Everything is a Transaction: Unifying Logical Concurrency
Control and Physical Data Structure Maintenance in
Database Management Systems

Ling Zhang, Matthew Butrovich, Tianyu Li*, Yash Nannapanei*
Andrew Pavlo, John Rollinson*, Huanchen Zhang*

Ambarish Balakumar, Daniel Biales, Zigi Dong, Emmanuel Eppinger, Jordi Gonzalez
Wan Shen Lim, Jiangiao Liu, Lin Ma, Prashanth Menon, Soumil Mukherjee, Tanuj Nayak
Amadou Ngom, Jeff Niu, Deepayan Patra, Poojita Raj, Stephanie Wang, Wuwen Wang

Yao Yu, William Zhang
Carnegie Mellon University
*Massachusetts Institute of Technology, *Rockset, * Army Cyber Institute, * Tsinghua University,

lingz2@cs.cmu.edu

ABSTRACT

Almost every database management system (DBMS) supporting
transactions created in the last decade implements multi-version
concurrency control (MVCC). Still, these systems rely on physical
data structures (e.g., B+trees, hash tables) that do not natively sup-
port multi-versioning. As a result, there is a disconnect between
the logical semantics of transactions and the DBMS’s underlying
implementation. System developers must invest engineering efforts
in coordinating transactional access to these data structures and non-
transactional maintenance tasks. This burden leads to challenges
when reasoning about the system’s correctness and performance
and inhibits its modularity. In this paper, we propose the Deferred
Action Framework (DAF), a new system architecture for scheduling
maintenance tasks in an MVCC DBMS integrated with the system’s
transactional semantics. DAF allows the system to register arbi-
trary actions and then defer their processing until they are deemed
safe by transactional processing. We show that DAF can support
garbage collection and index cleaning without compromising per-
formance while facilitating higher-level implementation goals, such
as non-blocking schema changes.

1. INTRODUCTION

Race conditions and transaction interleavings within an MVCC
DBMS remain implementation hurdles despite insights from decades
of development [10, 25, 23, 31, 21]. This difficulty partly arises
from a disconnect between the concurrency control semantics of
the logical layer of the system (e.g., transactions, tuples) and the
synchronization techniques of the underlying physical data struc-
tures (e.g., arrays, hash tables, trees). Developers must carefully
reason about races within these physical objects and devise bespoke
solutions that are transactionally correct and scalable.

The core challenge in this is to coordinate two types of accesses
to the same physical data structures: (1) transactional runtime oper-
ations (e.g., inserting a key into an index) and (2) non-transactional
maintenance tasks (e.g., removing invisible versions from an index).
The DBMS can simplify this dichotomy by unifying them under the
same transactional semantics. Under this model, the system uses
transactional timestamps as an epoch protection mechanism to pre-
vent races between maintenance tasks and active transactions [28].
For example, an MVCC version chain entry is obsolete when it

is no longer visible to any active transactions in the system. The
DBMS’s garbage collector can then look up the oldest running trans-
action in the system and safely remove the entries created before
that transaction starts [16, 8].

In this paper, we generalize this idea into a modular component,
called the Deferred Action Framework (DAF), that processes
maintenance tasks safely and scalably. We integrate DAF into a
DBMS’s transaction processing engine and provide a simple API for
deferring arbitrary actions on physical data structures. Specifically,
DAF guarantees to process actions deferred at some timestamp ¢
only after all transactions started before ¢ have exited. It provides
epoch protection to transactions and maintenance tasks without re-
quiring a separate mechanism for refreshing and advancing epochs.
Unlike other epoch-based protection implementations [28], DAF
satisfies complex ordering requirements for actions deferred at the
same time through a novel algorithm of repeated deferrals. This en-
ables DAF to process maintenance tasks in parallel while satisfying
any implicit dependencies between them (e.g., delete a table only
after all version chain maintenance on the table is finished).

DAF helps us reason about more complex transaction interleav-
ings in databases with evolving schemas and serves as a basis for
supporting non-blocking schema changes. Because DAF decouples
action processing from action generation, it gives system developers
flexibility to adjust action processing strategies dynamically. To
evaluate DAF, we integrated it into the NoisePage [1] DBMS to
process two internal tasks: (1) MVCC version chain maintenance
and (2) index maintenance. We found that DAF reduces these tasks’
implementation complexity while offering competitive performance
compared to hand-optimized alternatives. Additionally, we find
DAF to be a natural central point for runtime metrics collection
in our system. We use the size of DAF’s internal action queue to
detect when NoisePage is behind in some maintenance tasks, such
as version chain pruning, and raise the issue to the rest of the system
for handling.

The rest of this paper is organized as follows. We begin in Sec-
tion 2 with a survey of existing solutions for physical data struc-
ture synchronization and epoch-based protections. Section 3 then
presents DAF’s programming model. We show the correctness of
DAF and address the implementation challenges in Section 4. Sec-
tion 5 details other uses of DAF within NoisePage. We present our

mailto:lingz2@cs.cmu.edu

experimental evaluation of DAF in Section 6 and conclude with a
summary of related and future works in Sections 7 and 8.

2. BACKGROUND

The crux of MVCC is that a writer to a tuple creates a new “ver-
sion” instead of taking a lock and performing in-place updates [7].
Under this scheme, readers can access older versions without being
blocked by writers. Such scalability benefits come at the cost of
additional storage overhead and implementation complexity that
systems need to address. For example, systems need to store and dif-
ferentiate multiple versions, maintain them until no transaction can
access them, and discard them to free up storage space afterward. In
this section, we provide an overview of these challenges and a brief
survey of existing solutions. We also describe NoisePage’s MVCC
implementation to help ground the discussion about integrating DAF
into a DBMS.

2.1 The NoisePage System

NoisePage is a relational HTAP DBMS developed at Carnegie
Mellon University [1]. The DBMS stores all tuples in a PAX-style in-
memory columnar format based on Apache Arrow [19]. NoisePage
uses HyPer-style optimistic concurrency control with MVCC [21,
31], and all transactions execute under snapshot isolation. Under
this scheme, each transaction in the system obtains two unique times-
tamps — tstqrt and tepnq. On a high-level, transactions write entries
at tenq and read entries at ts¢qr¢. Transactions only read values
that are committed before they start and abort when encountering
write-write conflicts.

