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Abstract

In vision-based object classification systems imaging sensors
perceive the environment and then objects are detected and
classified for decision-making purposes; e.g., to maneuver an
automated vehicle around an obstacle or to raise an alarm to
indicate the presence of an intruder in surveillance settings.
In this work we demonstrate how the perception domain can
be remotely and unobtrusively exploited to enable an attacker
to create spurious objects or alter an existing object. An auto-
mated system relying on a detection/classification framework
subject to our attack could be made to undertake actions with
catastrophic results due to attacker-induced misperception.

We focus on camera-based systems and show that it is
possible to remotely project adversarial patterns into camera
systems by exploiting two common effects in optical imag-
ing systems, viz., lens flare/ghost effects and auto-exposure
control. To improve the robustness of the attack to channel
effects, we generate optimal patterns by integrating adver-
sarial machine learning techniques with a trained end-to-end
channel model. We experimentally demonstrate our attacks
using a low-cost projector, on three different image datasets,
in indoor and outdoor environments, and with three different
cameras. Experimental results show that, depending on the
projector-camera distance, attack success rates can reach as
high as 100% and under targeted conditions.

1 Introduction

Object detection and classification have been widely adopted
in autonomous systems, such as automated vehicles [1,2] and
unmanned aerial vehicles [3], as well as surveillance systems,
e.g., smart home monitoring systems [4,5]. These systems
first perceive the surrounding environment via sensors (e.g.,
cameras, LiDARs, and motion sensors) that convert analog
signals into digital data, then try to understand the environ-
ment using object detectors and classifiers (e.g., recognizing
traffic signs or unauthorized persons), and finally make a de-
cision on how to interact with the environment (e.g., a vehicle
may decelerate or a surveillance system raises an alarm).
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Figure 1: A STOP sign image was injected into a camera by
a projector, which was detected by YOLOvV3 [17].

While the cyber (digital) attack surface of such systems
have been widely studied [6, 7], vulnerabilities in the percep-
tion domain are less well-known, despite perception being the
first and critical step in the decision-making pipeline. That
is, if sensors can be compromised then false data can be in-
jected and the decision making process will indubitably be
harmed as the system is not acting on an accurate view of
its environment. Recent work has demonstrated false data
injection against sensors in a remote manner via either elec-
tromagnetic (radio frequency) interference [8], laser pulses
(against microphones [9], or LIDARSs [10—-12]), and acoustic
waves [13, 14]. These perception domain sensor attacks alter
the data at the source, hence bypassing traditional digital de-
fenses (such as crypto-based authentication or access control),
and are subsequently much harder to defend against [15, 16].
These attacks can also be remote in that the attacker needn’t
physically contact/access/modify devices or objects.

Among the aforementioned sensors, at least for automated
systems in the transportation and surveillance domains, cam-
eras are more common/crucial. Existing remote attacks
against cameras are limited to, essentially, denial-of-service at-
tacks [11, 18, 19], which are easily detectable (e.g., by tamper-
ing detection [20]) and for which effective mitigation strate-
gies exist (e.g., by sensor fusion [21]). In this work, we con-
sider attacks that cause camera-based image classification
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system to either misperceive actual objects or perceive non-
existent objects by remotely injecting light-based interference
into a camera, without blinding it. Formally, we consider cre-
ation attacks whereby a spurious object (e.g., a non-existent
traffic sign, or obstacle) is seen to exist in the environment by
a camera, and alteration attacks, in which an existing object in
the camera view is changed into another attacker-determined
object (e.g., changing a STOP sign to a YIELD sign or chang-
ing an intruder into a bicycle).

As it is not possible, due to optical principles, to directly
project an image into a camera, we propose to exploit two
common effects in optical imaging systems, viz., lens flare
effects and exposure control to induce camera-based misper-
ception. The former effect is due to the imperfection of lenses,
which causes light beams to be refracted and reflected multi-
ple times resulting in polygon-shape artifacts (a.k.a., ghosts)
to appear in images [22]. Since ghosts and their light sources
typically appear at different locations, an attacker can over-
lap specially crafted ghosts with the target object’s without
having the light source blocking it. Auto exposure control is
a feature common to cameras that determines the amount of
light incident on the imager and is used, for example, to make
images look more natural. An attacker can leverage exposure
control to make the background of an image darker and the
ghosts brighter, so as to make the ghosts more prominent (i.e.,
noticeable to the detector/classifier) and thus increase attack
success rates. Fig. | presents an example of a creation attack,
where we used a projector to inject an image of a STOP sign
in a ghost, which is detected and classified as a STOP sign by
YOLOV3 [17], a state-of-the-art object detector.

Theoretically arbitrary patterns can be injected via ghosts.
However, it is challenging to practically and precisely con-
trol the ghosts, in terms of their resolutions and positions
in images, making arbitrary injection impracticable in some
scenarios. Hence, we propose an empirical projector-camera
channel model that predicts the resolution and color of in-
jected ghost patterns, as well as the location of ghosts, for
a given projector-camera arrangement. Experimental results
show that at short distances attack success rates are as high as
100%, but at longer distances the rates decrease sharply; this is
because at long distances ghost resolutions are low, resulting
in patterns that cannot be recognized by the classifier.

To improve the efficacy of our attack, which we dub Ghos-
tImage, especially at lower resolutions, we assume that the
attacker possesses knowledge about the image classifica-
tion/detection algorithm. Based on this knowledge the at-
tacker is able to formulate and solve an optimization prob-
lem to find optimal attack patterns, of varying resolutions,
to project that will be recognized by the image classifier as
the intended target class [23,24]; i.e., the pattern projected
will yield a classification result of the attacker’s choice. As
the channel may distort the injected image (in terms of color,
brightness, and noise), we extend our projector-camera model
to include auto exposure control and color calibration and in-

tegrate the channel model into our optimization formulation.
This results in a pattern generation approach that is resistant
to channel effects and thus able to defeat a classifier under
realistic conditions.

We use self-driving and surveillance systems as two il-
lustrative examples to demonstrate the potential impact of
GhostImage attacks. Proof-of-concept experiments were con-
ducted with different cameras, image datasets, and environ-
mental conditions. Results show that our attacks are able to
achieve attack success rates as high as 100%, depending on
the projector-camera distance. Our contributions are summa-
rized as follows.

e We are the first to study remote perception attacks against
camera-based classification systems, whereby the attacker
induces misclassification of objects by injecting light, con-
veying adversarially generated patterns, into the camera.

e Our attack leverages optical effects/techniques, namely,
lens flare and auto-exposure control, that are widespread
and common, making the attack likely to be effective
against most cameras. Furthermore, we incorporate these
effects in an end-to-end manner into an adversarial machine
learning-based optimization framework to find the optimal
patterns an attacker should inject to cause misperception.

e We demonstrate the efficacy of the attacks through experi-
ments with varying image datasets, cameras, distances, and
indoor to outdoor environments. Results show that Ghos-
tImage attacks are able to achieve attack success rates as
high as 100%, depending on the projector-camera distance.

