and multi-views [30].

This paper is mostly relevant to generative models under
the mesh representation, which falls into four categories.
The first category of approaches [44, 48, 28, 46, 38] is based
on defining variational auto-encoders on meshes. A typical
strategy is to treat triangular meshes as graphs and define
convolution and deconvolution operations to synthesize tri-
angular meshes (c.f. [48, 28, 46]). [44] introduced a ge-
ometric encoding scheme that operates in the gradient do-

main. The second category of approaches builds upon re-
current procedures for geometric synthesis. This method-
ology has been extensively applied for primitive-based as-
sembly [26, 40, 41, 65]. [18] extended this approach to
meshes, in which edge contraction operations are applied
recursively. The third category of approaches [60, 51] de-
forms a base mesh to generate new meshes, where the de-
formation is learned from data. The last category utilizes
surface parameterization [42, 31, 16, 4].

While these approaches focused on adopting generative
modeling methodologies under the mesh setting, ARAPReg
studies the novel problem of explicitly enforcing an ARAP
loss among synthetic shapes with similar latent codes.
Regularization for generative modeling. Regularization
losses have been explored in prior works for 3D generative
modeling. In [36], Peebles et al. studied a Hessian regular-
ization term for learning generative image models. A spec-
tral regularization loss is introduced in [2] for 3D generative
modeling. Several works [52, 50, 21, 3] studied geometric
regularizations for image-based reconstruction. In contrast,
ARAPReg focuses on regularization terms that are consis-
tent with other terms. Several other works [17, 27, 63] em-
ployed ARAP losses between any synthetic shapes with a
base shape. The novelty of ARAPReg is that it is consis-
tent with other loss terms even when the underlying shape
space presents large deformations. The reason is that the lo-
cal rigidity constraint is only enforced among neighboring
shapes in the underlying shape space. Our initial experi-
ments show that enforcing ARAP losses between synthetic
shapes and a base shape leads to worse results than dropping
the ARAP losses.
Shape space modeling. Finally, ARAPReg is relevant to
early works on modeling tangent spaces of shape mani-
folds [23, 20, 58]. However, unlike the applications in shape
interpolation [23], shape segmentation [20], and mesh-
based geometric design [37, 58], ARAPReg focuses on de-
vising an unsupervised loss for network training.

3. Overview
Following [39, 7, 64], we are interested in learning a

mesh generator that takes a latent code as input and outputs
the vertex positions of a triangular mesh with given mesh
connectivity (See Figure 2). Formally speaking, we denote
this mesh generator as

gθ : Z := Rk → R3n.

Here Z represents the latent space, and R3n encodes the
vector that concatenates the vertex positions, i.e., n is the
number of vertices. We organize the remainder of this paper
as follows.

In Section 4, we introduce the key contribution of this
paper, ARAPReg, an unsupervised loss for training gθ. The
loss only requires a prior distribution of the latent space Z .
In this paper, we assume the prior distribution is the Nor-
mal distribution Nk of dimension k. The key idea of ARA-
PReg is to ensure that the local rigidity constraint is pre-
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Figure 2: We consider multiple standard shape genera-
tors, including Variational Auto-Encoder (VAE) and Auto-
Decoder (AD). The graph encoder hφ maps the input mesh
g to a latent parameter hφ(z). The graph decoder maps a
latent parameter z to the out mesh gθ(z).

served among neighboring generated shapes in the underly-
ing shape space. As illustrated in the left part of Figure 1,
the goal of this loss is to significantly improve the gener-
alization behavior of the mesh generator, e.g., preserving
multi-scale geometric details.

In Section 5, we discuss how to plug this unsupervised
loss into standard shape generation models based on VAE
and AD.

4. Formulation of the ARAPReg Loss

Formulating the preservation of local rigidity is quite
challenging because the resulting loss term has to be simple
enough to facilitate network training. One straightforward
approach is to enforce the local rigidity constraint between
a generated shape gθ(z) and its perturbation gθ(z + dz).
Here dz characterizes an infinitesimal displacement in the
parameter space. However, this approach requires sampling
a lot of shape pairs. Besides, typical formulations of shape
deformations between gθ(z) and gθ(z + dz) require solv-
ing optimization problems that are computationally expen-
sive (c.f. [6]).

ARAPReg stitches several novel ideas to derive a simple
unsupervised loss that does not adversely compete with typ-
ical losses used in generative modeling (See Section 5.1).