We implement the concurrency control scheme newest-to-oldest
version chains of delta entries. Each version chain entry contains
tend Of the writer. Uncommitted transactions write negative ternq to
signal that its writes are not yet visible and update their delta records
with the correct t.,q only after they commit. When updating, a
transaction first copies the before-image of updated tuple attributes
to a new version chain entry, atomically installs it onto the version
chain, and then proceeds to modify the tuple in-place. For updates
to indexed attributes, NoisePage models them as a delete followed
by an insert. Even though NoisePage implements a well-studied
concurrency control scheme, it comes with much complexity due
to concurrent versions’ presence in all layers of the system. Con-
sequently, like other systems of this type, NoisePage requires an
involved garbage collection scheme and other maintenance to func-
tion properly, which we will discuss next.

2.2 Data Structure Maintenance in MVCC

Multi-versioning permeates an MVCC DBMS’s internal data
structures. For example, DBMS indexes must handle multiple refer-
ences pointing to the same logical tuple when its physical versions
differ in indexed attributes [31]. The system needs to accommodate
multiple versions of the schema co-existing to support non-blocking
schema changes [20], which leads to multiple entries in the system’s
query plan cache for the same operation. Additionally, data structure
maintenance happens concurrently with user transactions and must
coordinate their access for memory safety and semantic correctness.
Such coordination must be scalable not to affect user transaction
performance.

One might attempt to yield the most efficient schedule for main-
tenance tasks by explicit dependency tracking, perhaps using a
dependency graph like TensorFlow [2]. However, unlike Tensor-
Flow tasks, which have pre-defined static dependencies, DBMS
dependencies dynamically evolve as users issue new transactions,
making this unrealistic in a performance-critical setting. Systems
resort to coarse-grained epoch-based protection instead [28, 9, 13],

which prevents the maintenance tasks from accessing memory still
accessible by running transactions. Under this scheme, transactions
protect against concurrent maintenance tasks with a monotonically
increasing global counter or epoch and an epoch table of all running
transactions. Worker threads initiate the protection by registering
their thread-local epochs in the global epoch table. They then dereg-
ister after they no longer require protection. The epoch steadily
advances, so eventually, an epoch has no registered transactions in
the epoch table and becomes unprotected. The system can safely
process the maintenance tasks associated with that epoch without
interfering with running transactions. To our knowledge, all of these
systems implement epoch protection as a stand-alone component
that does not integrate into the transactional semantics of MVCC,
and developers must maintain the epoch counter explicitly during
query processing.

3. FRAMEWORK OVERVIEW

This section presents an overview of DAF, its logical model, and
its programming interface. Central to DAF is the concept of actions,
which are internal operations that DBMS performs on physical data
structures, such as pruning a version chain, compacting a storage
block, or removing a key from an index. The system executes actions
in response to user requests, but the execution must be deferred until
safety requirements are met. For example, when a query updates
a tuple, the system can remove the older version only after that
version is no longer visible to any current or future transactions in
the system.

The DAF API exposes a single function to the rest of the system:
defer (action). This function takes in an action as a lambda func-
tion that captures required references, then tags the action with the
current timestamp. DAF guarantees to invoke the given action only
after there are no transactions in the system with a start timestamp
smaller than the tagged timestamp.

3.1 System Characteristics

DAF requires the DBMS concurrency control algorithm to sat-
isfy specific properties. In particular, the DBMS must 1) correctly
order all transactions by their begin timestamp, 2) track the oldest
active transaction by begin timestamp, and 3) provide an “observ-
able” timestamp for each transaction, at which point all concurrent
and future transactions are guaranteed to see their logical effects.
Although the discussion below is specific to our implementation
of DAF in NoisePage, which has a single global counter for times-
tamps, the framework functions correctly as long as the concurrency
control scheme meets the criteria mentioned above.

For threads in our system, the unit of work is a rask: it will
execute a single task to completion before starting another. We will
further distinguish between two types of tasks: worker tasks that
execute individual transactions in the system and action tasks that
are maintenance routines to clean up and release resources no longer
in use.

3.2 Implementation

Our DAF contains a queue that holds actions tagged with an "ob-
servable" timestamp. When a worker task, or action, is generated
during transaction executions, the worker thread first queries the ac-
tion’s “observable” timestamp from the system’s global timestamp
counter. Then the worker thread appends the action tagged with this
timestamp to the queue. The global timestamp counter increment
as the system begins and ends a transaction. The system keeps
track of the timestamps of running transactions, and DAF uses these
timestamps and timestamp tags to decide whether it should execute
an action. DAF effectively uses the oldest running transaction’s

. i
Timestamp Current Time t0 t t2 3
Manager ;
! Oldest Running Txn: t0 NULL t2
Registered Commit Actions
Transaction D o Transaction Commit Transaction Begin
Manager Defer() = (Invoke Commit Actions
PEEDTEE, Insert All Deferred Actions
liz Into Deferred Action Queue
Deferred Action Queue Deferred Action Queue
Deferred -
r Unlink Version Chain; | pee
Action et index ey Wait An Chain;
er() =
Framework Delete txn); Epoch

Process Actions Older than Oldest Running Txn

Unlink Version

Transaction Commit

Deferred Action Queue

.
Insert Delete Version

- Delete Version
Deferred | "™ aiian Chain;

Actions Epoch
Into Queue

Deferred Action Queue

Delete an
index key

Process Actions Older than Oldest Running
Txn

Figure 1: DAF Overview —-DAF integrates with the transaction engine of NoisePage and tags actions with the system timestamp at the time of enqueueing.
DAF pops and executes an action if its timestamp is smaller than the oldest running transaction in the system. The shared timestamp between transactions and

DAF ensures correct ordering between action processing and transactional access.

start timestamp as an epoch to protect actions that are unsafe to exe-
cute without having to maintain a separate data structure. Figure 1
presents how DAF interacts with the system’s transaction manager
and timestamp manager with an example. In the simplest configura-
tion, DAF utilizes a single action queue and a dedicated thread for
executing the actions as individual tasks.

