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ABSTRACT Machine learning (ML) is vital to many application-driven fields, such as image and signal
classification, cyber-security, and health sciences. Unfortunately, many of these fields can easily have their
training data tampered with by an adversary to thwart an ML algorithm’s objective. Further, the adversary
can impact any stage in an ML pipeline (e.g., preprocessing, learning, and classification). Recent work has
shown that many models can be attacked by poisoning the training data, and the impact of the poisoned data
can be quite significant. Prior works on adversarial feature selection have shown that the attacks can damage
feature selection (FS). Filter FS algorithms, a type of FS, are widely used for their ability to model nonlinear
relationships, classifier independence and lower computational requirements. One important question from
the security perspective of these widely used approaches is, whether filter FS algorithms are robust against
other FS attacks. In this work, we focus on the task of information-theoretic filter FS such MIM, MIFS,
and mRMR, and the impact that gradient-based attack can have on these selections. The experiments on
five benchmark datasets demonstrate that the stability of different information-theoretic algorithms can be
significantly degraded by injecting poisonous data into the training dataset.

INDEX TERMS Adversarial machine learning, feature selection, information theory.

I. INTRODUCTION
Machine learning has transformed application-driven fields
and despite its prevalence, the security and privacy of these
techniques are easily compromised when there is an adver-
sary in the environment [1]–[6]. Recent works have shown
that shallow/deep neural networks [7], [8], support vector
machines [9], [10], feature selection [11]–[13] and gener-
alized linear models are all subject to attacks that can be
launched at training or testing time. For example, recent
findings have shown how easy it is to fool a classifier by
having the adversary change the context of spam emails to
ham that read nearly the same. This issue of security is serious
if data only need to be slightly modified to drastically change
the classifier’s output, which ultimately begs the question of
the stability of FS algorithm used in the model. This is an
important question to address because FS is used in nearly
all data science pipelines and remains a critical aspect of
exploratory data analysis. Therefore, the community needs
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to understand how FS is influenced by an adversary and the
degree to which different FS techniques can be influenced.

FS algorithms fall into one of three categories: wrapper-,
embedded-, and filter-based approaches [14]. Wrapper-based
FS algorithms optimize the feature set for a specific classifier,
and, therefore, these methods tend to require large amounts
of computational resources, which makes them infeasible for
many datasets. Embedded-based FS algorithms optimize the
parameters of a classifier and feature selector simultaneously.
Both the embedded and wrapper methods are dependent on
the optimization of a classifier or dependent upon the clas-
sifier that is selected. Filter-based FS algorithms score fea-
tures by a function to determine importance independent of
a classifier’s error. The advantage of a filter-based approach
is that they have typically much lower computational com-
plexity than wrapper or embedded methods. In this work,
we specifically focus on filter methods because they are
classifier independent, which allows them a bit more flexible
in their application. Further, another reason for focusing on
filter methods is that Brown et al. showed that users can
optimize the feature set and classifier independently with
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the filter assumption [15]. While adversarial learning has a
traditional focus on attacks against the classifier, far fewer
works exist to address how the adversary can influence FS.

Adversarial learning focuses on (a) generating classifiers
that are more robust to attacks at the testing time (evasion
attacks), or (b) generating adversarial samples that negatively
impact the training of a classifier (poisoning attacks) [16].
The adversary can manipulate data to achieve their goal of
bypassing a machine learning classifier by forcing it to make
an error. The process of deceiving the classifier becomes
complicated when data are tampered prior to the preprocess-
ing stage. Feature selection, which is an essential preprocess-
ing step inmanymachine learning pipelines, is done to reduce
the impact of the curse of dimensionality on a classifier’s
generalization performance [14].

Unfortunately, contributions to adversarial FS are still
somewhat limited and remain an important topic because of
feature selection’s role in nearly all data science pipelines.
Considering FS with adversaries is also essential for applied
research in cyber-security where FS is used, but the adver-
sary is not taken into account [4], [17]–[21]. Therefore, it is
essential to examine what we know about an adversary’s
impact on FS in the same way we know about its impact on
classification.