4.1. Step I: Decoupling Smoothness and Jacobian
regularization

First, ARAPReg decouples the enforcement of local
rigidity into two terms. The first term enforces the smooth-
ness of the generator. This smoothness penalty enables
the second term, which formulates the preservation of lo-
cal rigidity as potentials on the Jacobian of the generator,
i.e.,

∂gθ

∂z
(z) ∈ R(3n)×k.

Specifically, we define the unsupervised loss as

Lreg(θ) := E
z∼Nk

(
E

δz∼sNk
‖gθ(z + δz)− 2gθ(z)+

gθ(z − δz)‖2 + λR · rR(gθ(z),
∂gθ

∂z
(z))

)
, (1)

where the first term promotes the smoothness of the gen-
erator gθ; s is a hyper-parameter of ARAPReg. Note that
unlike enforcing

gθ(z + δz) ≈ gθ(z) +
∂gθ

∂z
(z) · δz, (2)

the formulation in (1) does not involve the first-order deriva-
tives of g. It follows that network training is more efficient
as it only requires computing the first-order derivatives of
g. On the other hand, it penalizes the second-order deriva-
tives of gθ. It therefore implicitly enforces (2). The sec-
ond term rR(gθ(z), ∂g

θ

∂z (z)) in (1), which will be defined
shortly, formulates the regularization loss concerning the
generated mesh gθ(z) and infinitesimal perturbations spec-
ified by the Jacobian ∂gθ

∂z (z) (See Figure 3). λR is another
hyper-parameter of ARAPReg.

In other words, instead of enforcing the local rigidity be-
tween shape pairs, ARAPReg enforces the preservation of
the local rigidity in the tangent space specified by the Ja-
cobian. The tangent space is a first-order approximation of
the shape space. The smoothness potential ensures that this
first-order approximation is accurate, i.e., the rigidity con-
straint propagates to the shape space’s local neighborhood.
As we will discuss later, another appealing property of this
formulation is that the Jacobian enables us to easily model
pose and shape variations (where pose variations are more
rigid than shape variations). This goal is hard to achieve
using generic pairwise regularizations.

Although the smoothness constraint involves shape
pairs, our experiments suggest that there is no need to sam-
ple a large number of shape pairs. One interpretation is
that deep neural network training has implicit regulariza-
tions (c.f. [33]), which promotes smoothness.

4.2. Step II: Jacobian Regularization

We proceed to introduce the local rigidity term rR that
regularizes the Jacobian of the generator. To make the nota-
tions uncluttered, we focus on formulating rR(g, J). Here
g ∈ R3n denotes a vertex position vector, and J ∈ R3n×k

is a Jacobian matrix that specifies infinitesimal perturba-
tions to g.

Our formulation is inspired by the as-rigid-as possible
(or ARAP) potential function [43, 49, 55]. This standard
model measures the deformation between a pair of shapes.
Consider a mesh with vertex position g ∈ R3n and the same
mesh with perturbed vertex position g + x ∈ R3n. Denote
Oi ∈ SO(3) as the latent rotation associated with the i-th
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Figure 3: Illustration of configuration for Jacobian regular-
ization. We study infinitesimal deformations incurred by
the tangent space at each generated shape gθ(z).

vertex. The ARAP deformation between them is

fR(g,x) := min
Oi∈SO(3)

∑
(i,j)∈E

‖rij(Oi, g,x)‖2 (3)

rij(Oi, g,x) := (Oi − I3)(gi − gj)−
(
xi − xj

)
where E denotes the edge set of the mesh generator gθ. Note
that we assume (i, j) ∈ E if and only if (j, i) ∈ E .

To introduce a formulation that only depends on the Ja-
cobian of the generator, we consider the Taylor expansion
of the as-rigid-as possible potential energy.

Proposition 1 ([20]) The zero and first-order derivatives of
fR satisfy

fR(g,0) = 0,
∂fR
∂x

(g,0) = 0.

Moreover, the Hessian matrix is given by

∂2fR
∂2x

(g,0) = HR(g),

HR(g) = L⊗ I3 −A(g)TD(g)−1A(g), (4)

where L ∈ Rn×n is the graph Laplacian associated to E;
A(g) is a sparse n × n block matrix; D(g) is a diagonal
block matrix. The blocks of A(g) and D(g) are given by

Aij(g) =


∑

k∈N (i)

(vik×) i = j

−vij× (i, j) ∈ E
0 otherwise

Dij(g) =

{ ∑
k∈N (i)

(‖vik‖2I3 − vikv
T
ik) i = j

0 otherwise

where vij = gi− gj , andN (i) collects indices of adjacent
vertices of i. Note that HR is a highly sparse matrix.

