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Abstract—Classification (MC) is the problem of classifying
the modulation format of a wireless signal. In the wireless
communications pipeline, MC is the first operation performed
on the received signal and is critical for reliable decoding.
This paper considers the problem of secure MC, where a
transmitter (Alice) wants to maximize MC accuracy at a
legitimate receiver (Bob) while minimizing MC accuracy at an
eavesdropper (Eve). This work introduces novel adversarial
learning techniques for secure MC. We present adversarial
filters in which Alice uses a carefully designed adversarial
filter to mask the transmitted signal, that can maximize MC
accuracy at Bob while minimizing MC accuracy at Eve.
We present two filtering-based algorithms, namely gradient
ascent filter (GAF), and a fast gradient filter method (FGFM),
with varying levels of complexity. Our proposed adversarial
filtering-based approaches significantly outperform additive
adversarial perturbations (used in the traditional machine-
learning (ML) community and other prior works on secure
MC) and have several other desirable properties. In particu-
lar, GAF and FGFM algorithms are a) computational efficient
(allow fast decoding at Bob), b) power-efficient (do not require
excessive transmit power at Alice); and c) SNR efficient (i.e.,
perform well even at low SNR values at Bob).

I. INTRODUCTION

In recent years, machine learning (ML), particularly
neural networks (NNs), has shown great promise in many
applications and has even surpassed humans in image
classification [1]. In the domain of wireless communica-
tion, ML has been adapted for many applications [2]–[4].
One important use of ML in wireless communication is
modulation classification (MC), where ML models are used
to classify the modulation format of signals [5]. In MC,
it is common to use extracted features for classification,
however, there has been recent work showing that the in-
phase/quadrature (IQ) samples passed directly into a NN
can achieve competitive classification accuracy [6]–[8].

Despite the benefits of using ML for classification,
Adversarial Learning (AL) shows that these algorithms are
susceptible to adversarial examples, which are typically
created by strategically crafting additive perturbations to
add to input samples [9]–[12]. A Universal Adversarial
Perturbation (UAP) is a perturbation that can create an
adversarial example from any input to a fixed ML model
[13]. It has also been shown that AL attacks can have
detrimental effects on MC [14], [15].

In this paper, we consider an eavesdropper scenario
where a transmitter (Alice), has an intended receiver (Bob),
and there is an eavesdropper (Eve) listening in on the
transmission. The communication system uses blind modu-
lation, so both Bob and Eve need to classify the modulation
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format before they can decode information. There exist
applications where decoding may not be desired by Eve,
and simply classifying the modulation format is sufficient
for the identification of other parties. Encrypting the data
before transmission does not impair Eve’s ability to classify
the modulation format of a signal. It is, therefore, necessary
to use physical layer approaches to prevent Eve’s ability to
classify the modulation format.

We consider a scenario where Alice uses AL to send
adversarially perturbed signals instead of an unperturbed
signal. Bob is assumed to already have a securely pre-
shared key before communication to help him undo the
adversarial attack, and he has a minimum signal-to-noise
ratio (SNR) constraint to ensure decodability. The secrecy
of the scheme is measured in terms of Eve’s classification
accuracy which must remain low.

In this paper, we present a filtering-based framework
to create adversarial examples instead of additive per-
turbations. Filter-based adversarial attacks do not suffer
from drawbacks that additive perturbations face in this
eavesdropper scenario. It is much easier for Bob to undo
the effect of the adversarial filter as opposed to additive
adversarial perturbations.

The main contributions of this paper are as follows. Two
novel methods of creating adversarial filters are proposed.
The first approach is an iterative optimization technique
where filter taps are effectively trained: we call this ap-
proach the gradient ascent filter (GAF). Two methods
to create a GAF that has a stable inverse are proposed.
The second adversarial filter is an approximate analytical
solution to the optimization problem of maximizing loss
with respect to the filter’s taps. The proposed approaches
are for finite impulse response (FIR) linear filters, where
the inverse filters are infinite impulse response (IIR) filters
that can be easily solved. This paper analyses an eaves-
dropper scenario for MC, where secrecy is measured by
the reduction in classification accuracy at the eavesdropper
by applying adversarial attacks at the transmitter. We also
present simulation results to compare traditional additive
perturbations versus the proposed adversarial filtering in
terms of classification accuracy at the eavesdropper and the
intended receiver, available transmit power at the transmit-
ter, and SNR requirement at the intended receiver.