2 System and Threat Model

System and attack models are described, including two attack
objectives and the attacker’s capabilities.

2.1 System Model

We assume an end-to-end camera-based object classification
system (Fig. 2) in which a camera captures an image of a
scene with objects of interest. The image is then fed to an
object detector to crop out the areas of objects, and finally
these areas are given to a neural network to classify the objects.
Autonomous systems increasingly rely on such classification
systems to make decisions and actions. If the classification
result is incorrect (e.g., modified by an adversary), wrong
actions could be taken. For example, in a surveillance system,
if an intruder is not detected, the house may be broken-in
without raising an alarm.

2.2 Threat Model

We consider two different attack objectives. In creation at-
tacks the goal is to inject a spurious (i.e., non-existent) object
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Figure 2: Camera-based object classification systems. GhostImage attacks target the perception domain, i.e., the camera.

into the scene and have it be recognized (classified) as though
it were physically present. For alteration attacks an attacker
injects adversarial patterns over an object of interest in the
scene that causes the object to be misclassified.

There are two types of attackers with differing capabilities:
Camera-aware attackers who possess knowledge of the vic-
tim’s camera (i.e., they do not know the configuration of the
lens system, nor post-processing algorithms, but they can pos-
sess the same type of camera used in the target system), from
which they can train a channel model using the camera as a
black-box. With such capabilities, they are able to achieve
creation attacks and alteration attacks. System-aware attack-
ers not only possess the capabilities of the camera-aware
attackers, but also know about the image classifier including
its architecture and parameters, i.e., black-box attacks on the
camera but white-box attacks on the classifier. With such ca-
pabilities, it is able to achieve creation attacks and alteration
attacks as well, but with higher attack success rates.

Both types of attackers are remote (unlike the lens sticker
attack [28]), i.e., they do not have access to the hardware or
the firmware of the victim camera, nor to the images that the
camera captures. We assume that both attackers are able to
track and aim victim cameras [12,18,29].

3 Background

In this section, we will introduce optical imaging principles,
including flare/ghost effects and exposure control, which we
will exploit to realize GhostImage attacks. Then, we will dis-
cuss the preliminaries about neural networks and adversarial
examples that we will use to enhance Ghostlmage attacks.

3.1 Optical Imaging Principles

Due to the optical principles of camera-based imaging sys-
tems, it is not feasible to directly point a projector at a camera,
hoping that the projected patterns can appear at the same
location with the image of the targeted object, because the
projector has to obscure the object in order to make the two
images overlap. Instead, we exploit lens flare effects and auto
exposure control to inject adversarial patterns.

Lens flare effects [22, 30] refer to a phenomenon where
one or more undesirable artifacts appear on an image because
bright light get scattered or flared in a non-ideal lens system
(Fig. 3). Ideally, all light beams should pass directly through
the lens and reach the CMOS sensor. However, due to the
quality of the lens elements, a small portion of light gets
reflected several times within the lens system and then reaches
the sensor, forming multiple polygons (called “ghosts”) on
the image. The shape of polygons depends on the shape of the
aperture. For example, if the aperture has six sides, there will
be hexagon-shaped ghosts in the image. Normally ghosts are
very weak and one cannot see them, but when a strong light
source (such as the sun, a light bulb, a laser, or a projector) is
present (unnecessarily captured by the CMOS sensor, though
[31]), the ghost effects become visible. Fig. 3 shows only one
reflection path, but there are many other paths and that is why
there are usually multiple ghosts in an image.

Existing literature [22] about ghosts focused on the simula-
tion of ghosts given the detailed lens configurations, in which
the algorithms simulate every possible reflection path. Such
white-box models are computationally expensive, and also
requires white-box knowledge of internal lens configurations,
thus are not suitable for our purposes. In Sections 4 and 5, we
study flare effects in a black-box manner (more general than
Vitoria et al. [30]), where we train a lightweight end-to-end
model that is able to predict the locations of ghosts, estimate
the resolutions within ghost areas, and also calibrate colors.

Exposure control mechanisms [32] are often equipped
in cameras to adjust brightness by changing the size of the
aperture or the exposure time. In this work, we will model and
exploit auto exposure control to manipulate the brightness

Light Source
CMOS Sensor

Ghost
Aperture

Figure 3: Ghost effect principle
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balance between the targeted object and the injected attack
patterns in ghosts.

3.2 Neural Nets and Adversarial Examples

We abstract a neural network as a function ¥ = fy(x) and
we omit the details of it due to the page limit. The input
x € RWh<3 (width, height and RGB channels) is an image,
Y € R™ is the output vector, and 0 is the parameters of the
network (which is fixed thus we omit it for convenience). A
softmax layer is usually added to the end of a neural network
to make sure that }'/” | ¥; = 1 and ¥; € [0, 1]. The classification
result is C(x) = argmax,Y;. Also, the inputs to the softmax
layer are called logits and denoted as Z(x).

An adversarial example [23] is denoted as y, where y =
x+ A. Here, A is additive noise that has the same dimension-
ality with x. Given a benign image x and a target label ¢, an
adversary wants to find a A such that C(x+A) =1, i.e., tar-
geted attacks. Note that, in this paper, the magnitude of A is
not constrained below a small threshold, since the perceived
images are usually not directly observed by human users. But
we still try to minimize it because it represents the attack
power and cost.

4 Camera-aware Ghostlmage Attacks

In this section, we will discuss how a camera-aware attacker
is able to inject arbitrary patterns in the perceived image of
the victim camera using projectors.

4.1 Technical Challenges

Since we assume that the attacker do not have access to the
images that the targeted camera captures, he/she will have
to be able to predict how ghosts might appear in the image.
First, the locations of ghosts should be predicted given the
relevant positions of the projector and the camera, so that the
attacker can align the ghost with the image of the object of
interest to achieve alteration attacks. Second, since a projector
can inject shapes in ghost areas, the attacker needs to find out
the maximum resolution of shapes that it can inject. Lastly,
it is also challenging to realize the attacks derived from the
position and resolution models above with a limited budget.

4.2 Ghost Pixel Coordinates

Given the pixel coordinates of the target object G (Fig. 4a), we
need to derive the real-world coordinates A’ of the projector
so that we know where to place the projector in order to let
one of the ghosts overlap with the image of the object. To do
this, we derive the relationship between G and A’ in two steps:
We first calculate the pixel coordinates of the light source A
given A’, and then we calculate G based on A.

(A A w
.A (x,y,Z) OSf
A(xa,ya)s h Oy
O1(x0,y0) . .
G(xG,¥G) ¢ Os 1
Light Light

(a) Capture (b) Projection

Figure 4: Capture and projection are reverses of each other.

Based on homogeneous coordinates [33], assuming the
camera is at the origin of the coordinate system, we have

(wvw) =M (x,y,Z,1)7, (1

where M, is the camera’s geometric model [33], a 3 X 4 matrix.
M, can be trained from another (similar) camera, and then
be applied to the victim camera. The coordinates of A is then
A= (x4,y4)" = (u/w,v/w) ", by the homogeneous transfor-
mation. Note that, A does not have to appear in the view of
the camera, which makes the attack more stealthy [31].