As shown in Figure 1, a transaction worker first increments the
global timestamp counter in step @ to get the current timestamp
to tag its deferred actions. When the transaction begins in step

, it increments the global timestamp counter again. The action
thread then processes the queue in order. In particular, the thread
checks the timestamp tag of the first item in the queue and compares
it to the timestamp of the current oldest transaction. If the oldest
transaction’s timestamp is larger than the tag, or there are no active
transactions, then the action thread pops the head and executes the
task. Otherwise, the thread is blocked until this condition is satisfied.
If the queue is empty, the action thread waits in the background for
new actions to process. For example, in step @ of Figure 1, actions
tagged with t1 in the queue get popped and executed because they
have tags smaller than the oldest active transaction’s timestamp, t2,
in the system. After that, the action thread is blocked because the
next item in the queue has a tag (t3) that is larger than t2. The
action thread can proceed only when the transaction with timestamp
t2 completes, as shown in steps (4) and (3) in Figure 1.

3.3 Ordering Actions

Even with actions serialized into a single queue, hidden dependen-
cies between actions caused by MVCC and snapshot isolation make
certain actions such as deleting the data structure backing a table
problematic. Consider the following execution under snapshot isola-
tion: transaction 7' drops a table and commits while transaction 7>
actively inserts into the table and commits after 7% . 7' generates an
action that deallocates the table, and 7> generates an action to prune
the version chain in the same table. If the action from 77 is inserted
before the action from 7%, DAF will delete the table before pruning
the version chain. Therefore, the system will access a memory lo-
cation that has already been deallocated while executing the action
from 7>. We present a solution for this without modifying DAF
through chaining deferrals. Chaining deferral can be demonstrated
with DAF API as defer (defer (...defer (action) ...))., where mul-
tiple "deferring"s wrap over a single action.

Chaining deferrals allows DAF to bootstrap basic guarantees
about the ordering of actions within the queue. We now revisit
the previous problem with this concept. The action to prune the
version chain from 7% must be processed after deleting the table

data structure. DAF needs to ensure that it processes the delete
action after completing all other actions on the table for memory
safety. Observe that because no new transactions will see the table
after 71 commits at time ¢, any actions referencing the table after
t in the defer queue can only come from concurrent transactions
such as T5. We solve this problem with the following chaining of
event deferrals: 74 defers an action. When DAF pops this action
from the queue and executes, the action will defer another action:
the actual deletion of the table. At the time of the second deferral,
all other actions on the table are in the queue. Thus the deletion
will be correctly ordered after them, at the tail of the queue. queue.
However, in the existence of multiple consumers, chaining a deferral
once can not guarantee correct execution ordering. The system can
chain deferrals more times to accommodate more complex ordering
requirements, as we will show in Section 4.1. In practice, we have
not found the need to chain a deferral more than two times.

4. OPTIMIZATIONS

The main challenge with general-purpose frameworks like DAF is
that they are often less performant than specialized implementations.
We now describe optimizations that we developed when integrating
DAF into NoisePage that address this issue.

4.1 Multi-Threaded Action Processing

The queue-based implementation discussed in Section 3.2 is in-
herently single-threaded. It is not a scalable design for modern
multi-core systems. We found that a single DAF thread fails to keep
up with version chain pruning actions in NoisePage for TPC-C using
six execution threads.

Concurrently processing actions from the queue with multiple
threads weakens the ordering guarantee of DAF, making it gen-
erally unsafe without special handling. Specifically, previously
introduced mechanisms only ensure the relative ordering of actions
in the queue, which corresponds to when to start actions. Unlike
single-threaded DAF, where the singular thread cannot start new
actions before finishing earlier ones, multiple threads can complete
actions out-of-order. Subsequently, the thread that finishes first
will start processing later actions before earlier ones have finished.
Again consider the version chain pruning example: suppose that
one thread is processing an action to remove old versions from a
table and then stalls due to a context switch. Then, another thread
processes an action to delete that same table in response to a DDL
statement. When the first thread awakes, it will complete the action
on a table that no longer exists, which leads to memory errors. We

________________ —_—m e e m—-— mmmm e === =a .
¢ - N, . N N7 v -~ v ~
4 v \
1 | H L | I 1
T N 1 1
Timestamp Current Time L t2 1it3 t4 5 it6 : t7 it8 it9 it10 | , it , it2ing t14 :
Manager %' :tte: CEEREEE S TR AR gheneas 8000 LR TEE CEPE ORI ETPRTTPRTRRY & T PRITPRr T TR ECREPEREY rael !
Oldest Running Txn | i t t1 112 INULL: 15 5 INULL: t9 ! 19 i t10 y Nue t13 NULL |
] I i X I 1 1
. 1 | } 1
1 ! ! J 1) !
1 1 1
1| 2z I 2 =1z ! ' | z
| 8 DROP 1E i ! g3 ! £ i el
i = pr 1S 1 =l
Worker 1 o TABLE foo; 1E = | _a3 H 1 a2 1 E . o al §/|
— F 1i0 < ! ol g , 1i9 3 ®
¥ : a 1 2 ' T a 1
! A 1 L L 1 1
Worker ! : 1 | T T 1
Threads ! , . I T ! \ !
1 = z = 1 I i \
| Z DELETE E ! E g s \
& FROMfoo H @ £ @ 1 b1 ! LB N
Worker 2 ! O WHERE id=3; ° i o [T 1 1i0 /1
- o 1 o < o f—& ' | i© /
I ol 1 1
! } t 1 1 1
1 | i | | [1
1 | i . | 1 I
1 i i 0 | 1 I
1 | 1 1
Status 1 i Ou |0 : O t6 | Oro 1| B0 X .
of ! | 1 1
a3 | a2 1
Deferred ! } b1 | b1 a1 : at 1 .
Action : 1 | I i I 1
Queue \ } 1 I 1
\ N N | » ’
| U N e e e == N e e e e e e e e e e - - 4 | J e — P -

Figure 2: Triple Deferral —In the presence of multiple consumers to the action queue, chaining a deferral two times (triple deferral) can guarantee that the
system executes the action only after executing all singly deferred actions from concurrent transactions. By processing actions inside a transaction, the thread
having the oldest running transaction effectively set the global "fence" that marks the processable actions for all consumers.

make two adjustments to DAF to address this problem: running ac-
tions in transactions and chaining an additional deferral for actions
with implicit dependencies, such as DDL changes.