There are several reasons that an adversary would want to
impact the outcome of FS. For example, consider a dataset
that has ten features (X1, . . . ,X10), and we are tasked to
select the three most informative features from the original
dataset without an adversary (e.g., let X1, X2 and X3 are
the best features in the dataset). Consider that an adversary
can inject samples into the training dataset to make X3 not
appear informative. It is not because X3 is not informative
but can be easily manipulated to bypass the system by the
adversary. An example of such an application is in cyber-
security, where removing a variable from the relevant feature
set can allow the adversary to launch attacks on files while
going undetected [22].

An attack model for Least Absolute Shrinkage and
Selection Operator (LASSO) was recently presented by
Xiao et al. in [13] and Tibshirani [23]. Their attackmodel uses
gradient-based methods to directly attack LASSO that can
significantly increase the error and decrease the stability (i.e.,
how repeatable the LASSO features would select). While
their work showed that this attack algorithm is easy to imple-
ment and very successful against LASSO, it is still unknown
how these attacks will transfer to other FS approaches (e.g.,
filter FS). The notation of ‘‘transfer’’ refers to an attack
designed for a specific algorithm then applied the attack to a
different algorithm. If the attack still works against a different
algorithm, then the attack is considered transferable. This
concept is known as transferability, and it is essential to note
there are varying degrees of transferability (e.g., the attack is
successful 1% or 95% of the time).

In this contribution, we study the transferability of
gradient-based attacks against information-theoretic FS,
which is a filter-based approach. We present findings

that show the impact and transferability of using an
information-theoretic FS algorithm against attacks designed
for gradient-based FS algorithms. Experiments on five differ-
ent UCI datasets support the hypothesis that an adversary can
negatively impact feature selection without perfect knowl-
edge of the model being used by the practitioner [16].

This paper is organized as follows: Section II summarizes
the system-driven taxonomy, Section III highlights problem
setup and related works in data preprocessing and machine
learning, Section IV describes parameters and nomenclatures
used in the experiments. We report experiments on five dif-
ferent datasets and assess how gradient-based attacks perform
on information-theoretic FS algorithms in Section V. A dis-
cussion and concluding remarks are in Section VI and VII.

II. TAXONOMY
One of the most important pieces to an adversary is
the assumptions that they make. We briefly revisit the
system-driven taxonomy in adversarial ML practices [16].
The attacker’s model is defined by the attributes: 1) Knowl-
edge, 2) Capability, 3) Goal, and 4) Strategy (shown
in Figure 1). Adversary can have two main types of knowl-
edge: a) data and b) algorithm. The level of knowledge can
be from zero, limited, or full. Zero-Knowledge adversaries
launch or black-box attacks since they do not know the data,
feature selector or classifier. Limited Knowledge, or gray-
box attacks, are when the adversary has access to some, but
not all of the information related to a user’s task. Perfect
Knowledge white-box attacks are those where the adversary
has access to everything the user has access, which tend to
lead to the most damaging attacks. Adversary’s capability
depends on the influence it has on input data and data-
manipulation constraints. In practical scenarios, an adversary
can only alter only a portion of data. Depending on the
influence and access to data, an attack can be poisoning (or
causative) when the attacker alters the training data, or eva-
sion (or exploratory) when the attacker alters the testing data.
Adversary’s goal can depend onwhat it aims to violate among
a) confidentiality, b) integrity, or c) availability [24]. Finally,
the attack strategy can either be Passive where the adversary
aims to derive information about the application/user (often
used in evasion attacks), or Active where attacks hamper the
application/user’s normal operation (often used in poisoning
attacks).

In this work, the adversary’s goal is further explored. What
is the goal of the adversary? Is the adversary’s intention to
directly harm the feature selection algorithm by choosing
features that lead to instability, or they want to remove a
specific feature from S , set of selected features? In this
work, the adversary’s knowledge of data and classifier is
limited (i.e., they have information about the data; but, they
do not know which classifier or feature selection algorithm is
used), the adversary has access to training data and the capa-
bility to append poisoning samples to the original training
dataset. The adversary’s goal is to degrade the performance
of feature selection by making FS algorithms unstable and
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FIGURE 1. Representation of the considerations that goes behind the generation of the attack model.

inconsistent. To achieve this goal, the adversary uses a poi-
soning attack (LASSO attack) as his/her strategy.We feel that
this intention is the most reasonable to study the robustness
of information-theoretic FS algorithms because no attacks are
directly geared towards information-theoretic FS.