Proposition 1 indicates that for each vector y ∈ Rd in
the parameter space, the ARAP potential between the mesh
defined by g and its infinitesimal displacement encoded by
εJy (for a small ε) can be approximated as

fR(g, εJy) ≈ 1

2
ε2yTHR(g, J)y, (5)

where HR(g, J) := JTHR(g)J .
(5) provides the rigidity potential along a direction y in

the latent space. Our formulation of rR seeks to integrate
(5) over all possible directions y. To motivate the final for-
mulation of ARAPReg, let us first define an initial potential
energy by integrating yTHR(g, J)y over the unit-sphere
Sk inRk that specifies all possible y:

rL
2

R (g, J) :=
k

Vol(Sk)

∫
y∈Sk

yTHR(g, J)ydy. (6)

Proposition 2

rL
2

R (g, J) = Tr(HR(g, J)) =

k∑
i=1

λi(HR(g, J)) (7)

where λi(HR(g, J)) is the i-th eigenvalue of HR(g, J).

4.3. Step III: Pose and Shape Variation Modeling
We present a simple formulation that decouples enforc-

ing pose and shape variations. Specifically, the eigenval-
ues λi(HR(g, J)) = uTi HR(g, J)ui, where ui is the cor-
responding eigenvector of λi(HR(g, J)), reveal the defor-
mations in different directions of the tangent space. From
the definition of the as-rigid-as possible deformation en-
ergy, each vertex’s one-ring neighborhood is mostly rigid
under pose variations. In contrast, the one-ring neighbor-
hoods may change drastically under shape variations. This
means eigenvectors with small eigenvalues correspond to
pose variations, while eigenvectors with large eigenvalues
correspond to shape variations (See Figure 4).

The limitation of the L2 formulation described in (2) is
that all directions are penalized equally. ARAPReg employs
a robust norm to model the local rigidity loss to address this
issue

rR(g, J) =

k∑
i=1

λαi (HR(g, J)), (8)

where we set α = 1
2 in this paper. Similar to the effects of

using robust norms for outlier removal, (8) imposes small
weights on the subspace spanned by eigenvectors of large
eigenvalues, which correspond to shape variations. In other
words, minimizing (8) minimizes the small eigenvalues of
HR(g, J) automatically, which correspond to pose varia-
tions. Note that several prior works [63, 11, 2] aimed to
decouple pose and shape in the latent space. In contrast,
our goal is to model the regularization term by taking pose
and shape variations into account.

4.4. Step IV: Final Loss Term
Substituting (6) into (1), we have

Lreg(θ) := E
z∼Nk

(
E

δz∼sNk
‖gθ(z + δz)− 2gθ(z)

+ gθ(z − δz)‖2 + λR

k∑
i=1

λαi
(
HR

(
gθ(z),

∂gθ

∂z
(z)
)))

(9)



Figure 4: This figure illustrates the local shape space spanned by the eigenvectors of the Hessian of HR(g, J). The red shape
in the center is the reference shape. When moving the latent parameter along the first eigenvector, the shape deformation is
locally rigid, exhibiting pose variations (see grey shapes). When moving along the largest eigenvector, the shape deformation
possesses local stretching, corresponding to shape variations (see yellow shapes). Finally, when moving along a linear
combination of both eigenvectors, the shape exhibits both pose and shape variations (see blue shapes).

In this paper, we set s = 0.05 and λR = 1 for all of our
experiments.

The major challenge of using (9) for training is to com-
pute the gradient of the Jacobian regularization term. Sim-
ilar to the formulation of generator smoothness, we intro-
duce a gradient computation approach that only requires
computing the derivatives of gθ. Please refer to the supp.
material for details.

5. Application in Learning Mesh Generators
This section introduces the applications of the unsuper-

vised loss for learning mesh generators. We first intro-
duce the network architecture used in this paper for exper-
imental evaluation. We then introduce how to insert the
unsupervised loss Lreg described above into two formu-
lations of training mesh generators, i.e., variational auto-
encoders [28, 39, 7] and auto-decoders [59, 61].

5.1. Network Architecture
We focus on describing the decoder network gθ. When

training variational auto-encoders, we utilize another en-
coder network hφ : R3n → Z , the mirror of gθ but has
different network weights. In other words, hφ has the iden-
tical network layers as gθ, but the connections are reversed.