The first adjustment is to have DAF threads process actions inside
transactions. On a high level, this adds the same epoch protection
for user transactions to actions, which prevents concurrent DAF
threads from advancing too far ahead of each other. Consider a case
where there are no active user transactions in the system; by DAF’s
semantics, all actions are safe to process. This extends to actions
generated by a double-deferred action, making it possible for another
processing thread to prematurely execute the double-deferred action.
If the DAF thread instead starts a transaction periodically, other
threads cannot process such generated actions before the transaction
is finished. Note here that it is unnecessary to start a transaction for
each action, as long as an action is run within the duration of some
transaction’s protection. In practice, we reuse the same transaction
for multiple actions for efficiency.

The second adjustment is adding a third deferral to actions that
arise due to schema changes (e.g., the drop table example). As
discussed above, DAF guarantees that all pruning actions (single
deferral) are started before any concurrent double-deferred actions.
Thus, if the system pops an action from the queue and executes it
within the same transaction, all singly-deferred actions from concur-
rent transactions are guaranteed to be either in-progress or completed
when the system executes any double-deferred action. That said,
this is insufficient, as in-progress actions can be arbitrarily delayed
and perform unsafe operations, such as traversing the version chain,
after the double-deferred action is processed. Deferring from this
point, though, guarantees that all prior actions have been completed.
Their associated transactions must have finished for the epoch to
have advanced to the deferred execution time.

To provide a more concrete example of how this guarantees cor-
rectness, we walkthrough the worst-case ordering of this action in
Figure 2. For the sake of simplicity, we assume that the system’s
worker threads handle both transactions and DAF actions but leave
the full discussion of this change to Section 4.3.

1. The example starts with the two worker threads executing
our concurrent DDL. and DML transactions as previously
described and an empty DAF queue.

2. In the worst-case setting, the DDL transaction commits (¢3)
before the DML transaction, which places the deferral chain
of the table into the DAF action queue before the action to
unlink the delete’s undo records from the table. Note that
in our implementation, a worker thread can insert an action
to the action queue during or after the transaction commits,
as long as the insertion happens before the next transaction
starts in the same thread. The opening of a transaction at t5
in Worker 1 and transaction at £6 in Worker 2 shows the first
important change required for safe, concurrent processing of
actions. Without this step, multiple deferrals would have no
effect as worker threads could always process the next action
when no normal transactions are active. This could result in
Worker 1 processing a’s entire deferral chain while Worker
2 is executing b. In contrast, by checking out transactions,
a2 cannot be started until all concurrent transactions with a3
have been completed.

3. Continuing our worst-case scenario, Worker 1 completes a3
and inserts a2 at the back of the queue. Since the current
oldest running transaction (Worker 1’s DAF transaction) is
not greater than the timestamp associate with b1, Worker
1 commits and starts again. Transaction at Worker 2 (¢6)
commits without being able to process any actions.

4. During this window, Worker 1 fully executes a2 while Worker
2 starts b1 stalling on some step of that action. It is essential
to observe that at the moment a2 commits, all singly-deferred
actions are either complete or running in a separate transaction
of the other worker thread. It also highlights that double-
deferrals are not sufficient for DDL safety as a2 would have
been the actual table deletion in that case and could have
occurred before b1 dereferenced the table for unlinking.

5. Because the timestamp associated with al is t10, Worker 1
commits and then stalls because even after exiting, the old-
est running transaction is only ¢10. It is the critical moment
where triple-deferrals achieve the required ordering guaran-
tee because NoisePage’s epoch system for transactions now
also serves as a guard on DAF preventing early execution of
deferred actions.

6. Once Worker 2 finishes b1, it is also unable to execute al
because of the oldest running transaction. Therefore it com-
mits, allowing Worker 1 to resume and execute al inside of a
transaction — deleting the table only after all singly-deferred
references are guaranteed to complete.

For DAF queue with multiple concurrent consumers, executing
actions inside transactions with up to triple deferral allows us to as-
sociate the length of an action’s deferral chain to a specific guarantee
in the system:

e Single-Deferral: All concurrent transactions have exited be-
fore a singly-deferred action can start.

e Double-Deferral: All singly-deferred actions from concurrent
transactions have started.

o Triple-Deferral: All singly-deferred actions from concurrent
transactions have been completed.

4.2 Timestamp Caching & Batching Actions

Before processing an action, DAF must know the timestamp of
the oldest running transaction. Computing this timestamp per action
is expensive and can create additional contention on timestamp gen-
eration for transactions [8], which is undesirable for high-throughput
workloads. In such cases, it is desirable to trade-off some accuracy
of the minimum timestamp computation for better transactional
performance. Caching is one such trade-off. DAF uses two levels
of caching for the oldest transaction’s timestamp for use across
multiple actions.

The first cache is a pre-computed value stored separately from the
set of current running transaction timestamps. This pre-computed
value is updated whenever removing the current oldest transaction
from the running transaction set, and DAF only reads from this
pre-computed value. This has significant performance benefits:
it removes DAF threads as a source of contention on the current
running transaction set and ensures that computation of the oldest
running transaction is only ever done once per epoch. It is also
worth noting that this cache can easily be modified to allow further
tuning by making the policy for when to update the cached value as
a runtime parameter.

The second cache is per DAF thread and is simply a local copy of
the first-level cache which is only updated when the timestamp for
the action at the head of the action queue exceeds its locally cached
version. In this situation, the thread refreshes its local cache from
the global cache and either tries again if it changed or commits its
DAF transaction if it did not.

These caches can only delay the execution of actions in the ag-
gregate, and cannot lead to early execution of an action or an action
being removed from the queue outside of a transaction and therefore
do not affect the correctness or ordering guarantees from Section 3.2
and Section 4.1.