III. PROBLEM SETUP AND NOTATION
In this work, we assume the attacker has the knowledge of
data but not of the preprocessing pipeline (e.g., the FSmethod
being used). A dataset D is represented by tuples of feature
vectors and corresponding label denoted by (xn, yn) where
xn ∈ RP is a P-dimensional vector that is a collection of
random variables in the set X := {X1, . . . ,XP} and the
corresponding class label is yn ∈ {±1}. The class label yn can
also be viewed as a random variable Y . In this work, we focus
on binary classification tasks and leave multi-class problems
as future work. The index n denotes the nth data sample.
The objective of FS is to determine a subset of features
S ⊂ X that are informative and possibly not redundant.
We assume the adversary can poison the model by appending
samples to the training dataset Dtr . The goal of the adversary
is to violate the security of the FS algorithm by launching
a causative attack (i.e., an attack meant to inflict damage at
training [16]). The FS algorithm’s security becomes compro-
mised when the adversary successfully introduce malicious
samples into the dataset D∗tr that causes the algorithm to
choose different features than if it were run solely on the
legitimate (i.e., untampered) training dataset Dtr . Choosing
different features is on measure of how we can judge a FS
algorithm’s performance and it is important to understand
how the performance of FS is different than that of classi-
fication tasks with an adversary.

FS algorithms are not compared to each other using the
same figures of merit as a classifier (e.g., F-score, accuracy,
AUC, etc.). Rather, FS algorithms are compared using mea-
sures of stability and consistency [25], [26]. For example,
the Jaccard score is a straightforward similarity measure
between two sets that can determine the degree of similarity

between two feature sets. In this work, we use measures such
as the Jaccard score in two different ways. First, we use
FS stability to measure the consistency of an algorithm on
a dataset. For example, a FS is run M times on bootstrap
datasets. How consistent are these M sets to each other?
This is a measure of consistency between the features that
were selected from different bootstrap datasets. Note that
this measure of performance is independent of an adversary
being present or not. Second, we use FS stability measures to
quantify the similarity between an adversarial and benign fea-
ture set. Thus, this measure determines the distance between
the features that would have been selected if there were no
adversary (i.e., benign) and the features selected when an
adversary performed a causative attack.We formally describe
these measures in Section VI-B.

IV. RELATED WORK AND BACKGROUND
Selection of the most relevant features towards correct clas-
sification and robustness is essential to improve the model’s
performance and, reduce the computational cost, avoid over-
fitting. Further, FS can make the model easier to interpret
and can be performed in several ways based on the features’
interaction with the class label. FS algorithms are categorized
as embedded, wrapper or filter methods. The main focus
of this work is to study the performance of embedded FS
attacks against information-theoretic filter FS techniques.
We describe these techniques in this section.

A. EMBEDDED METHODS
Embedded methods select features by jointly optimizing a
classification loss and feature selector objective (e.g., l1 regu-
larization term that induces sparsity in LASSO [23]). LASSO
selects features by learning linear function f (x) = wT x + b
that minimizes the trade-off between loss function l(y, f (x))
and regularization term �(w), and can be written as:

argmin
w,b

1
n

n∑
i=1

l(yi, f (xi))+ λ‖w‖1 (1)
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where λ > 0 is a free parameter and ‖ · ‖1 is the
l1-norm. LASSO performs shrinkage (i.e., regularization) to
select features. This method applies the shrinkage process to
penalize the coefficients of the regression variables shrinking
some of them to zero. The non-zero terms remaining in
w are then selected features. λ plays an important role to
control the strength of the penalty. Larger values of λ force
more coefficients to shrink to zero, causing the reduction in
dimensionality. When λ = 0, model acts as a simple linear
classifier without FS.