II. SYSTEM MODEL & PROBLEM STATEMENT

Consider The system model shown in Figure 1, where
Alice wants to send a signal ~s to Bob which is a [d × 1]
vector of complex values (~s ∈ Cd). There are C differ-
ent modulation classes with which Alice may choose to
transmit information to Bob. ~s is a signal with modulation
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Fig. 1. Assumed Communication system model with Transmitter (Alice), receiver (Bob), and eavesdropper (Eve)

format k, and C̃k is the set of all signals from class k (i.e.,
~s ∈ C̃k).

The communication channel from Alice to Bob and
Alice to Eve are assumed to be Additive White Gaussian
Noise (AWGN) channels with a fixed noise power PN and
an attenuation of αB and αE respectively. The received
signal by Bob ~rB and Eve ~rE when Alice send ~s are given
by

~rB = αB~s+ ~N, (1)

~rE = αE~s+ ~N, (2)

where αB , αE are the real-valued positive scalar channel
attenuation for Bob and Eve’s channels respectively, and
~N is a complex AWGN vector with zero mean.

Eve can predict the modulation class k from ~rE . Alice
wants to keep k secure from Eve. Using AL, Alice creates
an adversarial example ~sa from ~s. Using some adversarial
attack function f with an [m× 1] vector of parameters ~δ,

~sa = f(~s, ~δ). (3)

Alice transmits ~sa and has a finite transmission power PT ,
this introduces the constraint

‖~sa‖2 ≤ PT , (4)

where ‖~v‖ denoted the L2 norm. When Alice sends ~sa
instead of ~s, The received signals by Bob and Eve are
given by

~raB = αB~sa + ~N, (5)

~raE = αE~sa + ~NA (6)

Alice and Bob are assumed to have a securely pre-
shared key. In this scenario, the key is assumed to already
have been securely shared between both Alice and Bob
with no overhead. The key in this problem is the vector
of parameters ~δ Bob uses this key to try to undo the
adversarial attack to get ~̂rB which is his estimation of ~rB .
Bob then passes ~̂rB into his classifier hB to get an estimate
k̂B of true modulation format k:

k̂B = hB(~̂rB). (7)

Once Bob chooses the modulation format k̂B , he can
use the appropriate demodulation scheme. ~̂rB must satisfy
a minimum SNR for reliable communication. Eve does

not have this key. Eve’s classification accuracy is the
probability that her classifier hE acting on her received
signal outputs the correct class:

PE = Pr{hE(~raE) = k} = Pr{k̂E = k}. (8)

Since Bob has his estimate ~̂rB , Bob’s classification accu-
racy is

PB = Pr{hB(~̂r) = k} = Pr{k̂B = k}. (9)

For additive attacks, the attack function in (3) is defined
as

f+(~s, ~δ+) = ~s+ ~δ+, (10)

and m = d to satisfy dimensionality constraints. For
additive attacks δ is denoted by ~δ+, which is the additive
perturbation in additive attacks. In a filter-based attack, (3)
can be rewritten as follows:

f~(~s, ~δ~) = ~s~ ~δ~, (11)

and m 6= d, ~δ~ denotes the taps of the FIR filter that gener-
ates the adversarial sample, and ~ is convolution between
two finite vectors. This work analyses the performance of
additive and linear filter forms of the adversarial attack
f(~s, ~δ).

To correctly classify the received signal and decode, Bob
must reverse the adversarial attack from ~raB to get ~̂rB . That
is

~̂r = f−1(~rAB , ~δ). (12)

The formulation of f−1(~raB , ~δ) depends on how the key
is shared between Alice and Bob. The key is never altered,
nor shared during communication between Alice and Bob.
The function f(·, ·) is known by both Bob and Eve.

Alice and Bob’s goal is to design an adversarial attack
and shared key that keeps Eve’s classification accuracy
PE low and Bob’s classification accuracy PB high while
satisfying the minimum SNR constraint of recovered signal
~̂r.

III. MAIN RESULTS & DISCUSSION

A. Reversing Adversarial Attacks at Bob

When Bob reverses an additive attack, he subtracts ~δ+
from ~raB with the proper attenuation. However, Bob cannot
perfectly find αB , so he must make an estimate α̂B of the



true αB . This results in the following expression of Bob’s
recovered signal:

~̂r+B = αB~s+ ~N + (αB − α̂B)~δ+. (13)

From (13) we see that unless Bob perfectly estimates
~α, there will always be remnants of the adversarial per-
turbation ~δ+. This is particularly bad for Bob because
many AL algorithms that generate ~δ+ are designed to
create perturbations that ruin classification accuracy even
when the power assigned to the perturbation is extremely
small [9], [10], [16]. In real-time, Alice must repeatedly
retransmit the finite perturbation. For Bob to undo this
attack he must sync his removal of ~δ+ with Alice’s repeated
transmission.