We can further extend this caching concept to include batching
actions since adjacent actions tend to share the same timestamp tag.
Since multiple threads are concurrently accessing the action queue,
they compete for the queue latch each time an action is pushed into
or popped out of the action queue. Thus, we can reduce the number

of latch operations on the queue by eagerly dequeuing multiple
actions inside a single trip through the critical section.

4.3 Cooperative Execution

Although multi-threading improves DAF’s scalability, the frame-
work is still susceptible to scalability issues at higher thread counts.
The number of actions increases proportionally with the number of
concurrent worker threads. When DAF fails to keep up with the
action generated, actions will accumulate and affect the system’s
throughput. For example, when actions of cleaning up deleted in-
dex keys accumulate, each later transaction sees a larger index and
takes more time to traverse the index. Therefore, more dedicated
DAF threads are needed in the case of higher worker thread count,
especially when DAF operates on a workload that generates many
maintenance tasks. However, this way, we add more contention to
the action queue on top of the contention introduced when scaling
up the number of worker threads. Additionally, the static allocation
of dedicated threads cannot react to workload change due to a lack
of back-pressure.

To avoid this problem, DAF can employ a cooperative execution
model where worker threads are also responsible for processing ac-
tions [8, 15, 18]. This approach provides two benefits: (1) it creates
natural back-pressure on worker threads as delta records accumulate,
and (2) it improves locality in the memory allocator. The former
helps prevent a runaway performance situation where the DBMS’s
garbage collection mechanism cannot keep up with demand [8]. By
interspersing actions on the same threads as transactions, the DBMS
achieves an equilibrium where it does not produce more actions than
it can sustainably execute. The other benefit is improved locality
for the DBMS’s memory allocator. Most state-of-the-art allocators,
such jemalloc, use arenas that it maintains on a per-thread basis.
When a thread frees memory, the allocator adds that newly freed
memory back to the calling thread’s local arena [6]. In this situation,
an arena-based allocation scheme is the most efficient when the
same threads are both allocating and freeing memory, as they do not
access a shared memory pool. Additionally, cooperative execution
eliminates the need to schedule and manage dedicated DAF threads
separately.

S. APPLICATIONS

We next outline the use cases where DAF helped simplify the
implementation of NoisePage’s components. This discussion is our
experience for how other system developers can use DAF to achieve
more functionality at lower engineering costs.

5.1 Low-Level Synchronization

We now discuss how we use DAF to ensure the correctness and
safety of NoisePage’s internal physical data structures in addition to
version chains.

Index Cleaning: Most of the data structures used in DBMSs for
table indexes do not natively support multi-versioning [26]. Thus,
to use these data structures in an MVCC DBMS, developers either
(1) embed version metadata into index keys or (2) maintain version
metadata outside of the index. The latter is preferable because
the DBMS already does this to identify whether a tuple is visible.
With DAF, we can take an existing single-version data structure and
integrate it into the DBMS with minimal code to add support for
multi-versioning. The high-level idea is to treat any update to an
indexed attribute on a tuple as an insert followed by a delete, and
then use an action to remove the deleted version when it is no longer
visible. The index registers two actions for the updating transaction:
a commit action that defers deleting the original key upon commit

and an abort action that would immediately remove the new index
key.

Query Cache Invalidation: DBMSs rely on query plan caching
for frequently executed queries and prepared statements to reduce
redundant work. When an application changes the physical layout
of a table (e.g., drop column) or changes the indexes on a table,
the DBMS may need to re-plan any cached queries. For example,
if a cached query plan accesses an index but then the application
drops that index, the DBMS needs to invalidate the plan. When the
application invokes the query again, the DBMS generates a new plan
for it. Concurrent transactions still access the previous query plan if
the schema change is non-blocking. With DAF, the transaction that
issued the physical layout change only needs to enqueue an action
that defers the old query plan’s removal once all the transactions
that could access that plan are finished.

Latch-free Block Transformations: Some HTAP DBMSs treat
frequently modified (hot) blocks of data and read-mostly (cold) data
differently [4, 3, 5]. In NoisePage, transactions modify hot data
in-place, and concurrent transactions use version deltas to recon-
struct earlier versions. For cold data, NoisePage converts data to a
more compact and read-efficient representation in-place [19]. Non-
modifying queries can read data from cold blocks without checking
the version chain and materializing the tuple. During normal opera-
tions, the DBMS may need to convert a data block between hot and
cold formats multiple times due to changes in the application’s ac-
cess pattern. The system must prevent in-place readers and in-place
writers from operating on the same block concurrently during this
process. DAF enables the DBMS to perform these layout transfor-
mations without excessive synchronization (e.g., a block-level latch)
between readers and writers. Instead, the DBMS sets a flag inside a
block’s header to indicate that it is in an intermediate state. It then
defers the transformation in an action. Transactions that observe the
intermediate flag fallback to materializing tuples when reading, as
some threads may still be issuing in-place writes. When the DBMS
finally processes the transformation action, all threads have agreed
not to modify the block, and thus it safely allows in-place readers.

5.2 Non-Blocking Schema Change

Supporting transactional schema changes are notoriously diffi-
cult because they sometimes require the DBMS to rewrite entire
tables [20, 24]. In some cases, the schema change is trivial, and thus
the DBMS does not need to block other transactions (e.g., rename
table, drop column). But there are other changes where the DBMS
will block queries until the modification finishes.