In this paper, we model gθ using six layers. The second
to the sixth layers are the same as the network architecture
of [28]. Motivated from [64], we let the first layer concate-
nate the latent features associated with each vertex of the
coarse mesh as input. Between the input and the first acti-
vation is a fully connected layer. Please refer to the supp.
material for details.

5.2. Variational Auto-Encoder
Given a collection of training meshes T = {gi|1 ≤ i ≤

N}, we solve the following optimization problem to train
the auto-encoder that combines gθ and hφ:

min
θ,φ

1

N

N∑
i=1

‖gθ(hφ(gi))− gi‖+ λKLKL({hφ(gi)}|Nk)

+ λregLreg(θ) (10)

where the first two terms of (10) form the standard VAE
loss. In this paper, we set λKL = 1 and λreg = 10. For
network training, we employ ADAM [24].

5.3. Auto-Decoder
The auto-decoder formulation [59, 61] replaces the en-

coder with latent variables zi associated with the training
meshes:

min
θ,{zi}

1

N

N∑
i=1

‖gθ(zi)− gi‖+ λKLKL({zi}|Nk)

+ λregLreg(θ) (11)

where we use the same hyper-parameters as Section 5.2.
We apply alternating minimization to solve (11). The la-

tent parameters zi are initialized as an empirical distribution
of Nk. When zi are fixed, (11) reduces to

min
θ

1

N

N∑
i=1

‖gθ(zi)− gi‖+ λregLreg(θ) (12)



We again employ ADAM [24] to solve (12). Our implemen-
tation applies one epoch of optimizing θ for each alternating
optimization iteration.

When the network parameters θ are fixed, (11) reduces
to

min
{zi}

1

N

N∑
i=1

‖gθ(zi)− gi‖+ λKLKL({zi}|Nk) (13)

We again employ ADAM [24] to optimize zi. Similarly,
our implementation applies one epoch of optimizing zi for
each alternating iteration. The total number of alternating
iterations is set as 30 in this paper.

6. Experimental Evaluation
This section presents an experimental evaluation of

ARAPReg. In Section 6.1, we present the experimental
setup. We then analyze the experimental results in Sec-
tion 6.2. Finally, Section 6.3 and Section 6.4 describe an
ablation study of the ASARReg loss and an evaluation of
the shape interpolation application. Due to space issues, we
defer more results and comparisons to the supp. material.

6.1. Experimental Setup
Datasets. The experimental evaluation considers three
datasets: DFAUST [5], SMAL [66], and Bone. The
DFAUST dataset consists of 37,197 human shapes for train-
ing and 4,264 shapes for testing. All the shapes are gener-
ated using the SMPL model [29]. For the SMAL dataset,
we randomly generate 400 shapes for following the shape
sampling method in [15], where latent vectors are sampled
from a normal distribution with zero mean and 0.2 standard
deviations. We split them into 300 training shapes and 100
testing shapes. The Bone dataset consists of four categories
of real bones: Femur, Tibia, Pelvis, and Scapula, where
each category has 40 training and 10 testing shapes. The
consistent correspondences are obtained from interpolating
landmark correspondences marked by experts.
Baseline approaches. We evaluate on four baselines: SP-
Disentangle [63], CoMA [39], 3DMM [7], and Mesh-
Conv [64]. They together represent the state-of-the-art
results on learning mesh generators from a collection of
meshes with dense correspondences. We evaluate the effec-
tiveness of ARAPReg on these baselines and the absolute
performance of our approach against these baselines.
Evaluation metrics. Besides qualitative evaluations, we
employ the reconstruction error metric (c.f. [39, 7, 64]) for
quantitative evaluations. Specifically, we compute the aver-
age per-vertex Euclidean distance for the input and recon-
structed meshes. For VAE, the latent variable is given by
the encoder . For AD, we optimize the latent variable to
find the best reconstruction (c.f [59, 61]). The output shape
is obtained by feeding the latent variable to the decoder.

6.2. Analysis of Results
Table 1 compares our approach and baseline approaches

in terms of the reconstruction error. Under the AD frame-

DFAUST SMAL Bone
SP-Disentangle. [63] 10.02 21.32 5.34

COMA[39] 8.80 14.52 4.14
3DMM[7] 7.39 17.78 4.03

MeshConv[64] 5.43 8.01 4.47
Ours-VAE (L1) 5.45 9.11 4.09

Ours-VAE (L1 + ARAP) 4.87 7.82 3.85
Ours-AD (L1) 5.17 8.74 3.91

Ours-AD (L1 + ARAP) 4.52 6.68 3.76

Table 1: Correspondence-based MSE reconstruction error
(mm) on test sets of DFaust, SMAL and Bone.