In order to find the relationship of the pixel coordinates
between light sources A and their ghosts G, we did a simple
experiment where we moved around a flashlight in front of
the camera [34], and recorded the pixel coordinates of the
flashlight and the ghosts. Similar to Vitoria et al.’s results [30],
we observe that, for each G, we have AO; /0;G = r¢ (being
constant), wherever A is, and r € (—oo,0). This means the
feasible region for the placement of the projector is large; to
attack an autonomous vehicle, for example, it can be located
on an overbridge, on a traffic island, or even in the preceding
vehicle or on a drone, etc. Finally, given A = (x4,y4), Or =
(x0,y0) and r, we can derive the coordinates of ghosts as

G (XO—(XA—XO)/V)_ @)

yo—(a—yo)/r

With G’s coordinates, the attacker is able to predict the pixel
location of ghosts and try adjusting the position and orienta-
tion (which implies the angle) of the light source in the real
world so as to align one or more ghosts with the image of the
object, whose pixel coordinates can be derived using (1), too.

4.3 Ghost Resolution

In our daily life, ghosts normally appear as pieces of single-
color polygon-shaped artifacts; this is because the light
sources that cause these regular ghosts are single-point
sources of light that have just one single color, such as light
bulbs, flashlights, etc. In this work, however, we find out that
one is able to bring patterns into these ghost areas by simply
using a low-cost projector, a special source of light that shines
variant patterns in variant colors. For example, in Fig. 1, an
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image of a STOP sign that is projected by a projector, appears
in one of the ghost areas in the image; this is because the
pixel resolution of the projector is high enough that multiple
light beams in different colors (got reflected among lenses
and then) go into the same ghost. In this subsection, we study
the resolution of the patterns in ghost areas .

Let us first define the throwing ratio of a projector. In
Fig. 4b, let plane S be the projected screen (e.g. on a wall),
whose height and width are denoted as / and w, respectively.
The distance d = OsOy is called the throwing distance. The
throwing ratio of this projection is rprow = d/w. The (physi-
cal) size of the projected screen at the victim camera’s location
is denoted Sp, a part of which is captured by the CMOS sensor
of the camera in the ghost area, and we denote the (physical)
size of that area as Sy. Let us also define the resolution of
the entire projected screen as Pp in terms of pixels (e.g.,
1024 x 768), and the resolution of the ghost as Py. Clearly,
there is a linear relationship among them: Py/Po = Sy/So,
where Sp = wh. Finally, we can calculate the resolution of
the ghost given d and riprow:

PoS
Pf:L. (3)

)

w Tthrow
Here, Sy is a constant because the size of the lens is fixed;
e.g., the camera [34] has Sy = 0.0156 cm?.

4.4 Attack Realization and Experiment Setup

According to Eq. 3, if the attacker wants to carry out long-
distance and high-resolution GhostImage attacks, he/she
needs a projector with a large throwing ratio rgrow. How-
ever, the factory longest-throw lenses (NEC NPO5ZL Zoom
Lens [37]) of our projector can achieve a throwing ratio of
maximum 7.2 (which means 9 x 9 at one meter), and expen-
sive (about $1600). Instead, we use a cheap ($80) zoom lens
(Fig. 5, Right) [36] that was originally designed for Canon
cameras. In our experiments, such a configuration is inter-
estingly feasible” (Fig. 5), achieving the maximum throwing
ratio of 20 when the focal length is 250 mm, which means
that at a distance of one meter, 32 x 32-resolution attacks can
be achieved. See Sec. 7.1 for more discussion on lens and
projector selection.

Fig. 5 (left) shows a general diagram of GhostImage attacks,
where the light source (i.e., a projector) is pointing at the
camera from the side, so that the camera can still capture the
object (e.g., a STOP sign) for alteration attacks. The light
source injects light interference (marked in blue) into the
camera, which gets reflected among the lenses of the camera,
resulting in ghosts that overlap with the object in the image.

'We are interested in the resolution of the projector pixels, not camera
pixels; a projector pixel is usually captured by multiple camera pixels.

2Because projectors and cameras are dual devices (Fig. 4), their lenses
are interchangeable.

Accordingly, a photo of our in-lab experiment setup is given
in Fig. 5. The Canon lens was loaded in the NEC projector,
though it cannot be seen in the photo. We will evaluate our
attack on three different cameras (Sec. 6.2.3).

To mount a creation attack, the attacker computes the max-
imum resolution Py for the ghost with a distance d based on
(3), and then downsamples the target image to the resolution
Py in order to fit in the ghost area. The attacker chooses down-
sampling as a heuristic approach because he/she is not aware
of the classification algorithm.

To mount alteration attacks, in addition to (3) for downsam-
pling, the attacker also needs to consider the pixel coordinates
(Eq. 2) of the ghost because the attacker needs to align the
ghost with the image of the object of interest so that the re-
sulting, combined image deceives the classifier.

4.5 Camera-aware Attack Evaluation

We substantiate camera-aware attacks on an image classifi-
cation system that we envision would be used for automated
vehicles. Specifically, images, taken by an Aptina MTIMO034
camera [34], are fed to a traffic sign image classifier trained
on the LISA dataset [38]. In Sec. 6, we will evaluate classifi-
cation systems for other applications, with different cameras
and different datasets.

4.5.1 Dataset and neural network architecture

In order to train an unbiased classifier, we selected eight
traffic signs (with 80 instances) from the LISA dataset [38]
(Fig. 12a). The network architecture is identical to [25]. We
used 80% of samples from the balanced dataset to train the
network and the rest 20% to test the network; it achieved an
accuracy of 96%.

4.5.2 Evaluation methodology

We iterated five distances, m source classes, m target classes.
For each target class, we sampled k images randomly from
the dataset. For every combination, we first downsampled
the target image based on (3), and projected the image at the
camera using the NEC projector. We then took the captured
image, cropped out the ghost area, and used the classifier to
classify it. If the classification result is the target class, we
count it as a successful attack. The procedure for creation
attacks is slightly different: Rather than printed traffic signs,
we placed a blackboard as the background as it helped us
locate the ghosts. Given a throwing radio of 20 (thanks to the
Canon lens) we evaluated five different distances from one
meter to five meters. Based on (3), they resulted in 32 x 32,
16 x 16, 8 x 8,4 x 4, and 2 x 2 resolutions, respectively.

USENIX Association

23rd International Symposium on Research in Attacks, Intrusions and Defenses 321



Camera

Canon Lens [ 0]

Figure 5: (Left) Attack setup diagram. (Middle) In-lab experiment setup. (Right) Attack equipments: We replaced the original
lens of the NEC NP3150 Projector [35] with a Canon EFS 55-250 mm zoom lens [36].