With DAF, schema changes become easier to support because
the DBMS can layer transactional semantics on top of physical data
structure modifications without special casing or coarse-grained
locking. In particular, we can extend support to more complicated
DDL queries, such as modifying a column’s type by creating spe-
cialized functions for reading and modifying data in the tables. The
DDL transaction can then create and start using new versions of
the functions that can translate data stored in the old format to the
new schema while concurrent transactions continue to use the ex-
isting function. The pending physical change is concealed by the
catalog for concurrent transactions and the new functions for future
transactions. Migrating old data to the new format can then be a
flexible policy decision for the larger DBMS, with the end of the
migration triggering another transactional update to the functions
in the catalog. DAF’s flexibility becomes apparent for successive
schema changes that cause data to be stored in three or more for-
mats simultaneously. In this situation, using a non-versioned data
structure such as a map or array greatly simplifies the functions

120 A 2 DAF+24 Worker=26 Threads

1 DAF+24 Worker=25 Threads

360 ——
—eo— Cooperative
P Lo ‘ 24 Cooperative=24 Threads ‘

5 —s— 1DAF

g —+— 2 DAF

S 2404 —w— 4 DAF Lo ‘ 8 DAF+24 Worker=32 Threads‘
B

< —o— 8DAF

‘g —A— GC e ‘ 4 DAF+24 Worker=28 Thrcads‘
ey

()]

3

o

o

=

£

1 GC+24 Worker=25 Threads ‘

4 8 12 16 20 24
Number of Worker Threads

Figure 3: TPC-C Performance — Throughput comparisons when varying
the number of worker threads using (1) cooperative DAF threads, (2) a single
dedicated GC thread, and (3) dedicated action processing threads.

for accessing the data but would generally pose significant diffi-
culties for a transactional implementation. However, with deferred
actions, updates to this data structure can easily be delayed to the
right moments in time to enable transactional semantics despite the
non-versioned implementation underneath.

DAF’s flexibility enables more interesting possibilities because
it can leverage a DBMS’s own MVCC semantics to version other
optimizations. For example, the DBMS could load new index im-
plementations or storage engines into its address space at runtime
without having to restart. Again, DAF makes this possible because
the deallocation mechanisms for these components are decentral-
ized, which means that they are not dependent on hard-coded logic
in the DBMS’s GC routines.

6. PRELIMINARY RESULTS

We now present our evaluation of DAF in NoisePage. Our goal
is to demonstrate the transactional performance for our DAF imple-
mentation and showcase its support for easy extension and instru-
mentation. We perform all experiments on Amazon EC2 r5.metal
instance: Intel Xeon Platinum 8259CL CPU (24 x cores, HT dis-
abled) with 768 GB of memory.

We use transactional GC as our sample use-case for these ex-
periments. We compare our DAF-based implementation against
an earlier version of NoisePage with a hand-coded GC similar to
[21]. We use the TPC-C [27] workload with one warehouse per
worker thread and report the total number of transactions processed.
We pre-compute all of the transaction parameters and execute each
transaction as a stored procedure. The DBMS runs 200 seconds
per trial to ensure the system reaches steady-state throughput, and
we record performance measurements using NoisePage’s internal
metric logging framework.

The graph in Figure 3 shows NoisePage’s throughput when in-
creasing the number of worker threads. DAF can scale across multi-
ple cores when using (1) cooperative or (2) dedicated thread action
processing. The latter outperforms the cooperative configuration
below 16 worker threads. Still, we see a drop in performance when
the total number of threads in the system (dedicated + worker) sat-
urates the number of physical cores. These results show that the
dedicated thread configuration fails to scale when exceeding four
worker threads per DAF thread.

To better understand this performance degradation for higher
thread counts, we continuously measure the DBMS throughput dur-
ing the benchmark. Figure 4 shows the sustained throughput of
two runs with 20 threads on two configurations: (1) cooperative
and (2) two dedicated DAF threads. The dedicated thread config-
uration initially starts with approximately the same throughput as

w
o
o

240 1\

120 A
—— Cooperative DAF

—— 2 DAF Threads

Throughput (k txn/sec)

o

25 50 75 100 125 150 175 200
Time (sec)

o

Figure 4: Cooperative vs. Dedicated DAF Threads (Throughput) —
Comparison for NoisePage with a total of 20 threads, using either (1) coop-
erative action processing or (2) two dedicated action processing threads.

—— Cooperative DAF —— 2 DAF Threads

«©
o
o

man

400

Throughput
(k action/sec)

2400

Max Queue Size
(k items)
-
N
o
o

0 T T T T T T T
0 25 50 75 100 125 150 175 200

Time (sec)

Figure 5: Cooperative vs. Dedicated DAF Threads (Metrics) — DAF’s
internal measurements from the experiment in Figure 4 for (1) action pro-
cessing throughput and (2) max action queue size.

cooperative, but then its performance drops by half within the first
30 seconds of execution. To explain this pattern, we plot the average
action processing rate and queue size over time in Figure 5. We
observe both steady throughput on actions processed and a negligi-
ble actions queue size with cooperative threading. In contrast, the
two DAF thread configuration shows a lower throughput of actions.
This throughput is not sufficient to keep up with the maintenance
demand of 20 workers, and thus the size of the action queue in-
creases by several orders of magnitude. As this happens, tuples’
version chains become longer, indexes become larger, and trans-
actional throughput lowers until the system eventually reaches a
steady-state. This steady-state is undesirable as it corresponds to
lower throughput and several seconds of average latency for actions
versus sub-millisecond latency with the cooperative configuration.

7. RELATED WORK

To the best of our knowledge, there is no previous work on build-
ing a general-purpose framework to maintain internal physical data
structures of a DBMS with transaction timestamps. Our work is
inspired by and builds on advancements in MVCC and epoch-based
GC for in-memory DBMSs.

Garbage Collection in MVCC: There are three representative
approaches to GC in MVCC systems. Microsoft Hekaton uses a
cooperative approach where actively running transactions are also
responsible for version-chain pruning during query processing [10].
Transactions refer to the “high watermark”™ (i.e., the start timestamp
of the oldest active transaction) to identify obsolete versions. SAP
HANA periodically triggers a GC background thread using the
same watermarks [16]. HANA also uses an interval-based approach
where the DBMS prunes unused versions in the middle of the chain

(instead of only the head of chain as in Hekaton). HyPer’s Steam
improves techniques from Hekaton and HANA: it prunes both the
head of version chains and the middle of chains by piggy-backing
the GC tasks on transaction processing [8]. The DBMS uses the
same methods to identify obsolete versions (e.g., high watermark,
interval-based) orthogonal to DAF. DAF’s support for cooperative
processing allows it to have a higher GC frequency compared to
background vacuuming. Moreover, DAF is a general framework
that can do more than GC: as described in Section 5, version-chain
pruning is one of the applications that DAF supports.