B. INFORMATION-THEORETIC FEATURE SELECTION
In filter approaches, some examples of evaluation functions
are probabilistic distance, inter-class distance, information-
theoretic or probabilistic dependence measures [27]. Because
these measures are directly calculated on raw data instead of
learned model that smooths the noise, they are often con-
sidered as intrinsic properties of the data [28]. To imple-
ment filter FS methods, many different methods can be used
e.g., correlation filters [29], statistical-based, information-
theoretic, etc. Information-theoretic methods are quite popu-
lar for their speed, and theoretical properties [15], [30], which
is also the focus of this paper. Many filter FS methods are
based on fundamental information-theoretic quantities (e.g.,
entropy, mutual information, Kullback-Leibler divergence,
etc. [31]). Information-theoretic-based filter FS algorithms
rank features using a criterion J (·) [15], referred as ‘‘rele-
vancy index’’ or ‘‘scoring function’’, which quantifies how
useful a feature – or subset of features – can be for clas-
sification. Greedy forward search algorithms are typically
used to find a feature subset of top k features (e.g., 10% of
total features) from a dataset. In this section, we review four
popular information-theoretic approaches that are used in this
work, namely: Mutual Information Maximization, Mutual
Information Feature Selection, Minimum Redundancy Max-
imum Relevancy and Double Input Symmetrical Relevance.

1) MUTUAL INFORMATION MAXIMIZATION (MIM)
MIM is a simple information-theoretic approach that only
uses the mutual information (MI) score to rank the feature
set. The MI score of each feature Xk with Y is calculated
independently. The scores are ranked and the top k features
are chosen [32]. MIM’s score is given by:

JMIM (Xk ) = I (Xk ;Y ) (2)

Note JMIM is the notation used to denoted the objective
function for MIM. Unfortunately, MIM does not capture the
redundancy of features (i.e., two or more features having
common information).

2) MUTUAL INFORMATION FEATURE SELECTION (MIFS)
MIFS uses a greedy selection algorithm that takes both rel-
evancy and redundancy into account. The MI score between
a feature and output is calculated, similar to MIM; however,
there is an additional term in the score function that captures
redundancy between the feature under test and the features

that have already been selected. The relevancy of a feature
Xk and redundancy between two features Xk and Xj is written
as

JMIFS (Xk ) = I (Xk ,Y )− β
∑
Xj∈S

I (Xk ;Xj) (3)

where β > 0 free parameter and S is the set of features that
were previously selected.

3) MINIMUM REDUNDANCY MAXIMUM RELEVANCY
(mRMR)
mRMR takes relevancy-redundancy criteria one step further
by defining an ‘‘optimal’’ subspace of features [33]. The
objective function is formally given by:

JMRMR = I (Xk ,Y )−
1
|S|

∑
Xj∈S

I (Xk ;Xj) (4)

where the scaling term in mRMR is when MIFS has β =
1/|S|. mRMR and MIFS are slightly different techniques
so it becomes important to understand the effect of attacks
generated on embedded methods against the information-
theoretic methods.

4) DOUBLE INPUT SYMMETRICAL RELEVANCE (DISR)
DISR combines two well-known properties for FS [28].
First, DISR exploits the concept of variable complementarity.
Variable complementarity is when a combination of features
returns more information about the output class than the
sum of the information returned by each feature individually.
Second, computing lower bound on the information of a set of
features expressed as the average information of all its sub-
sets. This lower bound approximation significantly reduces
the computational overhead and these approximations have
been quite successful in FS [34], [35]. DISR ranks the fea-
tures based on a symmetric relevance score that is the ratio of
the mutual information and joint entropy.

C. ATTACK STRATEGY
Attacks are developed based on the amount of information
the adversary has about the user’s model (e.g., availability of
dataset, and adversary’s capabilities to generate attacks [36]).
This work assumes that the adversary’s goal is to violate the
availability (i.e., compromising the system’s functionality of
the user) with partial knowledge of the system. The adversary
only knows that the user has a feature selector and classifier
in their pipeline, but is unaware of the specific algorithms that
are being used. The adversary has access to user’s dataset
D and has the intent to inject adversarial samples into the
training dataset Dtr , which will poison the FS algorithm.
Given the attacker’s limited knowledge of the classifier θ , and
their capability8 to manipulate good samplesA to malicious
samples A′ ∈ 8(A), one can calculate attack strength using
objective function, W(A′, θ). Optimal attack strategy [15]
can thus be defined bymaximisingW subject to the attacker’s
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capabilities:

max
A′

W(A′; θ )

s.t. A′ ∈ 8(A) (5)