4.5.3 Results

The results about attack success rates of camera-aware at-
tacks at varying distances are shown in Table | (Fig. 6 illus-
trates two successful camera-aware attacks). For the digital
domain, we simply added attack images A on benign images
xasy= (x+A)/||x+Al|~. Based on these experiments, we
observe: First, as the distance increases, the success rate de-
creases. This is because lower-resolution images are less well
recognized by the classifier. Second, digital domain results
are better than perception domain one, because images are dis-
torted by the projector-camera channel effects. Third, creation
attacks result in higher success rates than alteration attacks do
because in alteration attacks there are benign images in the
background, encouraging the classifier to make correct classi-
fications. We will address these issues in the next section, so
as to increase the overall attack success rate.

5 System-aware GhostImage Attacks

There are some limitations of the camera-aware attack in-
troduced in the previous section. First, increasing distances
results in lower success rates because the classifier cannot
recognize the resulting low-resolution images. Second, there
are large gaps between digital domain results and perception
domain results, as channel effects (which cause the inconsis-
tency between the intended pixels and the perceived pixels)
are not taken into account. In this section, we resolve these
limitations and improve GhostImage attacks’ success rates
by proposing a framework which consists of a channel model
that predicts the pixels perceived by the camera, given the
pixels as input to the projector, as well as an optimization

Table 1: Camera-aware attack success rates

Distances Creation Attacks Alteration Attacks
(meter)  Digital Perception Digital Perception

1 98% 41% 95% 33%

2 98% 36% 88% 33%

3 80% 34% 67% 34%

4 36% 15% 28% 10%

5 14% 10% 13% 0%

formulation based on which the attacker can solve for opti-
mal attack patterns that cause misclassification by the target
classifier with high confidence.

5.1 Technical Challenges

First, the injected pixel values are often difficult to control
as they exhibit randomness due to variability of the channel
between the projector and the camera, thus the adversary is
not able to manipulate each pixel deterministically. Second,
to achieve optimal results, the attacker needs to precisely
predict the projected and perceived pixels, thus channel effects
must be modeled in an end-to-end manner, i.e., considering
not only the physical channel (air propagation), but also the
internal processes of the projector and the camera. Lastly,
the resolution of attack patterns is limited by distances and
projector lens (Eq. 3), thus the ghost patterns must be carefully
designed to fit the resolution with few degrees of freedom.

5.2 System-aware Attack Overview

The system-aware attacker aims to find optimal patterns that
can cause misclassification by the target classifier with high
confidence by taking advantage of the non-robustness of the
classifier [23]. We adopt an adversarial example-based opti-
mization formulation into GhostImage attacks, in which the
attacker tries to solve

A* =argmin ||A||, +c Laav(3,1,0), “4)
A

where A is the digital attack pattern as input to the projector, y
is the perceived image of the object of interest under attacks, ¢

Figure 6: Camera-aware attack examples at one meter in per-
ception domain. Left: Creating a Merge sign. Right: Altering
a STOP sign (in the background) into a Merge sign.
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Figure 7: Projector-camera channel model

is the target class, and 0 represents the targeted neural network.
I 1|y is an £,-norm that measures the magnitude of a vector,
and L4y is a loss function indicating how (un)successful A is.
Here, we aim to minimize the power of the projector required
for a successful attack, meanwhile maximizing the successful
chance of attacks. The relative importance of these two objec-
tives is balanced by a constant c¢. Sec. 5.4 details (4) in terms
of how we handle A being a non-negative tensor that is also
able to depict grid-style patterns in different resolutions.

More importantly, in (4) y is the final perceived image used
as input to the classifier, which is estimated by our channel
model in an end-to-end style (Fig. 7), in which & ° is the input
to the projector, and y is the resulting image captured by the
camera. The model can be formulated as

y=8(hs(A)+ho(x)). ®)

where /17(A) is the ghost model that estimates the perceived
adversarial pixel values in the ghost. For simplicity we let
ho(x) = x because the attacker possesses same type of the
camera so that x can be obtained a priori, and g(-) is the
auto exposure control that adjusts the brightness. Sec. 5.3
introduces the derivation of (5).

Next, we will first present the channel model, and then
formulate the optimization problem for finding the optimal
adversarial ghost patterns.

5.3 Projector-Camera Channel Model

We consider the projector to camera channel model (Fig. 7)
in which & is an RGB value the attacker wishes to project
which is later converted to an analog color by the projector.
The attacker can control the power (P,) of the light source of
the projector so that the luminescence can be adjusted. The
targeted camera is situated at a distance of d, which captures
the light coming from both the projector and reflected off
the object (x). The illuminance received by the camera from
the projector is denoted as I. The camera converts analog
signals into digital ones, based on which it adjusts its expo-
sure, with the final, perceived RGB value being y. An ideal

3Different than A which is a w x & x 3 tensor, 8 is a single pixel with
dimension 3 x 1 for the convenience of the analysis.

T,.=1 T,.=1
7,=05 ;=05
T,=0 T,=0
—Fit: I —Fit: 1
1,000 |~

500 |

k

Illuminance (lux), 7

Figure 8: [lluminance depends on the RGB amplitude 7, and
the light bulb intensity 7,.

channel would yield y = x + J but due to channel effects, we
need to find a way to adjust the projected RGB value such
that the perceived RGB value is as intended, i.e., to find the
appropriate x given y.

5.3.1 Exposure control

As we discussed in Section 3.1, cameras are usually equipped
with auto-exposure control, where according to the overall
brightness of the image, the camera adjusts its exposure by
changing the exposure time, or the size of its aperture, or both.
We observed from our experiments that, as we increase the
Iuminescence of the projector (1), in the image the brightness
of the object (x) decreases but the ghost (8) does not decrease
as much. Modeling such phenomena helps the attacker to
precisely predict the perceived image. For the following, we
will first find out how the illuminance I depends on & and
P, (the normalized power of light bulb ranging from 0% to
100%), and then analyze how y depends on 1.

How does I depend on 6 and P,? We conducted a series of
experiments, where T; = ||9||.. = max; §; and P, were varied.
We recorded the illuminance directly in front of the camera
using an illuminance meter, with the projector one meter away.
The results are plotted in Fig. 8, which shows that

_ G0 Iy
d? 1+et’

I(Ty, Pa,d) (6)
wheret =axT;+b x P,+ ¢, and a, b, ¢4 and ¢; are constants
derived from the data. I, is the maximum illuminance of
the projector at a distance of one meter. Such a sigmoid-like
function captures the luminescence saturation property of the
projector hardware.

How does the perceived x depend on /? In the same ex-
periments we also recorded the RGB value of the ghost (&)
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with a blackboard as background (in order to reduce ambient
impacts), and a piece of white paper (x) that was also on the
blackboard but did not overlay with the ghost. Their data are
shown in Fig. 9, from which we can derive the dimming ratio
that measures the change of exposure/brightness:

. ICI]V
Y1) = - @)

where I,y is the ambient lighting condition in illuminance
which differs from indoors to outdoors for instances. From
this equation, we see that in an environment with static light-
ing condition, as the luminescence of the projector increases,
the dimming ratio decreases, hence the objects become darker.
With (7), the adversary is able to conduct real-time attacks by
simply plugging in the momentary Iepy.