3DMM [7] COMA [39] MeshConv [64]
No-Reg 7.39 8.80 5.43

ARAPReg 6.72 4.87 5.02

Table 2: The effects of ARAPReg on different baselines
on DFAUST dataset. The first row shows reported MSE
reconstruction errors in their papers, and the second row
shows results with ARAPReg on the same architecture with
VAE training. ARAPReg achieves improvements on vari-
ous baselines with different architectures.

work, our approach reduces the reconstruction error of base-
line approaches by 16.8%, 16.6%, and 6.7% on DFAUST,
SMAL, and Bone, respectively. As the optimal latent-
variable is optimized, AD framework achieves better quality
than VAE framework.

Figure 5 illustrates the reconstruction errors visually.
Our approach improves from baseline approaches consid-
erably. In particular, it improves from the top-performing
approach MeshConv [64] at locations with large deforma-
tions (e.g., arms of humans) and non-rigid deformations
(e.g., arms and torsos of humans). These improvements
come from modeling the preservation of the local rigidity
among neighboring shapes in the underlying shape space.
Please refer to the supp. material for more results.

Figure 8 and the supp. material shows randomly gen-
erated shapes under our trained full VAE and AD models
(i.e., with ARAPReg). We can see that the generated shapes
nicely preserve important shape features such as fingers and
faces of human shapes and tails of animal shapes. More-
over, the generated shapes are different from the closest
training shape, indicating that the learned mesh generator
has a strong generalization ability.

6.3. Ablation Study
Table 1 shows our quantitative reconstruction results

with and without ARAPReg under the VAE and AD set-
tings. The effects of ARAPReg are salient. Under the AD
setting, ARAPReg leads to 12.6%, 23.5%, and 4.5% re-
ductions of the reconstruction error on DFAUST, SMAL,
Bone, respectively. Table 2 further shows the effect of
ARAPReg on various baselines under the VAE reconstruc-
tion pipeline. ARAPReg reduces the reconstruction error by
building a better shape space that preserves the local rigidity
constraint.
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Figure 5: Qualitative comparison of reconstruction results. We show results using the AD generator w/w.o ARAPReg.
Compared with baseline approaches, ours results with ARAPReg present less distortions and are locally smoother.

COMA MeshConv Ours AD3DMM [7] COMA [39] MeshCov [64] Ours AD Ours AD + ARAP

Figure 6: Interpolation results. The left column shows three groups of source and target shapes (connected by blue arrows).
The remaining columns show ten intermediate shapes by linearly interpolating the latent codes of the source and target
shapes. We show results using the AD generator w/w.o ARAPReg. Compared with baseline approaches, our results with
ARAPReg show much smoother and more shape-preserving deformations.

6.4. Shape Interpolation

We proceed to evaluate the effects of ARAPReg for the
application of shape interpolation. Given two shapes g1 and
g2, we first obtain their corresponding latent parameters z1

and z2. For the VAE model, zi comes from the encoder.
For the AD model, zi comes from optimizing the recon-
struction error. The interpolation is then done by linearly
interpolating z1 and z2.

Figure 6 compares our approach and baseline approaches
on shape interpolation. We can see that our approach’s in-

terpolated shapes are smoother and more shape-preserving
than those of the baseline approaches. Specifically, promi-
nent shape features such as fingers are better preserved in
our approach. Moreover, our approach introduces less dis-
tortion among joint regions.

6.5. Shape Extrapolation

We also evaluate the effects of ARAPReg for the ap-
plication of shape extrapolation. Given a center shape g,
we first obtain its corresponding latent parameters z. For
the VAE model, z comes from the encoder. For the AD
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Figure 7: Extrapolation results. Around one test center shape (left column), we randomly perturb its latent code z within an
Euclidean ball to generate perturbed shapes. We show results using the AD generator w/w.o ARAPReg. Our results with
ARAPReg exhibit smooth and feature-preserving deformations.