V. ADVERSARIAL ATTACKS AGAINST FEATURE
SELECTION
Recent work by Xiao et al. showed that an adversarial attack
algorithm can easily be formulated against algorithms such
as LASSO, ridge regression, and elastic nets [13], [23], [37].
Xiao et al. proposed an attack strategy that reverses the
LASSO’s cost function, forcing it to select a poor set of
features. In their work, LASSO’s original objective function,
given in Eq. (1), is manipulated to the objective function
shown in Eq. (6). Unfortunately, a knowledgeable adversary
knows a significant amount of information about user’s task
that is using LASSO. First, the adversary knows the task the
user wants to perform (e.g., binary classification or regres-
sion). Second, the adversary might know that the user chose
LASSO for FS. If the adversary did not have access to the
user’s FS algorithm, we need to show the transferability of the
attack space. If the adversary uses Xiao et al.’s algorithm to
generate LASSO attack to poison the user’s training data and
the user chose an information-theoretic FS method, will the
information-theoretic methods fail? At what rate do they fail?
The primary contribution of this work is to understand the
answers to these two questions, critical to machine learning
and data science practitioners.

Let us assume that the attacker decides to use Xiao et al.’s
attack algorithm (discussed below). Then the adversary fun-
damentally knows how LASSOworks. Therefore, generating
adversarial samples to poison the data is performed by casting
LASSO’s original objective as a task that generates a data
sample that increases LASSO’s error (i.e., the optimization is
not overw or b). This task is achieved by maximizing the cost
function of LASSO. The Xiao et al’s attack strategy generates
a single attack point xc against embedded algorithms. The
adversary’s objectiveW can be written as:

max
xc

W =
1
m

m∑
j=1

l(ŷj, f (x̂j))+ λ�(w) (6)

where m is the number of samples in D∗tr with all of the
benign plus the adversarial samples and f is a linear function
from LASSO with parameters w and b. Several points are
worth noting that contrast LASSO’s original formulation.
First, the original optimization task was performed over w
or b; however, now we assume those parameters are fixed,
and the optimization is over the attack/poison sample xc.
Second, the LASSO optimization was a minimization task;
however, the optimization of attack sample xc is a maximiza-
tion task. This conversion to a maximization task is rather
easy to understand; however, this formulation has a subtle
consequence. The goal is to iteratively maximizeW . Then an
unbounded xc is a trivial solution to the optimization problem.

Algorithm 1 Poisoning Embedded Feature Selection
Input: Training data Dtr
Input: {xt=0c , yc}

q
c=1, q initial attack points with labels

Input: σ , ε small positive constants, β ∈ (0, 1)
t = 0
repeat

for c = 0, . . . , q do
{w, b} ← learn classifier on Dtr ∪ {xtc}

q
c=1

Calculate ∇W using Eq. (7)
Set d = 5B(xtc +∇W)− xtc and k ← 0
repeat

Set η← βk using line search and k ← k + 1
xt+1c ← xtc + ηd

untilW(xt+1c ) ≤W(xtc)− ση‖d‖
2;

t = t + 1
until |W({x tc}

q
c=1)−W({x t−1c })

q
c=1| < ε;

return {xtc}
q
c=1

Therefore, the authors of [13] place a bounding box on xc to
prevent the solution from approaching infinity.

Solving Eq. (6) can be done with a straightforward gradient
ascent algorithm that was presented in Algorithm 1. In order,
to solve Eq. (6), we need to calculate the gradient w.r.t. xc
which is given by:

∂W
∂xc
=

1
m

m∑
j=1

(
f (x̂j)− ŷj

) (
x̂T
j
∂w
∂xc
+
∂b
∂xc

)
+ λr

∂w
∂xc

(7)

where r = ∂�
∂w , where � = ‖ · ‖1 for LASSO. Note that, for

LASSO r = sub(w), where sub(w) is the sub-gradient of l1
norm. The subgradient is defined as +1 is for each positive
element of w, −1 for each negative element and zero for
elements that are zero.

In Algorithm 1, poisoning ratio, P , is an attack parameter
given by the adversary that determines number of attack
samples, q, to poison dataset. For each attack point xc, Algo-
rithm 1 first learns f by iteratively updating w and b as shown
in Eq. (1). The attack algorithm uses Eq. (1) to compute the
adversary’s objective in Eq. (6). A projection operator5B(x)
is used to project data point xc onto a feasible box-constrained
domain B. This projection helps define gradient direction
d of the attack point onto the constrained domain B and
calculate gradient step size η by performing a line search. It is
important to note that any arbitrary boundary set by the
attacker will not generate concrete attacks. Boundary plays
a critical role in both the effectiveness and detectability of an
attack. A large choice for projection operator, 5B(x), gives
higher attack strength but is easily detectable [38]. Therefore,
in these experiments we fix the bounding box to 0.5 that
makes the poison sample more difficult to distinguish and,
hence, less detectable.