How does the perceived o depend on /? When x = 0,
[lysll = llyslle (the lower subplot of Fig. 9) depends on I in
two ways:

Iyl (1) =¥(I)-p- 1.

On one hand, the last term I increases the intensity of ghosts,
but on the other hand the dimming ratio y(I) dims down ghost,
whereby p is a trainable constant. With this, we can rewrite
the perceived flare as

i)
vr = lysllHerers
TN

where H, is the color calibration matrix to deal with color
distortion, which will be discussed in Section 5.3.2. The term
1/||8|| normalizes 8. In the end, we have the channel model

5
y=Y(I) <pIHc”5” +x>. (8)

Compared to (5),

() = szCﬁ, ¢(0) =D,

ho(x) = x.

With (8), the attacker is able to predict how bright and what
colors/pixel values the ghost and the object will be, given the
projected pixels, the power of the projector, and the distance.

5.3.2 Color calibration

Considering a dark background (i.e., x = 0), (8) can be sim-
plified as y =y(I)pIH.:8/| 9|, where H, is a 3 x 3 matrix (as
three color channels) that calibrates colors. Both y and 8 are
3 x 1 column vectors. H, should be an identity matrix for an
ideal channel, but due to the color-imperfection of both the
projector and the camera, H, needs to be learned from data.
To simplify notations, we define corrected x and y as
5 y

xAzi y’\zi

811" pIV(I)’

S 14
é P?lper )
205 — Fiey(l) = 750
=

£

A 0

Flare
—Fit: [[ys|| =1

RGB Values

I I I I
0 0.2 04 0.6 0.8 1
Illuminance (normalized)

Figure 9: Perceived RGB values v.s. illuminance.
so that we can write

We did another set of experiments where we collected n =
100 pairs of (£, ) with dark background (to make x = 0), with
d being assigned randomly, and P, = 30%. We grouped them
into X and Y

T T
AT aT T AT AT AT
X= x17x27"'7xn:| ) Y:|:yl7y27"'7yn )

where both X and Y are n X 3 matrices. We solve

in|Y — XH,|3.
min | cll2

to obtain H., which is known as a non-homogeneous least
square problem [33], and has a closed-form solution:

H.= ((XTX)’IXTY)T.

Plugging H, back to (8) completes our channel model.

5.3.3 Model validation

Fig. 10 demonstrates the accuracy of our channel model. In it
the left image is the original input to the projector, the middle
image is the estimated output from the camera based on our
channel model (Eq. 8), and the image on the right is the actual
image in a ghost captured by the camera. As can be seen, the
difference between the actual and predicted is much less than
the actual and original. While blurring effect is apparent in the
actual y, we do not model it but the success rates are still high
despite it. As we will see in Section 6, our channel model
is general enough that once trained on one camera in one
environment, it can be transferred to different environments
and different cameras without retraining.
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(a) Input x¢ (b) Estimated y (c) Actual y

Figure 10: An example of channel model prediction

5.4 Optimal Adversarial Projection Patterns

In long-distance, low-resolution Ghostlmage attacks there
are only a few pixels in the ghost area. A camera-aware at-
tacker’s strategy is to simply downsample attack images into
low resolutions, but that does not result in high success rates.
While (4) is abstract, for the rest of this subsection, we will
progressively detail it and show how it can be solved in light
of the channel model to improve attack success rates. We will
start with the simplest case where adversarial perturbations
are random noise (Sec. 5.1). Then, single-color ghosts will be
introduced. Later, we will consider how to find semi-positive
additive noise due to the fact that superposition can only in-
crease perceived light intensity but not decrease it. Finally,
we examine the optimization problem to find optimal ghost
patterns in grids at different resolutions.

5.4.1 Ghosts in random noise

Let us consider the simplest case first where the random noise
A is drawn from one single Gaussian distribution for all three
channels, i.e., A ~ N (u, 62), where the size of Aisw x hx 3
with w and & representing the width and height of the benign
image x. This is because the values of each pixel that appear
in the ghost area follow Gaussian distributions according to
statistics obtained from our experiments.

The adversary needs to find ¢ and ¢ such that when A
is added to the benign image x, the resulting image y will
be classified as the target class ¢. That said, the logits value
(Section 3.2) of the target class should be as high as possible
compared with the logits values of other classes [24]. Such a
difference is measured by the loss function Lygy (y, )

L) = max { - max (EIZO)) - EIZG] . ©)

where E[Z;(y)] is the expectation of logits values of Class
i given the input y. Term max;.;{E[Z;(y)]} is the highest
expected logits value among all the classes except the tar-
get class ¢, while E[Z,(y)] is the expected logits value of ¢.
Here, % controls the logits gap between max;.i.{E[Z;(y)]}
and E[Z;(y)]; the larger the K is, the more confident that A
is successful. The attacker needs L,qy as low as possible so
that the neural network would classify y as Class . Most im-
portantly, y is computed based on our channel model (Eq. 8),
so that the optimizer finds the optimal ghost patterns that are
resistant to the channel effects. Unfortunately, due to the com-
plexity of neural networks, the expectations of logits values

E[Z;(y)] are hard to be expressed analytically; we instead use
Monte Carlo methods to approximate it:

1

E[Zi(y)] = T i

™~

Zi(y)s

1

where T is the number of trials, and y; is of the j-th trial.

Meanwhile, the adversary also needs to minimize the mag-
nitude of A to reduce the attack power and noticeability, as
well as its peak energy consumption, quantified by ¢. The
expectation of the magnitude of A is

E[||A],] = un'/P,  with n=3wh. (10)

Putting (9) and (10) together with a tunable constant ¢, we
have our optimization problem for the simplest case

,U*,G*: argmln E[”AHII}_‘_G_‘_C'LadV(yvt)a
uo

subjectto ¢ > oy,

Here, 6, is the lower bound of the standard deviation G, mean-
ing that the interference generator and the channel environ-
ment can provide random noise with the standard deviation of
at least 6;. When 6; = 0, the adversary is able to manipulate
pixels deterministically. Therefore, when we fix ¢ as ¢; in the
optimization problem, the attack success rate when deploy-
ing u* would be the lower bound of the attack success rate.
In other words, the adversary equipped with an attack setup
that can produce noise with a lower variance (than 612) can
carry out attacks with higher success rates. Therefore, we can
simplify our formulation by removing the constraint about G,
so the optimization problem becomes

u* =argmin E[||A||,]+ ¢ Laav(1,1). €8]
u
For the rest of the paper we will simply use ¢ to denote G;.

5.4.2 Ghosts in single-color

Since in (11) there is only one variable that the adversary
is able to control, it is infeasible to launch a targeted attack
with such few degrees of freedom. As a result, the adversary
needs to manipulate each channel individually. That is, for
each channel, there will be an independent distribution from
which noise will be drawn. This is feasible because noise can
appear in different colors in the ghost areas in which three
channels are perturbed differently when using projectors. Let
us decompose A as A = [Ag, A, Ap|, where the dimension of
A(r,G,) s w X h, and they follow three independent Gaussian
distributions

AR ~ N(IUR7612€) ) AG ~ N(ﬂG?Gé) ) AB ~ N(HI%G%) .