Reversing an FIR linear filter attack is significantly
simpler, as there is no need to estimate the attenuation
αB , or synchronize the additive perturbation. This paper
focuses on FIR filters where δ−1

~ is the impulse response
of the inverse filter to ~δ~. The recovered signal under a
filter-based attack is

~̂r~B = ~δ−1
~B ∗ ~raB = αB~s+ ~δ−1

~ ∗ ~N. (14)

Therefore, when Bob undoes the filtering-based attack, he
colors the noise.

Figure 2 shows the SNR of the recovered signals at Bob
when additive and filter attacks are used. The recovered
signal SNR can be expressed as a function of transmit
power PT , perturbation power P~δ , the channel attenuation
coefficient αB , and the noise power P ~N . Note that P~δ is
only applicable if an additive perturbation is used. Assum-
ing Bob perfectly eliminates the additive perturbation, the
SNR of the recovered signal ~̂r+B , expressed in (13), for
additive perturbations is given as

SNR+ =
α2
BPT − P~δ
P ~N

. (15)

As for filter-based adversarial attacks used by Alice,
there is no need to allocate transmit power to a perturbation,
so the SNR at Bob SNR~ for filter attacks is

SNR~ =
α2
BPT
P ~N

. (16)

Alice need not exceed the SNR requirement at Bob. For
additive attacks, Alice can allocate just enough power to
P~s to satisfy the SNR requirement, and allocate the rest
of PT to P~δ to minimize Eve’s classification accuracy. If
there is barely enough transmit power to satisfy the SNR
requirement, little to no power can be allocated to the
perturbation. When Pδ is very small, Eve can achieve a
high classification accuracy. An adversarial filter will not
suffer from this drawback.

Bob needs to reverse the adversarial attack. Alice cannot
pre-share every possible ~δj for every possible signal ~sj she
sends. Therefore, it is critical that Alice uses a UAP that
will work for all ~sj . In addition to attacks being universal,
they can also be class-specific. Instead of ~δ being designed
to work on every input ~sj ∈ C̃, ~δ(k) can be designed to
work especially well for inputs from the kth class ~sj ∈ C̃k.
There are only a finite number of classes, so it is feasible
for Alice to pre-share every ~δ(k) with Bob.

One important aspect regarding undoing the filter at
Bob is the invertibility of the filter used by Alice. If the
inverse filter at Bob ~δ−1

~ is unstable, then the noise at Bob’s

receiver will be amplified and no communication will be
possible. All the zeros of the filter ~δ~ must be outside the
unit circle for ~δ−1

~ to be stable.
The filters used at both Bob and Alice must have an

overall gain of 1 to ensure that signal power is preserved.

1

2π

∫ π

−π
|D~(ω)|2dω = 1, (17)

where D~(ω) is the Discrete-Time-Fourier-Transform
(DTFT) of the filter ~δ~. Using Parseval’s theorem, the
constraint in (17) can be rewritten as the L2 norm of the
magnitude:

‖abs(~δ~)‖2 = 1. (18)

Here the magnitude operation abs(·) is element-wise for
the complex vector within.

B. Classification Accuracy and Secrecy

A common metric for secrecy is the mutual information
between recovered information by the eavesdropper and
information for the intended receiver. In this problem, the
information is the modulation class k, and Eve’s guess k̂E .

We can treat the true modulation class as a random
variable K, and Eve’s recovery as another random variable
K̂E . Let us assume K has an equal probability of being
any of the C possible modulation formats. Using Fano’s
inequality [17], we can make the lower-bound on mutual
information

I(K; K̂E) ≥ log(C)−H(PE)− PElog(C), (19)

where H(PE) is the binary entropy function for Eve’s
probability of error PE = P (K̂E 6= K). From (19) it is
clear that by increasing PE Alice improves the secrecy of
her communication to Bob, therefore Eve’s classification
accuracy is a si metric for secrecy.