Epoch Protection: One can also consider DAF to be an epoch
protection framework widely used in multi-core DBMSs. FASTER’s
epoch protection framework exposes an API similar to DAF for
threads to register arbitrary actions for later execution [9]. FASTER
is a non-transactional embedded key-value store, and its epoch
framework maintains a counter that is cooperatively advanced by
user threads. These threads must explicitly refresh the epoch frame-
work and process actions periodically to guarantee progress. FASTER
also offers no ordering guarantees between actions registered to
the same epoch, whereas NoisePage can accommodate this with
repeated deferrals. Although not multi-versioned, Silo’s concur-
rency control protocol relies on epochs [28]. The system maintains
a global epoch counter that increments periodically, and transac-
tions from larger epochs never depend on smaller epochs. The
Bw-tree [18, 30] is a latch-free data structure from Hekaton that
relies on a similar epoch-based GC scheme like Silo.

Memory Management: A DBMS’s memory allocator also af-
fects a DBMS’s performance in a multi-core environment [6, 14,
17]. The allocator will affect the DBMS’s resident set size, query
latency, and query throughput of a DBMS [11]. Although not thor-
oughly studied in the context of a DBMS, these allocators also cause
performance variations depending on whether the threads allocat-
ing memory are also the same ones freeing it [6]. Because DAF
turns GC into a thread-independent, parallelizable task, it is worth
exploring GC parameters with allocators [8, 17].

Since DAF introduces transactional semantics to data structure
maintenance, it has some similarities with software transactional
memory (STM) [12]. STM instruments program instructions to
provide transactional semantics to memory reads and writes. In
contrast, DAF is not by itself transactional but integrates into a trans-
actional engine to complement its capabilities. DAF also operates
at a higher abstraction level than STM, operating on program-level
maintenance tasks instead of instruction-level.

8. FUTURE WORK

We foresee optimizations beyond those in Section 4 that could
improve the DAF’s scalability. We now discuss three of these as
potential research directions.

Multiple Action Queues: Assigning multiple concurrent produc-
ers and consumers to a single action queue can introduce contention
and present a scalability bottleneck with large thread counts. One
way to reduce contention is to have multiple action queues. By
distributing concurrent operations to multiple queues, we can im-
prove the performance of both DAF and the system in general. The
system could easily incorporate multiple action queues into the
multi-threaded or cooperative framework designs. To guarantee
the correct action processing order, any consumer of actions must
traverse the set of queues and process as many actions as possible
before committing. The strategy for inserting the actions into queues
is less strict and should optimize for reducing contention.

Coalescing Deferrals: Another way to reduce contention on the
action queue latch is for threads to coalesce their observed deferrals
into a single action. This extra processing step is likely to be a
substantial performance improvement in the common case. But it
requires a protection mechanism to ensure that long-running trans-
actions do not inadvertently create a single, long-running action.
Such transactions would create a considerable pause in the frame-
work since actions must be executed inside of transactions. The
DBMS could minimize this risk by limiting the number of actions
that threads are allowed to combine.

Unified Task Queue: In our current implementation, DAF is a
stand-alone component with its queue. By combining the queue for
normal transactional tasks and the queue of deferred actions, we can
have fewer data structures to maintain and synchronize. Workers
threads can execute both types of tasks, and we have discussed the
correctness of this strategy in Section 4.3 on cooperative execution.
With one unified task queuing component in the DBMS, the system
can leverage the existing load-balancing strategies on execution and
maintenance tasks.

Long-Running Transactions: The most onerous shortcoming
of our current implementation of DAF is that it assumes user trans-
actions are short-lived. Action processing will halt if the oldest
running transaction in the system does not finish. It will result in
a similar impact of long-running transactions in [21], or the effect
of a thread does not refresh its epoch in [9]. It is possible to use
techniques outlined in [16] and [8] to ensure the rest of the system’s
progress. However, this invariably leads to additional complexity in
the API and implementation of DAF.

Other Maintenance Tasks: There are several other maintenance
tasks in a DBMS that could benefit from centralized coordination.
For example, lazy materialized view maintenance [33] defers mate-
rialized view updates until spare cycles are available in the system.
While there is less concern with memory safety in such use cases,
DAF can simplify these tasks by providing a unified background task
scheduling interface. DAF can perceivably associate a scheduling
priority with different types of tasks and choose to chain additional
deferrals for low-priority tasks when the system is under load.

9. CONCLUSION

We presented the Deferred Action Framework for unifying the
life cycle of transactional logical database objects and physical
data structures in a DBMS. This framework integrates with exist-
ing DBMSs to leverage MVCC semantics for the system’s internal
maintenance tasks. It introduces extra tuning knobs, such as co-
operative or multi-threaded strategy, number of threads, and batch
size. How to automatically tunning these parameters is beyond this
paper’s scope, as there are existing tools to achieve this under the
research of self-driving databases [22, 29, 32]. Our evaluation of
DAF in NoisePage shows similar or better performance for version
chain and index clean-up while keeping the corresponding code
straightforward and modular. We also presented other maintenance
scenarios that DAF could support, such as non-blocking schema
changes.

Acknowledgements

This work was supported (in part) by the National Science Founda-
tion (IIS-1846158, I11S-1718582, SPX-1822933), Google Research
Grants, and the Alfred P. Sloan Research Fellowship program.
TKBM.

10. REFERENCES

(1]
(2]

(3]

[4

—

[5

—

(6]

(7]

[8

—_—

(9]

(10]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

NoisePage. https://noise.page.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,

J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. Tensorflow: A system for large-scale machine
learning. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, OSDI’ 16,
page 265-283. USENIX Association, 2016.

I. Alagiannis, S. Idreos, and A. Ailamaki. H20: A hands-free
adaptive store. SIGMOD, pages 1103-1114, 2014.

J. Arulraj, A. Pavlo, and P. Menon. Bridging the archipelago
between row-stores and column-stores for hybrid workloads.
SIGMOD, pages 583-598, 2016.