Here, (g 6,y and O(g ;) are the means and the standard
deviations (o) of the three Gaussian distributions, respectively.
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The expectation of such A is then

EllAl] = [5 (b4t +15)] " (12)

(10) is a special case of (12) when u = ugp = ug = up. We
denote u = [ug, ug,up] " . Hence, similar to (11), we have the
optimization problem for single-color perturbation [39]

p* =argmin E[|A||,] +c¢- Laav(1:1), (13)
7]
by which the adversary finds g* from which A is drawn.

5.4.3 Ghost grids

Since projector’s pixels are arranged in grids, the attack pat-
terns are in grids as well, especially in lower resolutions.
We enable A with patterns in different resolutions. Such a
grid pattern A can be composed of several blocks A; j, i.e.,
Ai‘j,k : {1 <0 < Neow, 1 <j<Neol, 1 <k < Nchn} where Niow,
Neol and Nepy is the number of rows, columns, and channels
of a grid pattern, respectively, in terms of blocks. In a word,
A, j x is the perturbation block at i-th row, j-th column and
k-th channel. A block A; ;« is a random matrix and its size
is N— X Nh so that the size of A is still w x & x 3. Besides,
the elements in the random matrix A, ; x is i.i.d. drawn from a
Gaussian distribution, i.e., A; j x ~ N(y,,]yk, o?).

The adversary finds the optimal grid pattern A by solving

M’ =argmin E[R(|A[,)]+ ¢ Laa (1), (14)

where R(A) is the softplus function to guarantee that the
perturbation is always positive. M = {u; j+} is a tensor in
shape Nrow X Neol X Nehn. See Fig. 12a for some examples of
adversarial grids in different resolutions.

6 System-aware Attack Evaluation

In this section, we consider camera-based image classifica-
tion systems, as used in self-driving vehicles and surveillance
systems, to illustrate the potential impact of our attacks. We
present proof-of-concept system-aware attacks in terms of at-
tack effectiveness, namely how well system-aware attacks per-
form in the same setup as camera-aware attacks (Section 4.5),
and attack robustness, namely how well system-aware attacks
are when being evaluated in different setups.

We will again use attack success rates as our metric. We
used the Adam Optimizer [40] to solve our optimization prob-
lems. There are two sets of results: Emulation results refer
to the classification results on emulated, combined images of
benign images and attack patterns using our channel model
(Equation 8). Emulation helps us conduct scalable and fast

00 Emulated Creation [0 Experimental Creation
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% @@ Emulated Alteration # B Experimental Alteration
= 1001

[
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Figure 11: System-aware creation and alteration

evaluations of Ghostlmage attacks before conducting real-
world experiments®*. Experimental results refer to the classifi-
cation results on the images that are actually captured by the
victim cameras when the projector is on.

6.1 Attack Effectiveness

To compare with camera-aware attacks, system-aware attacks
are evaluated in a similar procedure, targeting a camera-based
object classification system with the LISA dataset and its
classifier. The system uses an Aptina MTIMO034 camera [34]
in an in-lab environment.

6.1.1 Creation attacks

For emulated creation attacks, all distances (or all resolutions)
yield attack success rates of 100% (Fig. 11), which means
that our optimization problem is easy to solve. In terms of
computational overhead, we need roughly 30s per image
at 2 x 2-resolution, and 10s at 4 x 4 or above (because of
more degrees of freedom) using an NVIDIA Tesla P100 [41].
Fig. 12a shows examples of emulated attack patterns for cre-
ation attacks, along with the images of real signs on the top.
Interestingly, high-resolution shapes do look like real signs.
For example, we can see two vertical bars for ADDEDLANE,
and also we can see a circle at the middle south for STOPA-
HEAD, etc. These results are consistent with the ones from
the MNIST dataset [42] where we could also roughly observe
the shapes of digits. Secondly, they are blue tinted because
our channel model suggests that ghosts tend to be blue, thus
the optimizer is trying to find “blue” attack patterns that are
able to deceive the classifier.

Interestingly, the all k resulting patterns of solving the op-
timization problem targeting one class from k different (ran-
dom) starting points look similar to the ones shown in Fig. 12a.
However, CIFAR-10 [43] and ImageNet [44] yield much dif-
ferent results: those patterns look rather random compared
to the results from LISA or MNIST. The reason might be
that in CIFAR-10, images in the same category are still very

4Source code is at https://github.com/harry1993/ghostimage
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Figure 12: System-aware attack pattern examples.

different, such as two different cats, but in LISA, two images
of STOP signs do not look as different as two cats.

For the experimental results of creation attacks, we see that
as distances increase, success rates decrease a little (Fig. 11),
but much better than the camera-aware attacks (Table 1), be-
cause the optimization formulation helped find those optimal
attack patterns with high confidence.

6.1.2 Alteration attacks

The emulated and experimental results of alteration attacks
are shown in Fig. 1 1. Compared with creation attacks, alter-
ation attacks perform a bit worse, especially for large dis-
tances (three meters or further). This is because the classifier
also “sees” the benign image in the background and tends to
classify the entire image as the benign class. Moreover, the
alignment of attack patterns and the benign signs is imper-
fect. However, when we compare Fig. 11 with Table | for
camera-aware alteration attacks, we can see large improve-
ments. Fig. 12b provides an example of system-aware alter-
ation attacks in the perception domain, which were trying
to alter the (printed) STOP sign into other signs: they look
“blue” as the channel model predicted. The fifth column is not
showing as it is STOP.

0B CIFAR-10 Creation |l CIFAR-10 Alteration
B8 ImageNet Creation B ImageNet Alteration

—_
=]

W
o

(=)

Attack Success Rate (%)

(32, 30) (16,20) (8,15) (4,10) (2,5
Resolution (x, y): CIFAR-10: x x x; ImageNet: y X y

Figure 13: System-aware attacks on CIFAR-10 and ImageNet

6.2 Attack Robustness

We evaluate the robustness of our attacks in terms of different
datasets, environments, and cameras.

6.2.1 Different image datasets

Here we evaluate our system-aware attacks on two other
datasets, CIFAR-10 [43] and ImageNet [44], by emulation
only because previous results show that our attack emulation
yields similar success rates as experimental results.

CIFAR-10 The network architecture and model hyper pa-
rameters are identical to [24]. The network was trained with
the distillation defense [45] so that we can evaluate the ro-
bustness of our attacks in terms of adversarial defenses. A
classification accuracy of 80% was achieved. The evaluation
procedure is similar to Sec. 4.5.2. Results are shown in Fig. 13.
The overall trend is similar to the LISA dataset, but the suc-
cess rates are significantly higher. The reason might still be
the large variation within one class (Section 6.1.1), so that the
CIFAR-10 classifier is not as sure about one class as the LISA
classifier is, hence is more vulnerable to GhostImage attacks.