IV. ADVERSARIAL FILTERING ALGORITHMS

A. Gradient Ascent Filter

The first novel AL algorithm in this work is the gra-
dient ascent filter (GAF). GAF can be summarized as an
optimization approach where a seed vector ~∆ is trained
such that the adversarial filter ~δ = G(∆) empirically
lowers classification accuracy on a targeted ML model. The
seed vector ~∆ of size [l × 1] is randomly initialized, then
converted into a the adversarial filter ~δ of size [m×1] using
some filter generation function ~δ = G(~∆). The desired
number of filter taps m and the generation function G
determine the size of the seed vector l.

During optimization, the seed vector ~∆ is updated itera-
tively to increase loss as shown in Figure 3. The seed vector
~∆ is trained with any optimization process as desired (i.e.,
Adagrad, RMS prop, Adam [18]). The formal algorithm for
training the GAF with stochastic gradient ascent is formally
described in algorithm 1.

B. GAF variants

This subsection proposes three filters for GAF. All three
proposed filters ensure that the power preserving constraint
in (18) is satisfied. Of the three presented filters, only the
First Tap Constrained GAF and the Root Training GAF
have a guaranteed stable inverse. Although their inverse
may not be finite, there is a tuneable parameter β that can
guarantee it decreases significantly and can effectively be
finite in practice.
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Fig. 2. Illustration of how Alice and Bob use AL learning in their communication system. We see that there is a loss in SNR at Bob when an additive
perturbation is employed compared to filtering based attacks
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Fig. 3. Flowgraph for Training Gradient Ascent Filter (GAF).

Algorithm 1: Algorithm for creating ~∆ using the
GAF technique
Inputs:

• number of filter taps m
• filter generation function G
• model h
• number of training epochs T
• learn rate η
• loss function L
• training inputs set s = {~si : ∀i}
• training labels set k = {ki : ∀i}

Output:
• The adversarial filter ~δGAF

1: Initialize ~∆0 ∼ N (0[1×l], I [l×l])
2: for t = 1 to T do
3: ~δ = G(~∆t−1)
4: sa = {~sai : ~sai = ~si ~ ~δ, ∀i}
5: k̂ = {k̂i : k̂i = h(~sai), ∀i}
6: L = {Li : L (k̂i, ki), ∀i}
7: L =

∑
∀i Li

8: ~∆t = ~∆t−1 + η∇~∆t−1
L

9: end for
10: return ~δGAF = G(~∆T )

1) Unconstrained GAF: One approach to create GAF
is to treat ~∆ as an unconstrained filter, and set ~δ to be a
power preserving version of ~∆. The unconstrained GAF
generation function is given by

~δ = Gu(~∆) =
~∆

‖abs(~∆)‖
, (20)

where ~∆ is complex valued, and l = m for dimensionality.
The unconstrained GAF is named so, because this filter has
no constraints on the filter taps besides power preservation,
and it does not guarantee an FIR filter with a stable inverse.

2) First Tap Constrained GAF: Cauchy’s argument
principle states that if D(ω) does not wrap around the
origin in the complex plane, then ~δ has a stable inverse.
One way to ensure that D(ω) does not wrap around the
origin it to ensure it’s real part is always greater than 0.
The proposed approach to satisfy this constraint is to set
the taps of an intermediate filter ~hftc be

~hftc,k =

β + 1 k = 0
~∆k−1∑m−2

i=0 abs(~∆i)
k ∈ [1,m− 1]

, (21)

where β > 0 is a real constant to ensure stability as
opposed to marginal stability, and l = m − 1. Now the
filter generation function for the first tap constrained GAF
is

δ = Gftc(~∆) =
~hftc

‖abs(~hftc)‖
. (22)

3) Root Training GAF: The third approach to creating
a GAF with a stable inverse seeks to treat ~∆ as a vector
of zeros of the adversarial filter. The full pipeline for the
root training GAF filter is shown in Figure 4. Of course,
during optimization, the values in ~∆ are unpredictable, so
a function (far left block in Figure 4) for creating a vector
of zeros of an invertible FIR filter from a vector with any
values is used. Vieta’s formula [19] is used to expand the
polynomial described by the filter’s zeros, and get the filter
taps. Finally, the filter taps are normalized so that the filter
preserves power. For more detail on the root training GAF,
we refer the reader to [20].

C. Fast Gradient Filter Method

The second novel filtering AL algorithm presented in
this paper is the fast gradient filter method (FGFM). This
algorithm is similar to the Fast gradient method (FGM)
because it is based on choosing ~δ to take a small step in
the direction of the gradient with respect to loss. Loss L(~s)
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training GAF.

for a particular input is the differentiable metric for how
wrong the trained classifier h is when observing ~s. Like
the FGM, the FGFM also creates an input specific ~δ.