VI. EXPERIMENTS AND RESULTS
In this section, we present an empirical analysis on the
feasibility of embedded FS algorithms used in [13] against
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information-theoretic methods. The experiments include sev-
eral synthetic and real-world datasets. Our objective with
these experiments is to answer the following questions:

1) Are information-theoretic FS algorithms robust against
direct gradient attacks, such as those developed by
Xiao et al. [13]?

2) Even though LASSO attack, a gradient attack, is not
designed to directly attack information-theoretic FS
algorithms, do these attacks still negatively impact the
performance of the filter FS algorithms (e.g., consis-
tency and adversarial similarity)?

3) Are certain information-theoretic FS algorithms
impacted more than others by the poisoning attacks?

In addition to the information-theoretic FS methods dis-
cussed in Section IV-B, we also implemented Relief [39],
and the Fisher score [40]. Note that FS using Relief and
Fisher scores are not based on information-theoretic quan-
tities; however, we feel it is also important to understand
the transferability of Xiao et al.’s attack on FS methods that
are also independent from LASSO. The experiments were
implemented using Python and the scikit-feature library [41].
Scikit-feature implements the information-theoretic estima-
tors. The reproducible code and data to for the experiments
presented in this work be made publicly available on Github
after publication.

A. DATASETS
The datasets used to benchmark the FS models discussed
in this work were collected from the UCI machine learning
database [42] and preprocessed following the standardization
approach by Fernández-Delgado et al. [43]. Table 1 shows
the properties of the datasets used. The datasets selected for
the benchmarks are all binary classification tasks. We limit
the experiments to binary prediction problems for several
reasons. First, the original experiments with Xiao’s LASSO
attack algorithm focused on binary classification and that
is the approach in the formulation of their gradient ascent
algorithm. Second, mutli-class FS problems add a degree
of freedom to the experiments that would limit our ability
to accurately answer the questions posed above. Therefore,
we evaluate binary classification datasets. Each dataset has an
80:20 split for training and testing data, respectively. We gen-
erated a maximum of 20% malicious samples for each train-
ing dataset, which were later injected in different proportions
with benign training data Dtr , to generate malicious dataset
D∗tr . For the task of FS, information-theoretic algorithms
select the top 30% of the total features from each dataset (see
Table 1). All the results were generated and averaged over
15 cross-validation sets.

B. FIGURES OF MERIT
There are several figures of merit that are of interest when
we measure the performance of a FS algorithm on a dataset.
The first figure of merit is based on the similarity between
the features selected by FS algorithms with and without and

adversary when the FS model is based on information theory.
One may ask, What does ‘‘adversarial similarity’’ mean?
This question refers to the difference in features selected from
poisoned data and the features selected from benign data.
This figure of merit based on the similarity between benign
and adversarial feature sets helps us understand the change
in selection patterns with the addition of adversarial data.
The second figure of merit is based on consistency of the
information-theoretic FS algorithms. Consistency refers to
the repeatability of selection of top p features [25], [26], [44].
For both of these figures of merit, we select the Kuncheva
and Jaccard indices as figure of merit for similarity and
consistency [25], [45].

The Kuncheva and Jaccard indices for similarity and con-
sistency are useful for measuring the performance in terms of
the stability of the feature selector as well as the impact that
the adversary has on the features that are selected. Note that
we can use the Jaccard index to compute the consistency and
the similarity. The only difference is the input to the function
that calculates the index. The same concept applies to the
Kuncheva index as well. Further, it is important to see that the
similarity and consistency capture information that cannot be
measured bymetrics such as classification error. For example,
consider two subsets of features A1 and A2 that are vastly
different but have the same classification errors ε1 and ε2
with the same base classifier. In this hypothetical example,
the classification errors show no difference; however, the fea-
ture sets would have a very low consistency because they are
significantly different. The Kuncheva and Jaccard scores are
calculated as follows:
Kuncheva’s Index [25]: Let A and B be defined as feature

subsets of top p features that were selected from P possible
features, and r = |A∩B| then Kuncheva’s index is given by:

SKunch(A,B,P) =
rP− p2

p(P− p)

which has the range [±1].
Jaccard’s Index [45]: Let A and B be defined as feature

subsets of length p that were selected fromP possible features
then Jaccard’s index is given by:

SJacc(A,B) =
|A ∩ B|
|A ∪ B|

which has the range [0, 1].