ImageNet We used a pre-trained Inception V3 neural net-
work [46] for the ImageNet dataset to evaluate the attack
robustness against large networks. Since the pre-trained net-
work can recognize 1000 classes, we did not iterate all of
them [24]. Instead, for alteration attacks, we randomly picked
ten benign images from the validation set, and twenty random
target classes, while for creation attacks, the “benign” images
were purely black. Results are given in Fig. 13.

For high resolutions (> 15 x 15), the attack success rates
were nearly 100%. But as soon as the resolutions went down
to 10 x 10 or below, the rates decreased sharply. The reason
might be that in order to mount successful rargeted attacks
on a 1000-class image classifier, a large number of degrees of
freedom are required. 10 x 10 or lower resolutions plus three
color channels might not be enough to accomplish targeted
attacks. To verify this, we also evaluated untargeted alteration
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Figure 14: Outdoor experiment setup

attacks on ImageNet. Results show that when the resolutions
are 1 x 1 or 2 x 2, the success rates are 50% or 80%, respec-
tively. But as soon as the resolutions go to 3 x 3 or above,
the success rates reach 100%. Lastly, similar to CIFAR-10,
system-aware attacks on ImageNet were more successful than
on LISA, because of the high variation within one class.

6.2.2 Outdoor experiments

In order to evaluate system-aware attacks in a real-world en-
vironment, we also conducted experiments outdoor (Fig. 14),
where the camera was put on the hood of a vehicle that was
about to pass an intersection with a STOP sign. The attacker’s
projector was placed on the right curb, and it was about four
meters away from the camera. The experiments were done
at noon, at dusk and at night (with the vehicle’s front lights
on) to examine the effects of ambient light on attack efficacy.
The illuminances were 4 x 10%1x, 4 x 10% 1x, and 301x, re-
spectively. The experiments at noon were unsuccessful due to
the strong sunlight. Although more powerful projectors [47]
could be acquired, we argue that a typical projector is effective
in dimmer environments (e.g., cloudy days, at dawn, dusk, and
night, or urban areas where buildings cause shades), which
accounts for more than half of a day. See Sec. 7.1 for more
discussion on ambient lighting conditions.

Results (Tab. 2) of the other cases show that the success
rates are 30% lower than our in-lab experiments (the four-
meter case from Fig. 11), because we used our in-lab channel
model directly in the road experiments without retraining
it, and also the environmental conditions are more unpre-
dictable. Moreover, the attack rates on altering some classes
(e.g., the STOP sign) into three other signs (e.g., YIELD)
were 100%, which is critical as an attacker can easily prevent
an autonomous vehicle from stopping at a STOP sign.

6.2.3 Different cameras

Previously, we conducted Ghostlmage attacks on Aptina
MTI9MO034 camera [34] designed for autonomous driv-
ing. Here, we evaluate two other cameras, an Aptina
MTOVO034 [48] with a simpler lens design, and a Ring in-
door security camera [49] for surveillance applications.

Table 2: Outdoor alteration attack success rates

Success rates of Noon Dusk Night
Overall 0% 51%  42.9%
STOP — YIELD 0% 100% 100%
STOP — ADDEDLANE 0% 100% 100%
STOP — PEDESTRIAN 0% 100% 100%

Aptina MT9V034 We mounted system-aware creation at-
tacks against the same camera-based object classification
system as in Section 6.1 but we replaced the camera with
the Aptina MT9V034 camera. Since this camera has a
smaller aperture size and also a simpler lens design than
Aptina MTIMO34, for a distance of one meter, only 16 x 16-
resolution attack patterns could be achieved (previously we
had 32 x 32 at one meter). We did not train a new channel
model for this camera, so the attack success rate at one meter
was only 75%, which is 25% lower than the Aptina MT9MO034
camera. As the distances increased up to four meters, cre-
ation attacks yielded success rates as 46.25%, 33.75%, and
12.5%, respectively. Another reason why the overall success
rate was lower is that even though the data sheet of Aptina
MTO9V034 [48] states that the camera also has the auto expo-
sure control feature, we could not enable the feature in our
experiments. In other words, system-aware creation attacks
did not benefit from the exposure control. This, on the other
hand, indicates the robustness of GhostImage attacks: Even
without taking advantage of exposure control, the attacks were
still effective, with attack success rates as high as 75%.

Ring indoor security camera We tested GhostImage un-
targeted attacks against a Ring indoor security camera [49]
on the ImageNet dataset. To demonstrate that our attacks can
be applied to surveillance scenarios, we assume the camera
would issue an intrusion warning if a specific object type [50]
is detected by the Inception V3 neural network [46]. The at-
tacker’s goal is to change an object for an intruder class to
a non-intruder class. However, we could not find “human”,
“person” or “people”, etc. in the output classes, we instead
used five human related items (such as sunglasses) as the

Table 3: Ghostlmage untargeted alteration attacks against
Ring camera on ImageNet dataset in perception domain

Index Benign Class Rate = Common Prediction
19992  fur boat 100%  geyser, parachute
21539 sunglasses 100% screen, microwave
22285 sunglasses 100% plastic bag, geyser
31664 sarong 100% jellyfish, plastic bag
2849  sweatshirt 100% laptop, candle
26236  puncho 100% table lamp
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benign classes. We found six images from the validation set
of ImageNet, of which top-1 classification results are one of
those five benign classes. The six images were displayed on a
monitor. For each benign image, we calculated ten alternative
3 x 3 attack patterns (the highest resolution at one meter by
the Ring camera). Results show that for all six benign images,
system-aware attacks achieved untargeted attack success rates
of 100% (Table 3).

7 Discussion

In this section, we discuss practical challenges to GhostImage
attacks, speculate as to effective countermeasures.

7.1 Practicality of GhostImage Attacks

Moving targets and alignment: The overlap of ghosts and
objects of interest in images must be nearly complete for the
attacks to succeed. In the cases of a moving camera (e.g.,
one mounted to a vehicle), the attacker needs to be able to
accurately track the movement of the targeted camera, oth-
erwise the attacker can only sporadically inject ghosts. Note
that, although aiming (or tracking) moving targets is generally
challenging in remote sensor attacks (e.g., the AdvLiDAR
attack [12] assumes the attacker can achieve this via camera-
based object detection and tracking), existing works [18,29]
have demonstrated the feasibility of tracking cameras and
then neutralizing them. This paper’s main goal is to propose
a new category of camera attacks, which enables an attacker
to inject arbitrary patterns.

Conspicuousness: The light bursts around the light source
in Figures | and 6 may raise stealthiness concerns about our
attacks. However, according to our analysis in Sec. 4.2, such
bursts can actually be eliminated because the light source
can be outside of view [31]. Even the light source has to be
in the frame (due to the lens configuration), we argue that a
camera-based object classification system used in autonomous
systems generally make decisions without human input (for
example, in a Waymo self-driving taxi [1], no human driver
is required). Additionally, the attack beam is so concentrated
that only the victim camera can observe it while other human-
beings (e.g., pedestrians) cannot (Fig. 14). Finally, the light
source only needs to be on for a short amount of time, as a
few tampered frames can cause incorrect actions [51].