M. Athanassoulis, K. S. Bggh, and S. Idreos. Optimal column
layout for hybrid workloads. Proc. VLDB Endow.,
12(13):2393-2407, 2019.

E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R.
Wilson. Hoard: A scalable memory allocator for
multithreaded applications. ASPLOS, pages 117-128, 2000.
P. A. Bernstein and N. Goodman. Concurrency control in
distributed database systems. ACM Comput. Surv.,
13(2):185-221, June 1981.

J. Bottcher, V. Leis, T. Neumann, and A. Kemper. Scalable
garbage collection for in-memory mvcce systems. Proc. VLDB
Endow., 13(2):128-141, Oct. 2019.

B. Chandramouli, G. Prasaad, D. Kossmann, J. Levandoski,
J. Hunter, and M. Barnett. Faster: A concurrent key-value
store with in-place updates. SIGMOD, pages 275-290, 2018.
C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: Sql
server’s memory-optimized oltp engine. SIGMOD, pages
1243-1254, 2013.

D. Durner, V. Leis, and T. Neumann. On the impact of
memory allocation on high-performance query processing. In
DaMoN, pages 21:1-21:3, 2019.

N. Herman, J. P. Inala, Y. Huang, L. Tsai, E. Kohler,

B. Liskov, and L. Shrira. Type-aware transactions for faster
concurrent code. EuroSys, 2016.

K. Kim, T. Wang, R. Johnson, and I. Pandis. Ermia: Fast
memory-optimized database system for heterogeneous
workloads. SIGMOD, pages 1675-1687, 2016.

P.-A. Larson and M. Krishnan. Memory allocation for
long-running server applications. ISMM, pages 176—185,
1998.

P.-r. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel,
and M. Zwilling. High-performance concurrency control
mechanisms for main-memory databases. Proc. VLDB
Endow., 5(4):298-309, 2011.

J. Lee, H. Shin, C. G. Park, S. Ko, J. Noh, Y. Chuh,

W. Stephan, and W.-S. Han. Hybrid garbage collection for
multi-version concurrency control in sap hana. SIGMOD,
pages 1307-1318, 2016.

D. Leijen, B. Zorn, and L. de Moura. Mimalloc: Free list
sharding in action. Technical Report MSR-TR-2019-18,
Microsoft, June 2019.

J.J. Levandoski, D. B. Lomet, and S. Sengupta. The bw-tree:
A b-tree for new hardware platforms. ICDE, pages 302-313,
2013.

T. Li, M. Butrovich, A. Ngom, W. S. Lim, W. McKinney, and
A. Pavlo. Mainlining databases: Supporting fast transactional

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1846158
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1718582
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1822933
https://sloan.org/grant-detail/8638
https://noise.page

workloads on universal columnar data file formats. Proc.
VLDB Endow., 14(4):534-546, 2021.

[20] J. Lgland and S.-O. Hvasshovd. Online, non-blocking
relational schema changes. In EDBT, pages 405-422, 2006.

[21] T. Neumann, T. Miihlbauer, and A. Kemper. Fast serializable
multi-version concurrency control for main-memory database
systems. SIGMOD, pages 677-689, 2015.

[22] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma,

P. Menon, T. Mowry, M. Perron, 1. Quah, S. Santurkar,

A. Tomasic, S. Toor, D. V. Aken, Z. Wang, Y. Wu, R. Xian,
and T. Zhang. Self-driving database management systems. In
CIDR, 2017.

[23] D.R. K. Ports and K. Grittner. Serializable snapshot isolation
in postgresql. Proc. VLDB Endow., 5(12):1850-1861, Aug.
2012.

[24] 1. Rae, E. Rollins, J. Shute, S. Sodhi, and R. Vingralek.
Online, asynchronous schema change in f1. Proc. VLDB
Endow., 6(11):1045-1056, Aug. 2013.

[25] V. Sikka, F. Farber, W. Lehner, S. K. Cha, T. Peh, and
C. Bornhovd. Efficient transaction processing in sap hana
database: The end of a column store myth. SIGMOD ’12,
pages 731-742, 2012.

[26] Y. Sun, G. E. Blelloch, W. S. Lim, and A. Pavlo. On
supporting efficient snapshot isolation for hybrid workloads
with multi-versioned indexes. Proc. VLDB Endow.,
13:221-225, October 2019.

[27]

(28]

[29]

[30]

[31]

(32]

[33]

The Transaction Processing Council. TPC-C Benchmark
(Revision 5.9.0).

http://www. tpc.org/tpcc/spec/tpcc_current.pdf,
June 2007.

S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases. SOSP,
pages 18-32, 2013.

D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang.
Automatic database management system tuning through
large-scale machine learning. SIGMOD, pages 1009-1024,
2017.

Z. Wang, A. Pavlo, H. Lim, V. Leis, H. Zhang, M. Kaminsky,
and D. G. Andersen. Building a bw-tree takes more than just
buzz words. SIGMOD, pages 473488, 2018.

Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo. An empirical
evaluation of in-memory multi-version concurrency control.
Proc. VLDB Endow., 10(7):781-792, Mar. 2017.

J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing,
Y. Wang, T. Cheng, L. Liu, M. Ran, and Z. Li. An end-to-end
automatic cloud database tuning system using deep
reinforcement learning. SIGMOD 19, page 415-432, 2019.
J. Zhou, P.-A. Larson, and H. G. Elmongui. Lazy maintenance
of materialized views. In Proceedings of the 33rd
International Conference on Very Large Data Bases, VLDB
’07, page 231-242. VLDB Endowment, 2007.

http://www.tpc.org/tpcc/spec/tpcc_current.pdf

	Introduction
	Background
	The NoisePage System
	Data Structure Maintenance in MVCC

	Framework Overview
	System Characteristics
	Implementation
	Ordering Actions

	Optimizations
	Multi-Threaded Action Processing
	Timestamp Caching & Batching Actions
	Cooperative Execution

	Applications
	Low-Level Synchronization
	Non-Blocking Schema Change

	Preliminary Results
	Related Work
	Future Work
	Conclusion
	References