C. EXPERIMENTS
This section presents the results for several experiments that
demonstrate the effect of data poisoned by LASSO attacks
on FS tasks. The first set of experiments shows the impact
of LASSO attacks on the similarity of features selected from
benign and adversarial data. The second set of experiments
show the effects of LASSO attacks on the consistency of FS
algorithms. These experiments further explore the impact of
the poisoning ratio (PR) on the two figures of merit. In all of
the experiments, a vector of P has values that range from 1%
to 20% with a step size of 2.5 is used to poison the training
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TABLE 1. Properties of the UCI Datasets used in the experimental benchmarks.

FIGURE 2. Similarity and Consistency scores for Jaccard on the benchmark datasets. First row shows the Jaccard Distance and Second Row shows the
Jaccard Consistency delineating the performance of information-theoretic FS algorithms: MIM, MIFS, mRMR, DISR, Relief, and Fisher after the adversarial
attack.

FIGURE 3. Similarity and consistency scores for Kuncheva index on benchmark datasets. First row shows the Kuncheva Distance and Second Row shows
the Kuncheva Consistency delineating the performance of the information-theoretic FS algorithms: MIM, MIFS, mRMR, DISR, Relief, and Fisher after the
adversarial attack.

data (i.e., 1%, 2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 17.5%,
20%). A bounding box value of 0.5 is used to generate attack
data using Algorithm 1.

1) EFFECT OF POISONING PERCENTAGE ON
INFORMATION-THEORETIC FEATURE SELECTION SIMILARITY
The similarity metric described in Section VI-B is a mea-
sure for features selected from the benign and adversarial
dataset using information-theoretic FS algorithms. The nat-
ural interpretation of the similarity scores of Jaccard and
Kuncheva is equal to one, if the feature sets from the poi-
soned and benign datasets are identical. As the Jaccard and
Kuncheva scores drop, the interpretation is that the feature
sets between the poisoned and benign datasets are becoming
increasingly different. We use different poisoning ratios in
the training data to study the effect on selection patterns by

different information-theoretic FS techniques, namely MIM,
MIFS, mRMR, and DISR and similarity based FS techniques,
namely Relief and Fisher score.

Table 2 shows the Jaccard and Kuncheva similarity scores
of features selected using filter-based FS algorithms from
adversarial data on all benchmark datasets. The table shows
the Jaccard/ Kuncheva scores for 1%, 5%, 10%, and 20%
poisoning ratios. From the table, we observe that the FS
algorithms are negatively impacted by the LASSO attack,
which was originally designed for embedded FS approaches.
Moreover, the impact of attack increases with an increase in
poisoning ratios (i.e., Jaccard and Kuncheva similarity scores
decrease with increasing poisoning ratio). This is an expected
result since other works on data poisoning have shown
that the adversaries’ impact on the performances increases
as their budget increases (i.e., how many samples can be
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TABLE 2. Jaccard and Kuncheva similarity measure for Breast-Cancer, Molecular-Biology, Connectionist Bench, Ionosphere, and Musk-1 generated for
various information-theoretic feature selection algorithms generated for poisoning ratio 1%, 5%, 10% and 20%.

TABLE 3. Jaccard and Kuncheva consistency measure for Breast-Cancer, Molecular-Biology, Connectionist Bench, Ionosphere, and Musk-1 generated for
various information-theoretic feature selection algorithms generated for poisoning ratio 1%, 5%, 10% and 20%.

added to the training data) [46], [47]. The results are shown
in Figures 2 and 3 for Jaccard and Kuncheva scores, respec-
tively. The first row of the two figures shows Jaccard and
Kuncheva similarities for the algorithms on different levels
of the poisoning ratio P . All the algorithms are represented
by different colored lines and show a declining trend on all
datasets as the poisoning ratio increases. We also observe
there is a sharp drop in the figure of merit until the poisoning
ratio is 5% then declines gradually. It is interesting to note
that similarity score of DISR goes as low as 0.2 for higher
poisoning ratios from 0.9 for 1% poisoning. Fisher shows the
smallest overall decline. Algorithms such as MIFS, mRMR,
DISR shows a monotonic decline. Finally, these results show
that even though the attacks were developed for LASSO,
there is a negative impact on the FS performance.