Projectors, lenses, and attack distances: Based on our
model (Eq. 7) and experiments (Tab. 4), the illuminance on
the camera from the projector would better be 4/3 of the part
from ambient illuminance (to achieve a success rate of 100%).
Since Illuminance o« Luminance - rtzhrow /d?, in order to carry
out an attack during sunny days (typically with Illuminance
40 x 10° Ix), a typical projector (e.g., [52] with Luminance
9 % 103 Im) should work with a telephoto lens [53] (with a
throwing radio 100) at a distance of one meter. For longer dis-
tances or brighter backgrounds, one can either acquire a more

powerful projector (e.g., [47] with 75 x 10% Im), or combine
multiple lenses to achieve much larger throwing ratios (e.g.,
two Optela lenses [53] yield 200, etc.), or both.

Knowledge of the targeted system: We assume that both
types of attackers know about the camera matrix M, and color
calibration matrix H.. We note that the attacks can still be
effective without such knowledge but with it the attacks can
be more efficient. For example, the attacker may choose to
lower their attack success expectation but the probability of
successful attack may still be too high for potential victims to
bear (e.g., a success rate of only 10% might be unacceptable
for reasons of safety in automated vehicles). This challenge
can be largely eliminated if the attacker is able to purchase
a camera of the same, or similar, model as used in the tar-
geted system and use it to derive the matrices. Although the
duplicate camera may not be exactly the same to the target
one, the channel model would still be in the same form with
approximate, probably fine-tuned parameters (via retraining),
thanks to the generality of our channel model. Lastly, assum-
ing white-box knowledge on sensors is widely adopted and
accepted in the literature, e.g., the AdvLiDAR attack [12].
Also, we assume white-box attacks on the neural network,
though this assumption can be eliminated by leveraging the
transferability of adversarial examples [54,55].

Object detection: We have assumed that the object de-
tector can crop out the region of the image which contains
the projected ghost pattern(s). Though it cannot be guaran-
teed that an object detector will automatically include the
ghost patterns, we note that a GhostImage attacker could de-
sign ghost patterns that cause an object detector to include
them [27,56] and, at the same time, the cropped image would
fool the subsequent object classifier.

Attack Variations: Instead of flare effects, we can also
leverage beamsplitting to merge the benign image and the
adversarial one together. Rather than projectors, lasers can
also be used. Please see our full version [57] for more details.

7.2 Countermeasures

The most straightforward countermeasure to Ghostlmage
attacks is flare elimination, either by using a lens hood or
through flare detection. Lens hoods are generally not favored
as they reduce the angle of view of the camera, which is un-
acceptable for many autonomous vehicle and surveillance
applications. Adversarial flare detection is challenging as they
are typically transparent [58], and hard to be distinguished
from natural ghosts.

A complementary line of defense would be to make neural
networks themselves robust to GhostImage attacks. Existing
approaches against adversarial examples (e.g., [45,59-61],
etc.) are ill-suited for this task, however, as GhostImage at-
tacks do not necessarily follow the constraints placed on tradi-
tional adversarial examples in that perturbations do not have
to be bounded within a small norm, meanwhile these defenses
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were not designed for arbitrarily large perturbations. As this
work mainly focuses on sensor attacks, we leave the validation
of defenses as future work [12,25-27].

Another complementary approach of defense is to exploit
prior knowledge, such as GPS locations of signs, to make
decisions, instead of only depending on real-time sensor per-
ception (though this approach would not work for sponta-
neous appearance of objects, e.g., in the context of collision
avoidance). Sensor redundancy/fusion could also be helpful:
autonomous vehicles could be equipped with multiple cam-
eras and/or other types of sensors, such as LIDARs and radars,
which would at least increase the cost of the attack by requir-
ing the attacker to target multiple sensors. However, a power-
ful attacker may be able to attack LiDARSs [12], radars [19]
and cameras simultaneously to defeat sensor fusion. Finally,
temporal consistency via object tracking (e.g., “the object
should not have appeared from nowhere of a sudden.”) may
also be used to detect the attack, or at least complicate it.

8 Related Work

Sensor attacks Perception in autonomous and surveillance
systems occurs through sensors, which convert analog signals
into digital ones that are further analyzed by computing sys-
tems. Recent work has demonstrated that the sensing mecha-
nism itself is vulnerable to attack and that such attacks may be
used to bypass digital protections [15, 16]. For example, anti-
lock braking system (ABS) sensors have been manipulated
via magnetic fields by Shoukry et al. [62], microphones have
been subject to inaudible voice and light-based attacks [9,63],
and light sensors can be influenced via electromagnetic inter-
ference to report lighter or darker conditions [8]. The reader
is referred to [15, 16] for a review of analog sensor attacks.
Existing remote attacks against cameras [11, 18, 19] are
denial-of-service attacks and do not seek to compromise the
object classifier as our GhostImage attacks do. Those attacks
that do target object classification [25,27,64] are either digital
or physical domain attacks (i.e., they need to modify the object
of interest in this case a traffic sign or road pavement, physi-
cally or after the object has been captured by a camera) rather
than perception domain attacks [15,16]. Li et al. [28]’s attacks
on cameras require attackers to place stickers on lenses, to
which is generally hard to get access. Similarly, several light-
based attacks [51,65,66] fall within the domain of physical
attacks, as opposed to our perception domain attack, because
these approaches illuminate the object of interest with visible
or infrared light. We did not consider infrared noise in our at-
tacks as it can be easily eliminated from visible light systems
using infrared filters. Attacks on LiDAR systems [10-12,67]
are also related; but they are considerably easier to carry out
than our visible light-based attacks against cameras because
attackers can directly inject adversarial laser pulses into Li-
DARs without worrying about blocking the object of interest.

Adversarial examples State-of-the-art adversarial exam-
ples can be categorized as digital (e.g., [23,24]), or physical
domain attacks (e.g., [25,26,68]) in which objects of interest
are physically modified to cause misclassification. The latter
differs from GhostImage attacks in that we target the sensor
(camera) without needing to physically modify any real-world
object. Another line of work focuses on unrestricted adver-
sarial examples (so as ours), such as [69], though they are
limited in the digital domain.

9 Conclusion

In this work we presented GhostImage attacks against camera-
based object classifiers. Using common optical effects, viz.
lens flare/ghost effects, an attacker is able to inject arbitrary
adversarial patterns into camera images using a projector. To
increase the efficacy of the attack, we proposed a projector-
camera channel model that predicts the location of ghosts,
the resolution of the patterns in ghosts, given the projector-
camera arrangement, and accounts for exposure control and
color calibration. GhostImage attacks also leverage adver-
sarial examples generation techniques to find optimal attack
patterns. We evaluated GhostImage attacks using three image
datasets and in both indoor and outdoor environments on three
cameras. Experimental results show that GhostImage attacks
were able to achieve attack success rates as high as 100%, and
also have potential impact on autonomous systems, such as
self-driving cars and surveillance systems.
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A IMustrative Channel Model Parameters

Table 4 lists all parameters of the projector-camera channel
model. The color calibration matrix is

05 0 0.1
H=[0 05 0
0 0 08
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