Generated Shapes

Closest Shapes

Figure 8: Randomly generated shapes from our AD + ARA-
PReg framework and their closest shapes in the training
set. Our network is able to generate reasonable shapes that
are not in the training shape collection. Due to space con-
straints, results of our VAE framework are in the supp. ma-
terial.

model, z comes from optimizing the reconstruction er-
ror. The extrapolation is then done by randomly sampling
z̃ ∼ z +N (0, σ2S), where S denotes scale for each latent
dimension. We choose σ = 0.2 for all datasets.

Figure 7 compares our approach and baseline approaches
on shape extrapolation. We can see that our approach’s gen-
erated shapes are smoother and more reasonable than base-

line approaches in areas such as tails of animals, hands and
arms of human.

7. Conclusions and Limitations
This paper introduces ARAPReg, an unsupervised loss

functional for training shape generators. Experimental re-
sults show that enforcing this loss on meshed shape gen-
erators improves their performance. The resulting mesh
generators produce novel generated shapes that are shape-
preserving at multiple scales.

ARAPReg has several limitations which can inspire fu-
ture work. First, so far, ARAPReg only applies to train-
ing datasets with given correspondences. An interesting
problem is to address unorganized shape collections that do
not possess dense correspondences. Besides pre-computing
correspondences, a promising direction is to explore the si-
multaneous learning of the shape correspondences and the
shape generator. Another limitation of ARAPReg is that
it targets realistically deformable shapes. Future directions
are to study how to extend the formulation to handle syn-
thetically generated shapes of any form and function.
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DFAUST SMAL Bone
W.o. Decoupling 4.90 7.23 3.82
With Decoupling 4.52 6.68 3.76

Table 3: Ablation study on shape and pose variation. In
w.o. decoupling setting, all directions are penalized equally.
With decoupling setting is the setting in the main paper,
where pose directions are penalized more than shape direc-
tions.

DFAUST SMAL
No ARAP 5.17 8.74

ARAP Deform. 24.55 7.67
Ours 4.52 6.68

Table 4: Comparison between our method and the tradi-
tional ARAP deformation method. We show reconstruction
errors of AD model without ARAP, with traditional ARAP
and with our method. The traditional method couldn’t han-
dle large pose variation and shape distortion.

A. More Quantitative Results
A.1. Ablation Study on Pose and Shape Variation

in Section 4.3
In the Section 4.2, we introduced decoupling shape and

pose variations to improve ARAPReg. Here we show an
ablation study of this decoupling. In Table.3, we show
MSE reconstruction error in AD framework w/w.o shape
and pose decoupling. Specifically, in the non-decoupling
setting, we use the L2 formulation in Proposition 2, where
all directions are penalized equally.

A.2. Comparison with ARAP deformation from the
base mesh

Here we show the comparison between our method and
the traditional ARAP deformation method, where an ARAP
deformation is applied between the base mesh and the out-
put mesh for regularization (c.f. [17, 27, 63]). In Table 4, we
show results on DFAUST and SMAL datasets. On DFAUST
dataset, there are large deformations among the underlying
shapes, and the approach of enforcing an ARAP loss to the
base shape is significantly worse than without the ARAP
loss. In the SMAL dataset, we pick all samples with the
same shape but different poses, the ARAP loss to the base
shape offers slight performance gains. However, ARAPReg
still outperforms this simple baseline considerably.

B. More Implementation Details
B.1. Model Architecture

Our VAE model consists of a shape encoder and a de-
coder. Our AD model only contains a decoder. Both en-
coder and decoder are composed of Chebyshev convolu-
tional filters with K = 6 Chebyshev polynomials [39].The
VAE model architecture is based on [39]. We sample 4
resolutions of the mesh connections of the template mesh.

The encoder is stacked by 4 blocks of convolution + down-
sampling layers. The decoder is stacked by 4 blocks of con-
volution + up-sampling layers. There’s two fully connected
layers connecting the encoder, latent variable and the de-
coder. For the full details, please refer to our Github repos-
itory.

B.2. Reconstruction evaluation
In the AD model, there’s no shape encoder to produce

latent variables so we add an in-loop training process to op-
timize shape latent variables, where we freeze the decoder
parameters and optimize latent variables for each test shape.
In the VAE training, we also add some refinement steps
on the latent variable optimization where we freeze the de-
coder. We apply this refinement step to both methods w/w.o
ARAPReg.

C. More Results
In this section, we show more results of reconstruction

(Fig.9), interpolation (Fig.10) and extrapolation (Fig.11) of
our methods in variational auto-encoder (VAE) and auto-
decoder (AD) frameworks, with and without ARAPReg.
We also show more closest shapes for randomly generated
shapes in VAE framework with ARAPReg in Fig. 12.