The adversarial filter created by the FGFM is

~δFGFM = ε~δ + ~v, (23)

where ~v is an [m×1] vector of zeros with a 1 in the center.
In the case of m = 3, ~v = [0, 1, 0]T . ε is a real scalar which
determines how much the filter alters the input signal ~(s).
In the case where m = 3 and d = 5, ~δ is given by

~δ = ε

~s1 ~s2 ~s3 ~s4 0
~s0 ~s1 ~s2 ~s3 ~s4

0 ~s0 ~s1 ~s2 ~s3

 (∇~sL(~s)). (24)

(24) is specific to m = 3 and d = 5, however, the form of
~δ generalizes for other values of d and m. The structure
of Toeplitz matrix depends on how the vector convolution
operation ~ is defined, but its dimensionality is always
[d×m]. For further details on the derivation for the FGFM,
we refer the reader to [20].

The ~δFGFM is specifically designed for a particular input
~s. As previously stated in Section III, a universal attack is
needed for Alice to effectively communicate with Bob. One
can simply use existing UAP algorithms to aggregate many
filters generated by the FGFM into a universal filter. It is
important to note that the FGFM may not have a stable
inverse, hence Bob may not be able to get Alice’s signal
back.

V. EXPERIMENTS

In this section, we present simulation results to show
the efficacy of the proposed methods and compare them
with existing ones. All experiments were conducted purely
in simulation using Python. The TensorFlow and Keras
libraries were used as the platform for implementing DL
algorithms with graphics processing unit (GPU) accelera-
tion. Many useful functions from the SciPy and Matplotlib
libraries were used. The ML algorithm analyzed in these
simulations is a deep convolutional neural network with
inputs that have normalized power and mean. There are
4 convolutional layers with varying filter sizes smaller
than [7 × 1], and each convolutional layer has 128 output
channels. Following the convolutional layers are two dense
layers with outputs of size 256, and C respectively. The
same DL architecture was used for both Bob and Eve.
Although this is not a practical assumption, it is shown
in many AL papers that an adversarial attack that works
on one DL model will usually work on another similar
deep learning model. Only white-box attacks were con-
sidered, however it has been shown in many AL works
that AL attacks are transferable between DL models. The
channel uses trivial attenuation α = 1. To implement the
FGFM, Fast gradient method (FGM), and Fast gradient
sign method (FGSM) as universal or modulation specific
attacks, the PCA-based algorithm for creating UAP’s from
Sadeghi et al was used [14]. The FGM and the FGSM

are the only additive attacks from prior works we com-
pare the filter attacks with. All adversarial filters in these
experiments have 5 taps. Classification accuracy in these
experiments is given by averaging the probability of correct
classification over all classes. A dataset of clean waveforms
was created for this experiment using Python simulations.
The waveforms to be classified all have 4 samples per
symbol, and we consider C = 8 where the modulation
classes 8FSK, 2FSK, 16QAM, 64QAM, 4PAM, QPSK,
8PSK, BPSK.

Figure 5 compares two additive attacks (FGM and
FGSM) with the root training GAF (labeled as rtGAF)
and FGFM. The minimum SNR requirement at Bob is
−10 dB. In this experiment, it is assumed that Bob can
estimate the attenuation of the channel α perfectly, so
the plot shows that Bob’s classification accuracy does not
drop in additive attacks. The lowest Tx power shown
in the plots indicates that PT is just enough to satisfy
the SNR requirement at Bob. This means that additive
attacks such as the FGSM or FGM cannot have any power
allocated to them (i.e., PT = P~s + P~δ and P~δ = 0).
Eve’s classification accuracy is equal to Bob’s classification
accuracy when PT is very low because of this. We observe
that with very little extra transmit power at Alice, the
FGSM lowers Eve’s classification abilities significantly.
This is because the FGSM is optimal in the sense that
it guarantees misclassification with a minimum infinite
norm of the perturbation. There is a short-lived increase
in classification accuracy for the FGM likely because the
direction of the FGM perturbation has overstepped a local
minimum in the loss space. The root training GAF (labeled
as rtGAF) reduces Eve’s classification accuracy at any PT
because there is no need to dedicate transmit power for
the attack. Bob’s classification accuracy remains constant
under the additive attacks because Alice is allocating as
much transmit power to the perturbation as possible. Bob’s
classification accuracy raises with Alice’s transmit power
when filter attacks are used because Alice can allocate more
power to her signal and Bob can almost perfectly recover
the un-attacked signal.