2) EFFECT OF POISONING RATIO ON
INFORMATION-THEORETIC FEATURE SELECTION
CONSISTENCY
Consistency metric measures the repeatability of top p fea-
tures when a FS algorithm is run on bootstrap samples from
a dataset. The experiments are performed by generating a
poisoned dataset (e.g., 5% adversarial and 95% benign) then
running FS on fifteen bootstrap datasets of the same size from
the poisoned dataset. These scores are independent of the
benign dataset. Hence, this experiment is different from the
first experiment using the similarity score. This experiment
shows how consistent the feature set is in the presence of an
adversary. It is important to understand that FSmay result in a
consistent feature set; however, the feature set is consistently
different than the feature set if only benign data were used.
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These experiments in this section were conducted similarly
to the previous one that uses the same values of poisoning
ratios and information-theoretic FS algorithms.

Table 3 shows Jaccard and Kuncheva consistency scores
for the adversarial datasets with varying degrees of poi-
soning data. From the table, we observe that the Jaccard
and Kuncheva consistency scores decrease as the poi-
soning ratio in D∗tr increases. The results are shown
in Figures 2 and 3. Second row of the two figures show the
consistency plots. It is interesting to note that the consis-
tency scores for FS algorithms like DISR increases for the
breast cancer and connectionist-bench datasets and similarly
in MIM for molecular biology dataset. However, there is an
overall decrease in the Jaccard and Kuncheva consistencies
from poisoning ratios between 1% to 20% for all algorithms
on all datasets, except for MIFS in molecular biology where
there is no net decrease in consistency score.

Further, we see from Figure 2 and 3 that the consistency
drop is gradual and even increases for certain algorithms,
as discussed previously. This can appear to have mild or
non-harming effect of increasing poisoning ratios on con-
sistency, if taken in isolation. However, if we observe the
similarity and consistency score as couple, we observe that
the effect of gradual decay of consistency is rather dras-
tic since the corresponding similarity scores are very low.
In other words, even though the repeatability of features is
not too low, the features being selected are largely dissimilar
from legitimate features. Thus, the features that are being
selected are consistently wrong (i.e., they do not agree with
the features that are selected from a benign dataset). It is,
therefore, important to use similarity and consistency scores
together.

VII. CONCLUSION
Feature selection and data preprocessing remains a vital step
in nearly all data science and machine learning pipelines;
however, many applications that rely on machine learning
can easily be fooled by adversarial samples. Further, adver-
sarial data are of increasing concern because of how easy
the data are to generate. A considerable amount of work
has been done on the impacts of the adversary on a clas-
sifier; however, the adversary’s effects on feature selection
are somewhat limited, even though the consequences of
attacks on both classifier and feature-selectors are detrimen-
tal. Our work shows how adversarial attacks designed to
poison embedded FS algorithms (e.g., LASSO) can be hostile
to information-theoretic-based FS algorithms. Even though
the two LASSO and information-theoretic approaches are
structurally very different, the result is the same with the
adversarial data: performance is reduced. This observation
is the answers to Question #1 and #2 in Section VI. This
work also shows the degree of damage poisoning attacks can
have on information-theoretic FS algorithms by injecting a
range of poisoning samples into the benign dataset. This study
also shows how there could be a false sense of security when
the consistency of a FS algorithm is relatively high, but the

similarity between benign and adversarial features sets are
low. Not only could there be a false sense of security but
some FS algorithms are impact more by adversarial data than
others. This observation addresses Question #3 in Section VI.

Our future work includes developing attacks that directly
target information-theoretic FS algorithms and evaluate the
transferability of correlation-based FS and Lasso. Further,
developing FS based on information theory that incorporates
robustness measures against adversaries is also of broader
interest to the community based on the findings in this work.
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