D. Proofs of Propositions in Section 4.2
D.1. Proof of Prop.1

For a shape g ∈ R3n with an infinitesimal vertex dis-
placement x ∈ R3n and ‖x‖2 ≤ ε, the local rigidity energy
is

E(g, x) = min
{Ai∈SO(3)}

∑
(i,j)∈E

wij‖(Ai−I3)(gi−gj)−(xi−xj)‖2

(14)
where Ai is a 3D rotation matrix denoting the local rotation
from gi− gj to (gi + xi)− (gj + xj). Note that here vector
indexing is vertex indexing, where gi = g3i:3(i+1).

Since the zero and first-order derivatives from E to x
around zero is 0:

E(g, x)|x=0 = 0,
∂E(g, x)

∂x
|x=0 = 0 (15)

We can use second-order Taylor expansion to approxi-
mate the energy E when x is around zero:

E(g, x) ≈ 1

2
xT
∂2E

∂x2
x (16)

Proposition 3 Given a function g(x) = miny f(x, y),
and define y(x) = (argmin)yf(x, y) such that g(x) =
f(x, y(x)),

∂2g

∂x2
=
∂2f

∂x2
− ∂2f

∂x∂y
(
∂2f

∂y2
)−1

∂2f

∂y∂x
(17)
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Figure 9: More qualitative results of reconstruction. We show results using VAE and AD generator w/w.o ARAPReg.

By treating each Ai as a function of x, we can rewrite our energy as

E(g, x) = fg(x, A(x)) (18)
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Figure 10: More interpolation results. We show results using VAE and AD generator w/w.o ARAPReg.



Center Shape VAE VAE+ARAP AD AD+ARAP

Figure 11: More extrapolation results. We show results using VAE and AD generator w/w.o ARAPReg.

where A is the collection of all Ai.
By using Prop.3, we can get the Hessian from E to x.

In the above formulation, Ai is in the implicit form of x.
Now we use Rodrigues’ rotation formula to write is explic-



Generated Shapes
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Figure 12: Randomly generated shapes from our VAE frame work and their closed shapes in the training set.

itly. For a rotation around an unit axis k with an angle θ, its
rotation matrix is

Ai = I + sinθ k×+(1− cosθ)(k×)2 (19)

where k× is the cross product matrix of vector k.
Since here we apply infinitesimal vertex displacement,

rotation angle θ is also infinitesimal. We can approximate
19 as

Ai ≈ I + θk×+
1

2
(θk×)2 (20)

Let c = θk and only preserve the first two terms:

E(x) ≈ min
{ci}

∑
(i,j)∈E

wij‖ci × eij − (xi − xj)‖2 (21)

= min
{ci}

∑
(i,j)∈E

wij‖eij × ci + (xi − xj)‖2 (22)

where eij = pi − pj
From Prop. 3, we can compute the hessian from E to x

by writing E(g, x) = fg(x, c(x)).
We rewrite our energy function in matrix form

E =
[
xT cT

](L⊗ I3 B
BT C

)[
x
c

]
(23)

where ⊗ denotes the kronecker product or tensor product.
The Hessian from E to x around zero is

HR(g) = L⊗ I3 −BTC−1B (24)

Now we compute each term of HR(g). Expand

fg(x, c(x)):

f(x, c(x)) =
∑

(i,j)∈E

wij‖eij × ci + (xi − xj)‖2

=
∑

(i,j)∈E

wij(x2
i + x2j − 2xixj + 2(eij × ci)T (xi − xj)

+ (eij × ci)T (eij × ci))

L is the weighted graph Laplacian,

Lij =


∑
k∈Ni wik, i = j

−wij , i 6= jand(i, j) ∈ E
0, otherwise

(25)

The matrix B is a block matrix whose 3 × 3 blocks are
defined as

Bij =


∑
k∈Ni wikeik×, i = j

−wijeij×, i 6= j, (i, j) ∈ E
0, otherwise

(26)

Finally,C = diag(C1...C|P |) is a block diagonal matrix

Ci =
∑
j∈Ni

wij(eij×)T (eij×) (27)

=
∑
j∈Ni

wij‖eij‖22I3 − eijeTij (28)

which ends the proof. �

D.2. Proof of Prop.2
Consider the eigen-decomposition of

HR(g, J) := UΛUT ,



where

Λ = diag
(
λ1(HR(g, J)), · · · , λk(HR(g, J))

)
.