Figure 6 compares Eve’s and Bob’s classification accu-
racy when Alice uses different filtering attacks proposed in
this paper. The FGFM produces a very effective filter that
fools Eve; however, its inverse is unstable. Therefore, Bob’s
classification accuracy suffers as well. The unconstrained
GAF (labeled as uGAF) was the most effective at fooling
Eve, due to being able to optimize filter taps unconstrained,
but its inverse is even more unstable than the FGFM which
causes Bob’s classification accuracy to be worse. The first
tap constrained GAF (labeled as ftcGAF) has a stable
inverse, so Bob’s classification accuracy is good. However,
the first tap constrained GAF retains a large portion of
Alice’s original signal because of the large real-valued first
tap, so Eve is not fooled effectively. β for the first tap
constrained GAF was 0.9 for this experiment. The root
training GAF (labeled as rtGAF) also has a stable inverse,
and it is significantly less constrained than the first tap
constrained GAF, so it is intuitive that Eve’s classification
accuracy is very low with this filter. β for the root training
GAF was 0.5 for this experiment.

Figure 7 shows an experimental comparison of
Eve/Bob’s classification accuracy when Alice employs
universal versions versus modulation specific versions of
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the root training GAF and the FGSM. We observe no
difference in performance for the root training GAF, but the
modulation-specific version of the FGSM is not as secure
as the universal.

Figure 8 shows Bob’s classification accuracy when his
estimate α̂ is not perfect, and Alice uses the FGSM. The
number used to label each curve is the ratio between
Bob’s estimate and the true channel attenuation coefficient
α̂/α. The perfect estimate is when α̂/α = 1 where Bob’s
classification accuracy is highest. As α̂/α deviates further
from 1, Bob’s classification accuracy drops detrimentally as
PT increases. Eve’s classification accuracy is not affected
by Bob’s inability to estimate α.

VI. CONCLUSION

This paper examines the security of MC in a point-to-
point communication system with an eavesdropper (Eve),
where the transmitter (Alice) has finite transmission power,
and the intended receiver (Bob) has a minimum SNR
requirement that must be met for reliable communication.
The channel model explored in this work is an AWGN
channel model with attenuation of the transmitted signal.
Secrecy is measured in the sense that Eve’s classification
accuracy is low, Bob’s classification accuracy is high. Alice

0 10 20 30 40 50
Tx Power (dB)

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

SNR min = 0 dB , Noise Power = -5 dB

No Attack
Bob rtGAF U
Eve rtGAF U
Bob rtGAF MS
Eve rtGAF MS
Bob FGSM U
Eve FGSM U
Bob FGSM MS
Eve FGSM MS

Fig. 7. The relationship between Alice’s transmit power and Eve/Bob’s
classification accuracy when root training GAF and the FGSM applied by
Alice and Bob as modulation specific attacks (MS) and universal attacks
(U). The minimum SNR requirement at Bob is 0dB, and the noise power
is 5dB.

0 10 20 30 40 50
Tx Power (dB)

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

SNR min = 0 dB , Noise Power = -5 dB

No Attack
Bob 0.90
Bob 0.99
Bob 1.00
Bob 1.01
Bob 1.10
Eve

Fig. 8. The importance of Bob estimating the channel attenuation α. The
numbers in the legend are the ratio between Bob’s channel attenuation
estimate and the true channel attenuation α̂/α. In this experiment, the
SNR requirement at Bob is 0dB, and the noise power is 5dB

uses an adversarial attack on her transmitted signal to
lower Eve’s classification accuracy and shares a key with
Bob so that he can undo the adversarial attack. Eve does
not know the key, so she cannot undo the adversarial
attack. This paper shows that additive adversarial attacks
fall short in many ways for this application. If Alice uses
filters to generate adversarial examples instead of additive
perturbations, these shortcomings are mitigated.

This paper also presents two novel filter-based AL
algorithms to generate adversarial examples. The first of
which is an optimization approach called the gradient
ascent filter (GAF). This paper proposes three methods
of creating a GAF, two of which have a stable inverse
which is necessary for Bob to decode information. The
second presented adversarial filter algorithm is similar to
the fast gradient method (FGM), called the fast gradient
filter method (FGFM). The FGFM does not guarantee a
stable inverse. In simulations with a convolutional neural
network, the root training GAF was the most effective AL
algorithm in this system model.
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