Let y = UTy. Then∫
y

yTHR(g, J)y =

∫
y

yTΛy =

∫
y

k∑
i=1

λi(HR(g, J))y2i

=

k∑
i=1

λi(HR(g, J))

∫
y

y2
i dy

=
1

k

k∑
i=1

λi(HR(g, J))

∫
y

k∑
i=1

y2
i dy

=
Vol(Sk)

k

k∑
i=1

λi(HR(g, J).

�

E. Gradient of Loss Terms
This section presents the gradients of the loss to the rigid-

ity term.
For simplicity, we will express formulas for gradient

computation using differentials. Moreover, we will again
replace gθ and ∂gθ

∂z (z) with g and J whenever it is pos-
sible. The following proposition relates the differential of
rR(g, J) with that of HR(g, J)).

Proposition 4

drR(g, J) = α

k∑
i=1

uTi d(HR(g, J))ui

λ1−αi (HR(g, J))
. (29)

Recall that λi and ui are eigenvalues of eigenvectors of
HR(g, J)).

Proof: The proof is straight-forward using the gradient of
the eigenvalues of a matrix, i.e.,

dλ = uT dHu

where u is the eigenvector ofH with eigenvalue λ. The rest
of the proof follows from the chain rule. �

We proceed to describe the explicit formula for comput-
ing the derivatives of uTi d(HR(g, J))ui. First of all, ap-
plying the chain rule leads to

uTi d(HR(g, J))ui = 2
(

(Jui)
THR(g)(dJ · ui)

− (A(g)Jui)
TD(g)−1 ·

(
dA(g) · (Jui)

))
+
(
D(g)−1A(g)Jui

)T
dD(g)

(
D(g)−1A(g)Jui

)
.

It remains to develop formulas for computing dJ · ui,
dA(g) · (Jui), and dD(g). Note that J = ∂gθ

∂z (z). We

use numerical gradients to compute dJ · ui, which avoid
computing costly second derivatives of the generator:

d(
∂gθ

∂z
(z)) · ui ≈

k∑
l=1

uil(dg
θ(z + sel)− dgθ(z)) (30)

where s = 0.05 is the same hyper-parameter used in defin-
ing the generator smoothness term; el is the l-th canonical
basis ofRk; uil is the l-th element of ui.

The following proposition provides the formulas for
computing the derivatives that involve A(g) and D(g).

Proposition 5

dA(g) · (Jui) = −A(Jui) · dg

cT dD(g) · c = 2

n∑
i=1

∑
k∈N (i)

(
(gi − gk)T (dgi − dgk)‖ci‖2

−
(
cTi (dgi − dgk)

)
·
(
(gi − gk)T ci

))
(31)

Proof:
(1). dA(g) · (Jui):
Let’s denote Jui as a. Now we prove (A(g) · a) =

(A(a) · g). Then we will have d(A(g))vJui = d(A(g) ·
Jui) = d(A(Jui) · g) = A(Jui) · d(g).

(A(g)a)i =
∑
j

Aij(g)aj

=
∑

k∈N(i)

vik × (ai − ak) =
∑

k∈N(i)

vik × aik

= −
∑

k∈N(i)

aik × vik =
∑
j

Aij(a)gj

= (A(a)g)i

This finishes the proof.
(2). cT dD(g) · c:
We have cTi Dii(g) · ci =

∑
k∈N(i)(‖vik‖2‖ci‖2 −

cTi vikv
T
ik · ci). We only need to compute the gradient of

‖vik‖2 and vikv
T
ik. Note that ‖vik‖2 = vTikvik.

For a vector a, we have d(aTa) = d(aT )a+aT d(a) =
d(a)Ta + aT d(a) = 2aT d(a) and similarly, d(aaT ) =
2d(a)aT . We use these two results to our derivation and
we will get the results above.

cT dD(g) · c

=
∑
i

∑
k∈N(i)

(d(‖vik‖2)‖ci‖2 − cTi d(vikv
T
ik) · ci)

=
∑
i

∑
k∈N(i)

(d(vTikvik)‖ci‖2 − cTi d(vikv
T
ik) · ci)

=
∑
i

∑
k∈N(i)

2
(

(gi − gk)T (dgi − dgk)‖ci‖2

−
(
cTi (dgi − dgk)

)
·
(
(gi − gk)T ci

))
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